1
|
Shah GM, Farooq U, Shabbir Z, Guo J, Dong R, Bakhat HF, Wakeel M, Siddique A, Shahid N. Impact of Cadmium Contamination on Fertilizer Value and Associated Health Risks in Different Soil Types Following Anaerobic Digestate Application. TOXICS 2023; 11:1008. [PMID: 38133410 PMCID: PMC10747593 DOI: 10.3390/toxics11121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Cadmium (Cd) contamination in the soil potentially hampers microbial biomass and adversely affects their services such as decomposition and mineralization of organic matter. It can reduce nitrogen (N) metabolism and consequently affect plant growth and physiology. Further, Cd accumulation in plants can pose health risks through vegetable consumption. Here, we investigated consequences of Cd contamination on fertilizer value and associated health risks following the application of biogas residues (BGR) to various soil types. Our results indicate that the application of BGR to all soil types significantly increased dry matter (DM) yield and N uptake. However, the Cd contamination negatively affected DM yield and N recovery from BGR in a dose-dependent manner. Organic N mineralization from BGR also decreased in Cd-contaminated soils. The highest DM yield and N recovery were recorded in sandy soil, whereas the lowest values were observed in clay soil. Cadmium was accumulated in spinach, and health risk index (HRI) associated with its dietary intake revealed that consuming spinach grown in Cd-contaminated soil, with or without BGR, is unsafe. Among the soil types, values of daily intake of metals (DIM) and HRI were lowest in clay soil and highest in sandy soil. However, the application of BGR curtailed HRI across all soil types. Notably, the application of BGR alone resulted in HRI values < 1, which are under the safe limit. We conclude that soil contamination with Cd reduces fertilizer value and entails implications for human health. However, the application of BGR to the soil can decrease Cd effects.
Collapse
Affiliation(s)
- Ghulam Mustafa Shah
- Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Jianbin Guo
- Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Renjie Dong
- Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Wakeel
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Ayesha Siddique
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Naeem Shahid
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Li P, Xiong Z, Tian Y, Zheng Z, Liu Z, Hu R, Wang Q, Ao H, Yi Z, Li J. Community-based mechanisms underlying the root cadmium uptake regulated by Cd-tolerant strains in rice ( Oryza sativa. L). FRONTIERS IN PLANT SCIENCE 2023; 14:1196130. [PMID: 37636120 PMCID: PMC10450764 DOI: 10.3389/fpls.2023.1196130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
In recent years, the problem of Cd pollution in paddy fields has become more and more serious, which seriously threatens the safe production of food crops and human health. Using microorganisms to reduce cadmium pollution in rice fields is a green, safe and efficient method, the complicated interactions between the microbes in rice roots throughout the process of cadmium absorption by rice roots are poorly understood. In this investigation, a hydroponic pot experiment was used to examine the effects of bacteria R3 (Herbaspirillum sp) and T4 (Bacillus cereus) on cadmium uptake and the endophytic bacterial community in rice roots. The results showed that compared with CK (Uninoculated bacterial liquid), the two strains had significant inhibitory or promotive effects on cadmium uptake in rice plant, respectively. Among them, the decrease of cadmium content in rice plants by R3 strain reached 78.57-79.39%, and the increase of cadmium content in rice plants by T4 strain reached 140.49-158.19%. Further investigation showed that the cadmium content and root cadmium enrichment coefficient of rice plants were significantly negatively correlated with the relative abundances of Burkholderia and Acidovorax, and significantly positively correlated with the relative abundances of Achromobacter, Agromyces and Acidocella. Moreover, a more complex network of microbes in rice roots inhibited rice plants from absorbing cadmium. These results suggest that cadmium uptake by rice plants is closely related to the endophytic bacterial community of roots. This study provides a reference scheme for the safe production of crops in cadmium contaminated paddies and lays a solid theoretical foundation for subsequent field applications.
Collapse
Affiliation(s)
- Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Peng X, Zhao R, Yang Y, Zhou Y, Zhu Y, Qin P, Wang M, Huang H. Effect of the Combination of Phosphate-Solubilizing Bacteria with Orange Residue-Based Activator on the Phytoremediation of Cadmium by Ryegrass. PLANTS (BASEL, SWITZERLAND) 2023; 12:2727. [PMID: 37514342 PMCID: PMC10384834 DOI: 10.3390/plants12142727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Amendments with activators or microorganisms to enhance phytoremediation in toxic-metal-polluted soils have been widely studied. In this research, the production of indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase by phosphate-solubilizing bacteria was investigated during a pure culture experiment. Pot experiments were performed using Cd-polluted soil with the following treatments: control (CK, only ultrapure water), orange-peel-based activator (OG), and a combination of phosphate-solubilizing bacteria (Acinetobacter pitti) and OG (APOG). Ryegrass plant height and fresh weight, Cd content in ryegrass, total and available Cd soil content, soil enzyme activity, and soil bacterial diversity were determined in this work. The findings showed that the height of ryegrass in OG and APOG increased by 14.78% and 21.23%. In the APOG group, a decreased ratio of Cd was 3.37 times that of CK, and the bioconcentration factor was 1.28 times that of CK. The neutral phosphatase activity of APOG was 1.33 times that of CK and catalase activity was 1.95 times that of CK. The activity of urease was increased by 35.48%. APOG increased the abundance of beneficial bacteria and Proteobacteria was the dominant bacterium, accounting for 57.38% in APOG. Redundancy analysis (RDA) showed that nutrient elements were conducive to the propagation of the dominant bacteria, the secretion of enzymes, and the extraction rate of Cd in the soil. The possible enhancement mechanism of phytoremediation of cadmium by A. pitti combined with OG was that, on the one hand, APOG increased soil nutrient elements and enzyme activities promoted the growth of ryegrass. On the other hand, APOG activated Cd and boosted the movement of Cd from soil to ryegrass. This research offers insight for the combination of phosphate-solubilizing bacteria with an orange-peel-based activator to improve phytoremediation of Cd-contaminated soils and also provides a new way for the resource utilization of fruit residue.
Collapse
Affiliation(s)
- Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yichun Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mi Wang
- Chinalco Environmental Protection and Ecological Technology (Hunan) Co., Ltd., Changsha 410021, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Lou F, Fu T, He G, Tian W, Wen J, Yang M, Wei X, He Y, He T. Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114884. [PMID: 37054472 DOI: 10.1016/j.ecoenv.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18-85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762-2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions.
Collapse
Affiliation(s)
- Fei Lou
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Tianling Fu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Weijun Tian
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
5
|
Wang G, Li J, Ji J, Zhang L, Li B, Zhang J, Wang X, Song W, Guan C. Combined application of allantoin and strain JIT1 synergistically or additively promotes the growth of rice under 2, 4-DCP stress by enhancing the phosphate solubility, improving soil enzyme activities and photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153941. [PMID: 36739690 DOI: 10.1016/j.jplph.2023.153941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmental pollution by 2, 4 dichlorophenol (2, 4-DCP) has become a widespread concern due to its detrimental influence on human and natural ecosystem. With the increasing accumulation of 2, 4-DCP in soil, it is of great significance to explore some appropriate approaches for enhancing plant tolerance to 2, 4-DCP stress. In the current study, a strain resistant to 2, 4-DCP was obtained from the tall fescue rhizosphere soil and named as Pseudomonas sp. JIT1. The strain JIT1 exhibited several remarkable plant growth-promoting traits, including the production of IAA, fixation of biological nitrogen and solubilization of phosphate. The inoculation of strain JIT1 significantly increased biomass, photosynthesis, antioxidant levels, chlorophyll contents and the osmotic substance contents in rice seedlings exposed to 2, 4-DCP. Meanwhile, inoculation of strain JIT1 also enhanced activities of soil alkaline phosphatase, urease, sucrase and cellulase. Moreover, under 2, 4-DCP stress, the content of allantoin in seedlings significantly increased and the pretreatment of exogenous allantoin noticeably ameliorated the negative effects caused by 2, 4-DCP stress in rice seedlings. Interesting, allantoin treatment also enhanced phosphate solubilization properties of strain JIT1. The chlorophyll contents, photosynthesis and osmotic substance further increased by combination use of strain JIT1 and allantoin, which improved the growth of seedlings, most likely to be attributed to the synergistic or additive effect between allantoin and strain JIT1. The results of this study highlight the important roles of combined use of strain JIT1 and allantoin for improving the tolerance of rice to 2, 4-DCP to stress.
Collapse
Affiliation(s)
- Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiali Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lishuang Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Bowen Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
6
|
Wei T, Li H, Yashir N, Li X, Jia H, Ren X, Yang J, Hua L. Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63886-63897. [PMID: 35469379 DOI: 10.1007/s11356-022-20344-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Soil cadmium (Cd) contamination resulting from anthropogenic activity poses severe threats to food safety and human health. In this study, a pot experiment was performed to evaluate the possibility of using urease-producing bacterium UR21 and eggshell (ES) waste for improving the physiological characteristics and reducing Cd accumulation of pakchoi (Brassica chinensis L.) plants. UR21 has siderophore and IAA production ability. The application of UR21 and ES individually or in combination could improve the root and shoot length, and fresh and dry weight of pakchoi plants under Cd stress. In Cd + ES + UR21-treated plants, the dry weight of shoot and root were increased by 61.54% and 72.73%, respectively. The chlorophyll a, chlorophyll b, and carotenoid content were increased by 52.19%, 42.95%, and 95.56% in Cd + ES + UR21-treated plants. Meanwhile, the H2O2 and MDA content were decreased while the SOD and POD activity were increased, and an increase of soluble protein level in pakchoi plants was observed under Cd + ES + UR21 treatment. Importantly, eggshell and UR21 alone or in combination induced a decline of Cd content in pakchoi plants, especially that Cd + ES + UR21 treatment decreased Cd content in shoot and root by 26.96% and 42.91%, respectively. Meanwhile, the soil urease and sucrase activities were enhanced. Generally, the combined application of ureolytic bacteria UR21 and eggshell exhibited better effects than applied them individually in terms of alleviating Cd toxicity in pakchoi plants. Our findings may give a unique perspective for an eco-friendly and sustainable strategy to remediate heavy metal-polluted soils.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| |
Collapse
|
7
|
Qian X, Lü Q, He X, Wang Y, Li H, Xiao Q, Zheng X, Lin R. Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. CHEMOSPHERE 2022; 290:133257. [PMID: 34906525 DOI: 10.1016/j.chemosphere.2021.133257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution of paddy soils is one of the main concerns causing food security and environmental problems. Microbial bioremediation is an effective and eco-friendly measure that uses microbes to reduce Cd accumulation in crops. Additionally, rhizosphere bacterial communities also act essential roles in crop tolerance of heavy metals. However, the effects of inoculations with Cd resistant bacteria on crop rhizosphere bacterial communities under Cd exposure are largely unknown. In this study, we used high-throughput 16S rRNA gene sequencing technologies to explore the community structure and co-occurrence network of the rhizosphere bacterial communities associated with the rice crop under different Cd treatments and the application of Cd-tolerant strain Pseudomonas sp. TCd-1. We found that the strain TCd-1 both significantly reduced the rhizobacterial alpha diversity and changed the beta diversity. PERMANOVA and NMDS analysis showed that Cd stress and TCd-1 strain could act as strong environmental filters resulting in observable differentiation of rhizobacterial community composition among different groups. In addition, RDA results indicated that the rhizosphere pH, root Cd content, catalase (CAT), urease (URE), gibberellic acid (GA3) exert significant association with rhizosphere bacterial assembly. PICRUSt analysis revealed that the TCd-1 strain improved the metabolic capacity of rhizosphere bacteria under Cd stress. Furthermore, co-occurrence network topological features and keystone taxa also varied among different groups. This study could provide necessary insights into developing an efficient bioremediation and safe production of rice crops in Cd contaminated paddy fields with the application of Pseudomonas sp. TCd-1 strain, as well as advance our understanding of the principles of rhizosphere bacterial community assembly under Cd stress.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixin Lü
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaosan He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanzhou Li
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Qingtie Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, Uphoff N. Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of 'Omics' Technologies. Int J Mol Sci 2022; 23:737. [PMID: 35054923 PMCID: PMC8775878 DOI: 10.3390/ijms23020737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
Collapse
Affiliation(s)
- Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Nurul Shamsinah Mohd Suhaimi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - F Fathurrahman
- Department of Agrotechnology, Faculty of Agriculture, Universitas Islam Riau, Pekanbaru 28284, Indonesia;
| | - Betty Mayawatie Marzuki
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Norman Uphoff
- SRI International Network and Resources Center, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|