1
|
Hernández-Medina ME, Montiel Pimentel JV, Castellanos I, Zuria I, Sánchez-Rojas G, Gaytán Oyarzun JC. Metal concentration in honeybees along an urbanization gradient in Central Mexico. ENVIRONMENTAL RESEARCH 2025; 264:120199. [PMID: 39427947 DOI: 10.1016/j.envres.2024.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Urbanization is rapidly increasing worldwide, leading to rising levels of pollution, one of the major drivers of environmental change; yet little is known about the relationship between urbanization intensity and pollution levels in pollinator taxa. Toxic metals are among the most common contaminants in urban environments, but few data exist on their presence in the flora and fauna of cities in Latin America, one of the world's most urbanized and biologically diverse regions. In this study, we used an urban-rural gradient approach to analyze the relationship between the concentrations of eleven metals present in adult honeybees (Apis mellifera) and the degree of urbanization within twelve landscapes in the metropolitan area of Pachuca, Hidalgo, which forms part of the megalopolis of Mexico City. Metal concentrations were compared with previously reported values contrasting honeybees from urban and rural areas after standardizing urbanization levels among published reports. The concentrations of Ag, Cr, Cu, and Zn in honeybees increased significantly with the degree of urbanization. Urbanization was not found to influence the levels of Al, Ba, Cd, Mn, and Sr in honeybees. The maximum concentrations of six metals in our urban sites (Al, Ba, Cd, Cu, Mn, and Sr) were higher than the maximum values reported for bees in other urban areas. The concentrations of two metals measured in our study (Cr and Zn) were within the range of values previously published for urban areas. Compared to other studies, we did not detect Pb in the body of honeybees. We conclude that the concentrations of Ag, Cr, Cu, and Zn present in honeybees are a quantitative reflection of the degree of urbanization in central Mexico. Our results highlight the need to monitor metal emission sources in this and other areas and investigate their effects on bees and other pollinator taxa.
Collapse
Affiliation(s)
- María Eyenith Hernández-Medina
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Janice V Montiel Pimentel
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico.
| | - Iriana Zuria
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Gerardo Sánchez-Rojas
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Juan Carlos Gaytán Oyarzun
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
2
|
Vilarem C, Blanchard S, Julien F, Vétillard A, Piou V. Lactic acid treatment on infested honey bees works through a local way of action against Varroa destructor. Sci Rep 2024; 14:27092. [PMID: 39511289 PMCID: PMC11544202 DOI: 10.1038/s41598-024-78371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Lactic acid is an alternative treatment to hard chemicals against Varroa destructor, the parasitic mite of the Western honey bee Apis mellifera. This soft acaricide is used only for small apiaries due to its laborious administration. However, the mode of action of this honey bee medication remains unknown. Previous studies showed that a direct contact between the arolia of V. destructor and lactic acid altered their morphology and led to an impairment of grip. Yet, there is no evidence for the way of action of lactic acid in a realistic in-hive scenario, i.e. after an indirect exposure of the mite through honey bees. We investigated the nature of lactic acid activity in the hive treatment context. The local and/or systemic way of action of this honey bee treatment against V. destructor was studied through a behavioural and toxicological approach at the individual level. On one hand, we confirmed the altered morphology for the arolia of mites and studied the evolution of the process over time. On the other hand, we found that haemolymph contaminated with lactic acid did not kill the feeding parasitic mite. These findings support a local mode of action. In order to unravel the sequence of events leading to the local contact between the acid and the mite on bees, we also documented the olfactory valence of lactic acid for A. mellifera and V. destructor. This work provides a new comprehension of lactic acid activity against the parasitic mite through honey bee exposure and gives new opportunities for control strategies against V. destructor.
Collapse
Affiliation(s)
- Caroline Vilarem
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
- M2i Biocontrol, Parnac, 46140, France
| | - Solène Blanchard
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
| | - Frédéric Julien
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
| | - Angélique Vétillard
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France.
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot, Ploufragan, 22440, France.
| | - Vincent Piou
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France.
| |
Collapse
|
3
|
Zhang L, Ma R, Yang L, Zhang X, He H. Impact of environmental pollution on ant (Camponotus japonicus) development and labial gland disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135360. [PMID: 39088954 DOI: 10.1016/j.jhazmat.2024.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Metallic pollutants can have harmful impacts on ant morphology and physiology. We studied the occurrence of labial gland disease in Camponotus japonicus from two polluted areas (traffic pollution and industrial pollution) and one non-polluted area. We further analyzed the metal levels (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) and morphological characteristics (head width, body mass, and other morphological traits) of both diseased and healthy workers. Our results showed that labial gland disease was only present in polluted areas, indicating that pollution stress makes ants more vulnerable to infections. Our research revealed that diseased ants in polluted areas accumulate higher levels of metals in their bodies and have lower dry weight and residual body mass compared to healthy ants in non-polluted environments, negatively impacting their development. We evaluated the importance of these elements and found that Cu has the greatest impact on the health risk of C. japonicus. Our study underscores the significant impact of environmental pollution on ant morphology and physiology and raises concerns about the broader ecological implications.
Collapse
Affiliation(s)
- Liangliang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoqing Ma
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lv Yang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Wise JP, Wise RM, Hoffert A, Wise JTF, Specht AJ. Elevated Metal Levels in U.S. Honeys: Is There a Concern for Human Health? Biol Trace Elem Res 2024:10.1007/s12011-024-04295-1. [PMID: 38995435 DOI: 10.1007/s12011-024-04295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Honey is a bioactive food used for millennia to improve health and treat diseases. More recently, researchers employ honey as a tool to assess local environmental pollution. Honeybees effectively 'sample' their environment within a ~ 7 km radius, actively collecting nectar, pollen, and water to bring to their hive. Foraging honeybees also sample the air as dust particles accumulate on their pubescence, adding to the hive's contaminant load. Many studies from around the world report elevated metal levels in honey, with the most reports from Iran, Italy, and Turkey, but only two reports have measured metal levels in honey from the United States (U.S.). We report levels of 20 metals from 28 honeys collected from 15 U.S. states between 2022-2023. We then focus on four toxic metals recognized as hazards in foodstuffs when the concentrations are above safety recommendations - lead, cadmium, arsenic, and mercury. Two of these metals (lead and mercury) are regulated in honey by the European Union (EU), though the U.S. currently lacks defined regulations for metal levels in honey. We consider the levels of these toxic metals by state, then compare the U.S. mean honey level for these metals against the provisional tolerable weekly intake (PTWI). Our results suggest U.S. honey have levels metal that exceed the PWTI and EU regulations and may be hazardous to human health. Further research is needed to determine if the effects of these toxic metal at measured levels outweigh the health benefits from consumption of honey.
Collapse
Affiliation(s)
- John P Wise
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, 570 S. Preston Street, Baxter I Building, Rm: 204F, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, United States.
| | - Rachel M Wise
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Annabelle Hoffert
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - James T F Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Aaron J Specht
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Ye Y, Shi YX, Jiang Q, Jin Y, Chen FX, Tang WH, Peng Q, Liu QN, Tang BP, Wang JL. Transcriptome Analysis Reveals Antioxidant Defense Mechanisms in the Silkworm Bombyx mori after Exposure to Lead. Animals (Basel) 2024; 14:1822. [PMID: 38929441 PMCID: PMC11201215 DOI: 10.3390/ani14121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.
Collapse
Affiliation(s)
- Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
6
|
Pavlović R, Brodschneider R, Goessler W, Stanisavljević L, Vujčić Z, Zarić NM. Micronutrient Deficiency May Be Associated with the Onset of Chalkbrood Disease in Honey Bees. INSECTS 2024; 15:269. [PMID: 38667399 PMCID: PMC11050715 DOI: 10.3390/insects15040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Chalkbrood is a disease of honey bee brood caused by the fungal parasite Ascosphaera apis. Many factors such as genetics, temperature, humidity and nutrition influence the appearance of clinical symptoms. Poor nutrition impairs the immune system, which favors the manifestation of symptoms of many honey bee diseases. However, a direct link between dietary ingredients and the symptoms of chalkbrood disease has not yet been established. We show here that the elemental composition of chalkbrood mummies and healthy larvae from the same infected hives differ, as well as that mummies differ from larvae from healthy hives. Chalkbrood mummies had the highest concentration of macroelements such as Na, Mg, P, S, K and Ca and some microelements such as Rb and Sn, and at the same time the lowest concentration of B, As, Sr, Ag, Cd, Sb, Ba and Pb. Larvae from infected hives contained less Pb, Ba, Cs, Sb, Cd, Sr, As, Zn, Cu, Ni, Co, Mn, Cr, V and Al in contrast to healthy larvae from a disease-free apiary. This is the first study to demonstrate such differences, suggesting that an infection alters the larval nutrition or that nutrition is a predisposition for the outbreak of a chalkbrood infection. Though, based on results obtained from a case study, rather than from a controlled experiment, our findings stress the differences in elements of healthy versus diseased honey bee larvae.
Collapse
Affiliation(s)
- Ratko Pavlović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Robert Brodschneider
- Department of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Walter Goessler
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
| | - Ljubiša Stanisavljević
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Nenad M. Zarić
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Di Liberto JF, Griffith SC, Hall CJ, Mendelsohn AS, Swaddle JP. Exposure to Sublethal Concentrations of Lead (Pb) Affects Ecologically Relevant Behaviors in House Sparrows (Passer domesticus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:199-216. [PMID: 38598146 PMCID: PMC11032286 DOI: 10.1007/s00244-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Global contamination of environments with lead (Pb) poses threats to many ecosystems and populations. While exposure to Pb is toxic at high concentrations, recent literature has shown that lower concentrations can also cause sublethal, deleterious effects. However, there remains relatively little causal investigation of how exposure to lower concentrations of environmental Pb affects ecologically important behaviors. Behaviors often represent first-line responses of an organism and its internal physiological, molecular, and genetic responses to a changing environment. Hence, better understanding how behaviors are influenced by pollutants such as Pb generates crucial information on how species are coping with the effects of pollution more broadly. To better understand the effects of sublethal Pb on behavior, we chronically exposed adult wild-caught, captive house sparrows (Passer domesticus) to Pb-exposed drinking water and quantified a suite of behavioral outcomes: takeoff flight performance, activity in a novel environment, and in-hand struggling and breathing rate while being handled by an experimenter. Compared to controls (un-exposed drinking water), sparrows exposed to environmentally relevant concentrations of Pb exhibited decreases in takeoff flight performance and reduced movements in a novel environment following 9-10 weeks of exposure. We interpret this suite of results to be consistent with Pb influencing fundamental neuro-muscular abilities, making it more difficult for exposed birds to mount faster movements and activities. It is likely that suppression of takeoff flight and reduced movements would increase the predation risk of similar birds in the wild; hence, we also conclude that the effects we observed could influence fitness outcomes for individuals and populations altering ecological interactions within more naturalistic settings.
Collapse
Affiliation(s)
- Joseph F Di Liberto
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara J Hall
- Department of Biology, William & Mary, Williamsburg, VA, USA
| | | | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Institute for Integrative Conservation, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
8
|
Zarić NM, Brodschneider R, Goessler W. Sex-specific element accumulation in honey bees (Apis mellifera). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32822-z. [PMID: 38472584 DOI: 10.1007/s11356-024-32822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Honey bees are social insects that show division of labor and sexual dimorphism. Female honey bees differentiate in two different castes, queens or worker bees, while males are called drones. Worker bees have different tasks in the hive including collection of food, its processing, caring for brood, protecting the hive, or producing wax. The drones' only role is to mate with a virgin queen. Many studies have dealt with differences in physiology, behavior, and morphology of workers and drones. This is the first study that demonstrates differences in element accumulation and composition between workers and drones honey bees. Using inductively coupled plasma mass spectrometry, we found that worker honey bees have higher concentrations of most elements analyzed. Drones had higher concentrations of elements essential to bees, Na, P, S, Zn, Cu, and especially Se (2.2 × higher), which is known to be important for sperm quality and fertility in many animals. Until now higher Se content was not observed in male insects. These differences can be attributed to different environmental exposure, reproductive role of drones, but mostly to the food workers and drones consume. Worker bees feed on bee bread, which is rich in minerals. Drones are fed food pre-processed by worker bees.
Collapse
Affiliation(s)
- Nenad M Zarić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia.
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria.
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Walter Goessler
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| |
Collapse
|
9
|
Monchanin C, Drujont E, Le Roux G, Lösel PD, Barron AB, Devaud JM, Elger A, Lihoreau M. Environmental exposure to metallic pollution impairs honey bee brain development and cognition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133218. [PMID: 38113738 DOI: 10.1016/j.jhazmat.2023.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Laboratory studies show detrimental effects of metallic pollutants on invertebrate behaviour and cognition, even at low levels. Here we report a field study on Western honey bees exposed to metal and metalloid pollution through dusts, food and water at a historic mining site. We analysed more than 1000 bees from five apiaries along a gradient of contamination within 11 km of a former gold mine in Southern France. Bees collected close to the mine exhibited olfactory learning performances lower by 36% and heads smaller by 4%. Three-dimensional scans of bee brains showed that the olfactory centres of insects sampled close to the mine were also 4% smaller, indicating neurodevelopmental issues. Our study raises serious concerns about the health of honey bee populations in areas polluted with potentially harmful elements, particularly with arsenic, and illustrates how standard cognitive tests can be used for risk assessment.
Collapse
Affiliation(s)
- Coline Monchanin
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Erwann Drujont
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Philipp D Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Department of Materials Physics, Research School of Physics, The Australian National University, ACT, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Mathieu Lihoreau
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
10
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31561-x. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
11
|
Schmarsow R, Moliné MDLP, Damiani N, Domínguez E, Medici SK, Churio MS, Gende LB. Toxicity and sublethal effects of lead (Pb) intake on honey bees (Apis mellifera). CHEMOSPHERE 2023; 344:140345. [PMID: 37793549 DOI: 10.1016/j.chemosphere.2023.140345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Heavy metal pollution is becoming a worldwide problem affecting pollinators. The massive use of lead (Pb), the most harmful metal for the biosphere, in industries has increased the risk for honey bees. Pb exerts toxicity on living organisms inducing mainly oxidative stress. We assessed the toxicity and sublethal effects of Pb ingestion on protein content, catalase (CAT) activity, fat content and fatty acid (FA) profile of honey bee workers (Apis mellifera L.) under different nutritional conditions during chronic exposure tests. The LD50 was 15.13 ± 6.11 μg Pb2+/bee, similar to other reports. A single oral sublethal dose of 15 μg of Pb2+ affected the survival of bees fed with sugary food for ten days after Pb ingestion while supplementing the diet with bee bread improved Pb tolerance. The highest protein content was found in bees fed with the sugar paste and bee bread diet without Pb. CAT activity tended to decrease in bees of Pb groups independently of diet. Fat content was not affected by the diet type received by bees or Pb ingestion, but the FAs profile varied according to the nutritional quality of the diet. The results highlight that a single sublethal dose of Pb negatively affected the body proteins of bees despite the nutritional condition but did not disturb the FAs profile of workers. Nutrition plays an important role in preventing Pb-induced toxicity in honey bees.
Collapse
Affiliation(s)
- Ruth Schmarsow
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina
| | - María de la Paz Moliné
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina.
| | - Enzo Domínguez
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - Sandra Karina Medici
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - María Sandra Churio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR). CONICET-UNMDP, Funes 3350, 7600, Mar del Plata, Argentina
| | - Liesel Brenda Gende
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| |
Collapse
|
12
|
Taylor MP, Gillings MM, Fry KL, Barlow CF, Gunkel-Grillion P, Gueyte R, Camoin M. Tracing nickel smelter emissions using European honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122257. [PMID: 37506807 DOI: 10.1016/j.envpol.2023.122257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigated trace element contamination in honey bees inhabiting urban areas around the South Pacific's largest and longest operating nickel smelter in Nouméa, New Caledonia. There remains a paucity of research on the environmental impact of nickel smelting, and to date, there has been no assessment of its effects on the popular practice of beekeeping, or whether honey bees are a suitable tracer for nickel smelting emissions. Honey bees and honey were sampled from 15 hives across Nouméa to ascertain linkages between nickel smelter emissions, environmental contamination, and trace element uptake by bees. Comparison of washed and unwashed bees revealed no significant difference in trace element concentrations, indicating trace elements bioaccumulate within the internal tissues of bees over time. Accordingly, trace element concentrations were higher in dead bees than those that were sampled live, with smelter related elements chromium, cobalt and nickel being significantly different at p < 0.05. Except for boron, trace element concentrations were consistently higher in bees than in honey, suggesting that the transfer of trace elements from bees during honey production is negligible. Elevated concentrations of potentially toxic trace elements including cobalt, chromium and nickel in bees declined with distance from smelting operations (Spearman's Rho, p < 0.05), indicating the relationship between environmental contamination and the uptake of trace elements by bees. The findings of this study emphasise potential environmental and human health risks associated with trace element contamination from nickel smelting operations and affirm the use of honey bees as a biomonitor of potentially harmful nickel smelting emissions.
Collapse
Affiliation(s)
- Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| | - Max M Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Cynthia F Barlow
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Australian Centre for Housing Research, Faculty of Arts, Business, Law and Economics, University of Adelaide, SA 5000, Australia
| | - Peggy Gunkel-Grillion
- Institute of Exact and Applied Sciences (ISEA), University of New Caledonia, BPR4, 98851, Nouméa Cedex, New Caledonia
| | - Romain Gueyte
- Centre d'Apiculture - Technopole de Nouvelle-Calédonie, 98870 Bourail, New Caledonia
| | - Margot Camoin
- Pôle Apicole - Groupement de Défense Sanitaire de la Réunion, 97418 Plaine des Cafres, Réunion, France
| |
Collapse
|
13
|
Gekière A, Vanderplanck M, Michez D. Trace metals with heavy consequences on bees: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165084. [PMID: 37379929 DOI: 10.1016/j.scitotenv.2023.165084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The pervasiveness of human imprint on Earth is alarming and most animal species, including bees (Hymenoptera: Apoidea: Anthophila), must cope with several stressors. Recently, exposure to trace metals and metalloids (TMM) has drawn attention and has been suggested as a threat for bee populations. In this review, we aimed at bringing together all the studies (n = 59), both in laboratories and in natura, that assessed the effects of TMM on bees. After a brief comment on semantics, we listed the potential routes of exposure to soluble and insoluble (i.e. nanoparticle) TMM, and the threat posed by metallophyte plants. Then, we reviewed the studies that addressed whether bees could detect and avoid TMM in their environment, as well as the ways bee detoxify these xenobiotics. Afterwards, we listed the impacts TMM have on bees at the community, individual, physiological, histological and microbial levels. We discussed around the interspecific variations among bees, as well as around the simultaneous exposure to TMM. Finally, we highlighted that bees are likely exposed to TMM in combination or with other stressors, such as pesticides and parasites. Overall, we showed that most studies focussed on the domesticated western honey bee and mainly addressed lethal effects. Because TMM are widespread in the environment and have been shown to result in detrimental consequences, evaluating their lethal and sublethal effects on bees, including non-Apis species, warrants further investigations.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| | - Maryse Vanderplanck
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34090 Montpellier, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
14
|
Astolfi ML, Conti ME, Messi M, Marconi E. Probiotics as a promising prophylactic tool to reduce levels of toxic or potentially toxic elements in bees. CHEMOSPHERE 2022; 308:136261. [PMID: 36057357 DOI: 10.1016/j.chemosphere.2022.136261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Bees are precious living beings for our planet. Thanks to their essential service of pollination, these insects allow the maintenance of biodiversity and the variety and amount of food available. Unfortunately, we are observing an increasingly devastating reduction of bee families and other pollinating insects for factors related to human activities, environmental pollution, diseases and parasites, compromise of natural habitats, and climate change. We show that probiotics can protect bees from element pollution. We collected bees, beeswax, honey, pollen, and propolis directly from hives in a rural area of central Italy to investigate the content of 41 elements in control (not supplemented with probiotics) and experimental (supplemented with probiotics) groups. Our data show a significantly lower concentration of some elements (Ba, Be, Cd, Ce, Co, Cu, Pb, Sn, Tl, and U) in experimental bees than in control groups, indicating a possible beneficial effect of probiotics in reducing the absorption of chemicals. This study presents the first data on element levels after probiotics have been fed to bees and provides the basis for future research in several activities relating to the environment, agriculture, economy, territory, and medicine.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy; CIABC, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, Via Del Castro Laurenziano 9, 00161 Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Elisabetta Marconi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
15
|
Li Z, Qiu Y, Li J, Wan K, Nie H, Su S. Chronic Cadmium Exposure Induces Impaired Olfactory Learning and Altered Brain Gene Expression in Honey Bees ( Apis mellifera). INSECTS 2022; 13:insects13110988. [PMID: 36354812 PMCID: PMC9696575 DOI: 10.3390/insects13110988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded as a nonessential toxic metal and is readily accumulated in plants; honey bees can therefore acquire Cd through the collection of contaminated nectar. In the present study, honey bees were chronically exposed to Cd to investigate the effects of sublethal cadmium doses on the olfactory learning and brain gene expression profiles of honey bees. The results showed that Cd-treated bees exhibited significantly impaired olfactory learning performances in comparison with control bees. Moreover, the head weight was significantly lower in Cd-treated bees than in control bees after chronic exposure to Cd. Gene expression profiles between the Cd treatment and the control revealed that 79 genes were significantly differentially expressed. Genes encoding chemoreceptors and olfactory proteins were downregulated, whereas genes involved in response to oxidative stress were upregulated in Cd-treated bees. The results suggest that Cd exposure exerts oxidative stress in the brain of honey bees, and the dysregulated expression of genes encoding chemoreceptors, olfactory proteins, and cytochrome P450 enzymes is probably associated with impaired olfactory learning in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Songkun Su
- Correspondence: ; Tel.: +86-136-6500-5782
| |
Collapse
|
16
|
Monchanin C, Gabriela de Brito Sanchez M, Lecouvreur L, Boidard O, Méry G, Silvestre J, Le Roux G, Baqué D, Elger A, Barron AB, Lihoreau M, Devaud JM. Honey bees cannot sense harmful concentrations of metal pollutants in food. CHEMOSPHERE 2022; 297:134089. [PMID: 35240159 DOI: 10.1016/j.chemosphere.2022.134089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Whether animals can actively avoid food contaminated with harmful compounds through taste is key to assess their ecotoxicological risks. Here, we investigated the ability of honey bees to perceive and avoid food resources contaminated with common metal pollutants known to impair behaviour at low concentrations. In laboratory assays, bees did not discriminate food contaminated with arsenic, lead or zinc and ingested it readily, up to estimated doses of 929.1 μg g-1 As, 6.45 mg g-1 Pb and 72.46 mg g-1 Zn. A decrease of intake and appetitive responses indicating metal detection was only observed at the highest concentrations of lead (3.6 mM) and zinc (122.3 mM) through contact with the antennae and the proboscis. Electrophysiological analyses confirmed that only high concentrations of the three metals in a sucrose solution induced a consistently reduced neural response to sucrose in antennal taste receptors (As: >0.1 μM, Pb: >1 mM; Zn: >100 mM). Overall, cellular and behavioural responses did not provide evidence for specific mechanisms that would support selective detection of toxic metals (arsenic, lead), as compared to zinc, which has important biological functions. Our results thus show that honey bees can avoid metal pollutants in their food only at high concentrations unlikely to be encountered in the environment. By contrast, they appear to be unable to detect low, yet harmful, concentrations found in flowers. Metal pollution at trace levels is therefore a major threat for pollinators.
Collapse
Affiliation(s)
- Coline Monchanin
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France; Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Maria Gabriela de Brito Sanchez
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Loreleï Lecouvreur
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Océane Boidard
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Grégoire Méry
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Jérôme Silvestre
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - David Baqué
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Mathieu Lihoreau
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Jean-Marc Devaud
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France.
| |
Collapse
|
17
|
Monchanin C, Devaud JM, Barron AB, Lihoreau M. Current permissible levels of metal pollutants harm terrestrial invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146398. [PMID: 34030224 DOI: 10.1016/j.scitotenv.2021.146398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The current decline of invertebrates worldwide is alarming. Several potential causes have been proposed but metal pollutants, while being widespread in the air, soils and water, have so far been largely overlooked. Here, we reviewed the results of 527 observations of the effects of arsenic, cadmium, lead and mercury on terrestrial invertebrates. These four well-studied metals are considered as priorities for public health and for which international regulatory guidelines exist. We found that they all significantly impact the physiology and behavior of invertebrates, even at levels below those recommended as 'safe' for humans. Our results call for a revision of the regulatory thresholds to better protect terrestrial invertebrates, which appear to be more sensitive to metal pollution than vertebrates. More fundamental research on a broader range of compounds and species is needed to improve international guidelines for metal pollutants, and to develop conservation plans to protect invertebrates and ecosystem services.
Collapse
Affiliation(s)
- Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse III, France; Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse III, France.
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse III, France.
| |
Collapse
|