1
|
Pi R, Yang Z, Chai J, Qi Y, Sun X, Zhou Y. Peroxysulfur species-mediated enhanced oxidation of micropollutants by ferrate(VI): Peroxymonosulfate versus peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134871. [PMID: 38876020 DOI: 10.1016/j.jhazmat.2024.134871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Many studies have shown that Peroxymonosulfate (PMS) works synergistically with ferrate (Fe(VI)) to remove refractory organic compounds in a few minutes. However, little has been reported on the combined effects of peroxydisulfate (PDS) and Fe(VI). Since PDS is stable and cost effective, it is of practical significance to study the reaction mechanism and conditions of the PDS/Fe(VI) system. The results of the study indicate that the intermediate Fe(II) is formed during the decomposition of Fe(VI), which is then rapidly oxidized. Due to the asymmetry of the PMS molecular structure, PMS can rapidly trap Fe(II) (kPMS/Fe(II)= 3 × 104 M-1∙s-1), whereas PDS cannot (kPDS/Fe(II)= 26 M-1∙s-1). Hydroxylamine hydrochloride (HA) can reduce Fe(VI) and Fe(III) to Fe(II) to excite PDS to produce SO4•-. Acetate helps to detect Fe(II), but does not help PDS to trap Fe(II). Active species such as SO4•-, •OH, 1O2, and Fe(IV), Fe(V) are present in both systems, but in different amounts. In the PMS/Fe(Ⅵ) system, all these active species react with ibuprofen (IBP) and degrade IBP within several minutes. The effects of the initial pH, PMS or Fe(VI) dosage, and different amounts of IBP on the removal rate of IBP were investigated. According to the intermediates detected by the GC-MS, the degradation process of IBP includes hydroxylation, demethylation and single bond breakage. The degradation pathways of IBP were proposed. The degradation of IBP in tap water and Songhua River was also investigated. In actual water treatment, the dosage needs to be increased to achieve the same results. This study provides a basis and theoretical support for the application of PMS/Fe(Ⅵ) and PDS/Fe(VI) system in water treatment.
Collapse
Affiliation(s)
- Ruobing Pi
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Zhe Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Jin Chai
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Yuan Qi
- Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 131001, Jilin, China
| | - Xuhui Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Yunlong Zhou
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| |
Collapse
|
2
|
Zhang H, Wang X, Zhao X, Dong Y, Wang W, Lv Y, Cao S, Wang L. Enhanced degradation of reactive black 5 via persulfate activation by natural bornite: influencing parameters, mechanism and degradation pathway. ENVIRONMENTAL TECHNOLOGY 2024; 45:3961-3973. [PMID: 37452659 DOI: 10.1080/09593330.2023.2237660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Reactive black 5 (RBk5) is a refractory azo dye that constitutes a serious threat to the environment and humans. Herein, natural bornite (Nbo) was utilized to activate persulfate (PDS) for the RBk5 removal. The particle size of the Nbo catalyst was optimized and the RBk5 degradation rate constant that responded positively to the particle size of the Nbo catalyst was exhibited. Then, the operational factors affecting RBk5 removal were comprehensively investigated. With the addition of 1.5 g L-1 Nbo and 1.5 mM PDS, 99.05% of the RBk5 (20 mg L-1) was removed in 150 min compared with 0.46% removal with PDS only, which was caused by the additional reactive oxygen species (ROS) produced by the synergistic action of Fe-Cu bimetallic metal and reductive sulfur species. The Nbo catalyst presented high stability and reusability toward RBk5 removal. Identification of reactive oxygen species revealed that SO 4 ⋅ - , ·OH, O 2 ⋅ - and 1O2 collectively participated in RBk5 removal. Additionally, a possible degradation pathway for RBk5 was proposed, including cleavage of the azo, C-S and S-O bonds, hydroxylation, hydrolyzation, direct oxidation and other pathways. This work developed a highly effective and low-cost natural mineral-based bimetallic sulfide material for PDS activation for the degradation of contaminants and environmental remediation.
Collapse
Affiliation(s)
- Hongmin Zhang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xiaochen Zhao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yonghao Dong
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Wanying Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Shumiao Cao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Brillas E, Oliver R. Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices. CHEMOSPHERE 2024; 355:141766. [PMID: 38527631 DOI: 10.1016/j.chemosphere.2024.141766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcclona, Spain.
| | - Ramon Oliver
- Departament d'Enginyeria Químia, Universitat Politècnica de Catalunya, Avinguda Eduard Maristany16, edifici I, segona planta, Barcelona, Spain.
| |
Collapse
|
4
|
Liu H, Li X, Zhang X, Coulon F, Wang C. Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation. CHEMOSPHERE 2023; 337:139404. [PMID: 37399998 DOI: 10.1016/j.chemosphere.2023.139404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Yu J, Afzal S, Zeng T, Wang H, Fu H. Degradation of bisphenol A by peroxymonosulfate activated with MIL-88B(Fe) derived CC-Fe/C catalysts: Effect of annealing temperature, performance and mechanism. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
6
|
Yang J, Zhang M, Chen M, Zhou Y, Zhu M. Oxygen Vacancies in Piezoelectric ZnO Twin-Mesocrystal to Improve Peroxymonosulfate Utilization Efficiency via Piezo-Activation for Antibiotic Ornidazole Removal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209885. [PMID: 36644889 DOI: 10.1002/adma.202209885] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Piezoelectric mesocrystals as defective materials have been demonstrated to possess adsorptive and catalytic properties in redox reactions. However, there is still a lack of research on the quantitative relationship between the defect concentration and the piezocatalytic performance in piezoelectric mesocrystals. Herein, twin-hierarchical structure ZnO piezoelectric mesocrystals are taken with different oxygen-vacancies (OVs) concentrations to quantitatively investigate the effect of defect content on the peroxymonosulfate (PMS) piezo-activation in water purification. The ZnO piezoelectric mesocrystal with moderate OVs concentration exhibits a rapid antibiotic ornidazole (ORZ) pollutants degradation rate (0.034 min-1 ) and achieves a high PMS utilization efficiency (0.162) that exceeds the most state-of-the-art catalytic processes, while excessive OVs suppressed the piezocatalytic performance. Through calculations of electron property and reactants affinity, a quantitative relationship between OVs concentration and piezocatalytic properties is established. The ZnO mesocrystal with moderate OVs concentration realized increased electron delocalization, reduced charge transfer barrier, and enhanced reactants affinity, thus accelerating the kinetics of PMS activation. This work provides theoretical guidance for the application of defect engineering in mesocrystal to realize enhanced piezocatalytic performance.
Collapse
Affiliation(s)
- Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Minxian Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Mengshan Chen
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, P. R. China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
7
|
You Y, He Z. Phenol degradation in iron-based advanced oxidation processes through ferric reduction assisted by molybdenum disulfide. CHEMOSPHERE 2023; 312:137278. [PMID: 36400194 DOI: 10.1016/j.chemosphere.2022.137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In the iron-based advanced oxidation processes (AOPs), direct use of FeIII can be more convenient than FeII but the reduction of FeIII to FeII is a rate-limiting step. Introducing co-catalysts with abundant reducing sites to Fe-based AOPs can be an efficient way to accelerate the Fe redox process. Herein, molybdenum disulfide (MoS2) was used to enhance the catalytic performance of Fe3+/persulfate (PS) for phenol removal. In the Fe3+/MoS2/PS system, 99.6 ± 0.1% of phenol was removed in 60 min, comparable to that of the Fe2+/PS/MoS2 system (99.1 ± 0.3%). With the help of MoS2, 99.3 ± 4.2% of Fe3+ was transformed to Fe2+ in 10 min, and the Fe2+/Fe ratio was able to be maintained at 70.0 ± 1.4% after 60 min. The rapid and complete reduction of Fe3+ with MoS2 made it possible to replace Fe2+ by Fe3+, which is easier to store, transport, and use. The decrease in XPS peak area percentage of Mo(IV) and the lower valent S after reaction revealed that MoS2 acted as an electron provider in the Fe redox cycle. Quenching experiment results indicated that the phenol removal was highly depended on the surface-bound radicals, including both SO4•- and •OH. Those results have demonstrated that ferric salts can be directly used in the Fe-based AOPs and the redox cycle could be sustained with the assistance of MoS2.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
8
|
Qin Y, Zhang X, Yuan GE. Promoting azo dye decomposition in natural molybdenite activated peroxymonosulfate process by low concentration of ferrous ions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1876-1886. [PMID: 36315082 DOI: 10.2166/wst.2022.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, low concentration of ferrous ions (Fe2+) was added into natural molybdenite (MDN) activated peroxymonosulfate (PMS) process to degrade a typical azo dye, orange G (OG). It was found that the addition of Fe2+ promoted OG degradation and simultaneously reduced the leaching of toxic Mo ions significantly. Further, the utilization efficiency of MDN was improved immensely, which was estimated from reuse experiment. MDN mainly acted as the reductant to promote cycling of Fe3+/Fe2+ redox couple through reducible sulfur and Mo(IV) on its surface. Sulfate radicals (SO4•-), hydroxyl radical (•OH) and singlet oxygen (1O2) were verified as the main reactive oxygen species responsible for OG degradation by scavenging tests and electron paramagnetic resonance. Some experiment parameters, such as MDN dosage, Fe2+ concentration, PMS concentration, initial solution pH and coexisting anion, all affected OG degradation efficiency. In a word, this work provides a new method of enhancing PMS activation by MDN using low concentration of Fe2+ for degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Yingzhi Qin
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China E-mail:
| | - Xin Zhang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China E-mail:
| | - Guang-En Yuan
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China E-mail:
| |
Collapse
|
9
|
Li N, Wang Y, Cheng X, Dai H, Yan B, Chen G, Hou L, Wang S. Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review. WATER RESEARCH 2022; 222:118896. [PMID: 35914502 DOI: 10.1016/j.watres.2022.118896] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China
| | - Yanshan Wang
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Xiaoshuang Cheng
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
10
|
Peng H, Chen R, Tao N, Xiao Y, Li C, Zhang T, Ye M. MoS 2 boosts the Fe 2+/PMS process for carbamazepine degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49267-49278. [PMID: 35217952 DOI: 10.1007/s11356-022-19172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Activation of peroxymonosulfate (PMS) by Fe2+ is a green oxidation process for degradation of organic contaminants. However, the formation of iron mud and low PMS utilization lead to the decreased oxidation efficiency. In this work, commercial MoS2 particles were used as the catalyst for boosting the Fe2+/PMS process for carbamazepine (CBZ) removal. The CBZ removal efficiency by the MoS2/Fe2+/PMS process was significantly enhanced, increasing to 6.5 times that of the Fe2+/PMS process. The Fe3+ was reduced to Fe2+ by the exposed Mo4+ on the surface of MoS2, leading to the enhanced PMS utilization rate and increased Fe2+ concentration. The relative intensity of DMPO-HO• and DMPO- SO4-• followed the order of MoS2/PMS < Fe2+/PMS < MoS2/Fe2+/PMS, also suggesting the enhanced oxidation activity with the addition of MoS2 in the process of Fe2+/PMS. The commercial MoS2 had good stability shown by the CBZ removal efficiency remaining almost unchanged during 8-time cycling use. Finally, a possible CBZ degradation pathway was proposed for helping understand the oxidation mechanism of the MoS2/Fe2+/PMS process.
Collapse
Affiliation(s)
- Huan Peng
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Daxueyuan Rd, WISDRI Engineering & Research Incorporation Limited. No.33, Donghu High-Tech Development Zone, Wuhan, Hubei Province, People's Republic of China
| | - Rong Chen
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ningyao Tao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yangyi Xiao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chenxing Li
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Miaomiao Ye
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
11
|
Li J, Zhu W, Gao Y, Lin P, Liu J, Zhang J, Huang T. The catalyst derived from the sulfurized Co-doped metal–organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120362] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|