1
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
2
|
Shourove JH, Meem FC, Chowdhury RS, Eti SA, Samaddar M. Biocontrol agents and their potential use as nano biopesticides to control the tea red spider mite (Oligonychus coffeae): A comprehensive review. Heliyon 2024; 10:e34605. [PMID: 39148997 PMCID: PMC11325067 DOI: 10.1016/j.heliyon.2024.e34605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Tea red spider mite (TRSM), Oligonychus coffeae Nietner, is one of the major pests that cause considerable crop losses in all tea-growing countries. TRSM management often involves the use of multiple chemical pesticides that are linked to human health risks and environmental pollution. Considering these critical issues, employing biocontrol agents is a potential green approach that may replace synthetic pesticides. This review study aims to discuss the efficacy of plant extracts, entomopathogenic microorganisms, and predators in controlling TRSM. This study includes 44 botanical extracts, 14 microbial species, and 8 potential predators used to control TRSM, along with their respective modes of action. Most of the botanical extracts have ovicidal, adulticidal, and larvicidal activity, ranging from 80 to 100 %, attributed to bioactive compounds such as phenols, alcohols, alkaloids, tannins, and other secondary metabolites. Among microbial pesticides, Purpureocillium lilacinum, Metarhizium robertsii, Aspergillus niger, Pseudomonas fluorescens, and Pseudomonas putida are highly effective against TRSM without causing any harm to the nontarget beneficial insects. Besides, some predators, including green lacewings, ladybirds, and phytoseiid mites have the potential to control TRSM. Employing these biocontrol agents simultaneously in tea plantations could be more effective in preventing TRSM. Nevertheless, their high biodegradability rate, uneven distribution, and uncontrolled release pose challenges for large-scale field applications. This study also explores how nanotechnology can enhance sustainability by addressing the limitations of biopesticides in field conditions. This review study could contribute to the search for potential biocontrol agents and the development of commercial nano biopesticides to control TRSM.
Collapse
Affiliation(s)
- Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Razia Sultana Chowdhury
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamima Akther Eti
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Mitu Samaddar
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
3
|
Wang H, Jafir M, Irfan M, Ahmad T, Zia-Ur-Rehman M, Usman M, Rizwan M, Hamoud YA, Shaghaleh H. Emerging trends to replace pesticides with nanomaterials: Recent experiences and future perspectives for ecofriendly environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121178. [PMID: 38796869 DOI: 10.1016/j.jenvman.2024.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.
Collapse
Affiliation(s)
- Hong Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University Hefei, 230601, Anhui, China.
| | - Muhammad Irfan
- School of Resources and Environmental Engineering, Anhui University Hefei, 230601, Anhui, China
| | - Tanveer Ahmad
- Department of Horticulture, MNS-University of Agriculture Multan, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
4
|
Mariyam S, Upadhyay SK, Chakraborty K, Verma KK, Duhan JS, Muneer S, Meena M, Sharma RK, Ghodake G, Seth CS. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169097. [PMID: 38056665 DOI: 10.1016/j.scitotenv.2023.169097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Climate change imposes various environmental stresses which substantially impact plant growth and productivity. Salinity, drought, temperature extremes, heavy metals, and nutritional imbalances are among several abiotic stresses contributing to high yield losses of crops in various parts of the world, resulting in food insecurity. Many interesting strategies are being researched in the attempt to improve plants' environmental stress tolerance. These include the application of nanoparticles, which have been found to improve plant function under stress situations. Nanotechnology will be a key driver in the upcoming agri-tech and pharmaceutical revolution, which promises a more sustainable, efficient, and resilient agricultural and medical system Nano-fertilizers can help plants utilise nutrients more efficiently by releasing nutrients slowly and sustainably. Plant physiology and nanomaterial features (such as size, shape, and charge) are important aspects influencing the impact on plant growth. Here, we discussed the most promising new opportunities and methodologies for using nanotechnology to increase the efficiency of critical inputs for crop agriculture, as well as to better manage biotic and abiotic stress. Potential development and implementation challenges are highlighted, emphasising the importance of designing suggested nanotechnologies using a systems approach. Finally, the strengths, flaws, possibilities, and risks of nanotechnology are assessed and analysed in order to present a comprehensive and clear picture of the nanotechnology potentials, as well as future paths for nano-based agri-food applications towards sustainability. Future research directions have been established in order to support research towards the long-term development of nano-enabled agriculture and evolution of pharmaceutical industry.
Collapse
Affiliation(s)
- Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | | | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Harayana, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Aricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil-Nadu, India
| | - Mukesh Meena
- Laboratory of Phytopatholoy and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Rajesh Kumar Sharma
- Department of Botany, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
5
|
Shabir A, Sarwar ZM, Ali H. Eco-friendly approaches of zinc oxide and silver nitrate nanoparticles along with plant extracts against Spodoptera litura (Fabricius) under laboratory conditions. Sci Prog 2023; 106:368504231219171. [PMID: 38113117 PMCID: PMC10734334 DOI: 10.1177/00368504231219171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The tobacco cutworm (Spodoptera litura) is a widespread pest that inflicts severe damage on various crops, including cotton, tobacco, and vegetables, with a particular preference for solanaceous plants. Traditional control methods often rely heavily on synthetic insecticides, leading to adverse effects on the environment, human health, and the development of insecticide resistance. In light of these challenges, this study explores the potential of nanotechnology as an innovative and sustainable approach to combat this notorious pest. Bioassays were conducted using laboratory-reared 3rd instar S. litura larvae. Eight different plant extracts coated with zinc oxide and silver nitrate nanoparticles were tested, with concentrations in both distilled water and ethanol at 3, 5, and 7 ml. Data were collected at 24, 48, and 72-h intervals. The results revealed that the highest larval mortality, reaching 98%, was observed in the group treated with silver nitrate nanoparticles derived from Cymbopogon citratus. In comparison, the group treated with zinc oxide nanoparticles dissolved in ethanol exhibited a larval mortality rate of 90%. Ethanol is a polar solvent that is widely used in the synthesis of nanocomposites. It is capable of forming strong hydrogen bonds with oxygen atoms, making it a good dispersant for zinc oxide nanoparticles. Additionally, ethanol has a low boiling point and a non-toxic nature, which makes it a safe and effective option for the dispersion of nanoparticles. Notably, the study concluded that silver nanoparticles combined with ethanol exhibited prolonged and more potent toxic effects against S. litura when compared to zinc oxide nanoparticles. Overall, this research underscores the potential of nanotechnology as a valuable component of Integrated Pest Management (IPM) strategies. By integrating nanotechnology into pest management practices, we can promote sustainable and environmentally friendly approaches that benefit both farmers and the ecosystem.
Collapse
Affiliation(s)
- Aqsa Shabir
- Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
6
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
7
|
Lu Y, Zheng X, He X, Guo J, Fu Q, Xu H, Lu Z. Sublethal effects of chlorantraniliprole on growth, biochemical and molecular parameters in two chironomids, Chironomus kiiensis and Chironomus javanus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114658. [PMID: 36796207 DOI: 10.1016/j.ecoenv.2023.114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, PR China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Qiming Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
8
|
Shaikh MS, Islam F, Gargote PP, Gaikwad RR, Dhupe KC, Khan SL, Siddiqui FA, Tapadiya GG, Ali SS, Dey A, Emran TB. Potential Epha2 Receptor Blockers Involved in Cerebral Malaria from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis and Ocimum basilicum: A Computational Approach. Pathogens 2022; 11:1296. [PMID: 36365047 PMCID: PMC9693644 DOI: 10.3390/pathogens11111296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Cerebral malaria (CM) is a severe manifestation of parasite infection caused by Plasmodium species. In 2018, there were approximately 228 million malaria cases worldwide, resulting in about 405,000 deaths. Survivors of CM may live with lifelong post-CM consequences apart from an increased risk of childhood neurodisability. EphA2 receptors have been linked to several neurological disorders and have a vital role in the CM-associated breakdown of the blood-brain barrier. Molecular docking (MD) studies of phytochemicals from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis, Ocimum basilicum, and the native ligand ephrin-A were conducted to identify the potential blockers of the EphA2 receptor. The software program Autodock Vina 1.1.2 in PyRx-Virtual Screening Tool and BIOVIA Discovery Studio visualizer was used for this MD study. The present work showed that blocking the EphA2 receptor by these phytochemicals prevents endothelial cell apoptosis by averting ephrin-A ligand-expressing CD8+ T cell bioadhesion. These phytochemicals showed excellent docking scores and binding affinity, demonstrating hydrogen bond, electrostatic, Pi-sigma, and pi alkyl hydrophobic binding interactions when compared with native ligands at the EphA2 receptor. The comparative MD study using two PDB IDs showed that isocolumbin, carnosol, luteolin, and taraxasterol have better binding affinities (viz. -9.3, -9.0, -9.5, and -9.2 kcal/mol, respectively). Ocimum basilicum phytochemicals showed a lower docking score but more binding interactions than native ligands at the EphA2 receptor for both PDB IDs. This suggests that these phytochemicals may serve as potential drug candidates in the management of CM. We consider that the present MD study provides leads in drug development by targeting the EphA2 receptor in managing CM. The approach is innovative because a role for EphA2 receptors in CM has never been highlighted.
Collapse
Affiliation(s)
- Mohd Sayeed Shaikh
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431136, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1341, Bangladesh
| | - Parag P. Gargote
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431136, India
| | - Rutuja R. Gaikwad
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431136, India
| | - Kalpana C. Dhupe
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431136, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
| | - Ganesh G. Tapadiya
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431136, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
9
|
Yeap SP, Rajendran SD, Wahab SN. The microbial‐killing Ag nanoparticles in food supply chain: How it was applied and what a consumer should know? FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Swee Pin Yeap
- Department of Chemical & Petroleum Engineering Faculty of Engineering, Technology & Built Environment, UCSI University Kuala Lumpur 56000 Malaysia
- UCSI‐Cheras Low Carbon Innovation Hub Research Consortium Kuala Lumpur Malaysia
| | - Salini Devi Rajendran
- Faculty of Social Sciences and Leisure Management Taylor's University Subang Jaya 47500 Malaysia
| | - Siti Norida Wahab
- Faculty of Business and Management Universiti Teknologi MARA Shah Alam 40450 Malaysia
| |
Collapse
|
10
|
Anees M, Patil S, Kambrekar D, Chandrashekhar S, Jahagirdar S. Biosynthesis, Characterization, Evaluation, and Shelf-Life Study of Silver Nanoparticles against Cotton Bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193511. [PMID: 36234639 PMCID: PMC9565844 DOI: 10.3390/nano12193511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 05/25/2023]
Abstract
Nanoparticles provide a promising and alternative platform of eco-friendly technologies that encompasses better cost-resilient remedies against one of the most economically harnessing insect pests of cotton. The main goal of this research was to provide a better management strategy through biologically synthesizing (sunlight exposure method) green nanoparticles from leaf extracts of Azadirachta indica and Pongamia pinnata and proving their bioefficacy on H. armigera (2nd instar). Characterization of bio-synthesized silver nanoparticles was carried out using UV-Visible spectroscopy for confirming the formation of nanoparticles, a Particle Size Analyzer (PSA) for determining the size/distribution of particles, and a Scanning Electron Microscope (SEM) for analyzing the surface topology of nanoparticles. The results obtained from PSA analysis showed that A. indica and P. pinnata-based silver nanoparticles had an average diameter of 61.70 nm and 68.80, respectively. Topographical images obtained from SEM proved that most of the green synthesized silver nanoparticles were spherical in shape. A. indica-based silver nanoparticles were found to be comparatively more efficient and have higher insecticidal activity compared to P. pinnata-based nanoparticles. A. indica-based AgNPs recorded larval mortality of 60.00 to 93.33 percent at the concentrations of 500 to 2000 ppm, followed by P. pinnata-based nanoparticles, with 60.00 to 90.00 percent larval mortality. Shelf-life studies revealed that A. indica-based AgNPs had the maximum negative zeta potential of -58.96 mV and could be stored for three months without losing bioefficacy and up to six months with negligible reduction in bioefficacy. Symptoms caused by silver nanoparticles were leakage of body fluids, sluggishness, inactiveness, brittleness, etc.
Collapse
|
11
|
Okeke IJ, Oyeyemi OT, Morenikeji OA. Ovicidal and miracicidal activities of Calotropis procera and its green-synthesized nanotized derivative: a quest for new antifasciola agents. Acta Trop 2022; 236:106700. [PMID: 36181877 DOI: 10.1016/j.actatropica.2022.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
|
12
|
Hazarika A, Yadav M, Yadav DK, Yadav HS. An overview of the role of nanoparticles in sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Khalil MA, El-Shanshoury AERR, Alghamdi MA, Sun J, Ali SS. Streptomyces catenulae as a Novel Marine Actinobacterium Mediated Silver Nanoparticles: Characterization, Biological Activities, and Proposed Mechanism of Antibacterial Action. Front Microbiol 2022; 13:833154. [PMID: 35572675 PMCID: PMC9095859 DOI: 10.3389/fmicb.2022.833154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Biosynthesized silver nanoparticles (Bio-SNPs) were synthesized from the marine actinobacterium strain Streptomyces catenulae M2 and characterized using a variety of techniques, including UV–vis spectrum, fourier transform infrared spectroscopy (FTIR), energy dispersive x-ray (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), surface-enhanced Raman spectroscopy (SERS), and zeta potential. The antibacterial activity of Bio-SNPs alone and in combination with antibiotic was evaluated using a microtiter-dilution resazurin assay against multidrug-resistant (MDR) bacteria. Bio-SNPs’ minimum inhibitory concentration (MIC) against bacterial strains was determined. To assess the synergistic effect of Bio-SNPs in combination with antibiotics, the Fractional Inhibitory Concentration Index (FICI) was calculated. While the safety of Bio-SNPs in biomedical applications is dependent on their use, the in vitro cytotoxicity of Bio-SNPs on normal human epithelial colon cells (NCM460) and human colorectal adenocarcinoma cells (CaCo2) were evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and cell lactate dehydrogenase (LDH) release. The presence of Bio-SNPs was revealed by UV–vis spectroscopy, which revealed a peak in the Surface Plasmon Resonance (SPR) spectrum at 439.5 nm. Bio-SNPs were spherical in shape and small in size (average 33 nm by TEM, 58.8 nm by DLS), with good stability (−30 mV) and the presence of capping agents. Bio-SNPs had MIC values ranging from 2 to 64 μg/ml against the bacteria tested. The MIC for P. aeruginosa was the lowest (2 μg/ml). Antibiotics have been shown to have a significant synergistic effect when combined with Bio-SNPs against tested bacteria. Bio-SNPs exhibited dose-dependent cytotoxicity against NCM460 and CaCo2 cancer cells, with the latter exhibiting far greater toxicity than the former. NCM460 and CaCo2 cell viability decreased from 99.3 to 95.7% and 92.3 to 61.8%, respectively, whereas LDH leakage increased from 200 to 215 nmol/ml and 261 to 730 nmol/ml, respectively. The half inhibitory concentrations (IC50) for NCM460 and CaCo2 cancer cells were 79.46 and 10.41 μg/ml and 89.4 and 19.3 μg/ml, respectively. Bio-SNPs were found to be biocompatible and to have anti-inflammatory activity. Bio-SNPs are highly appealing for future nanomedicine applications due to their antibacterial and biocompatible properties and their inherent “green” and simple manufacturing.
Collapse
Affiliation(s)
- Maha A Khalil
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Maha A Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.,Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh S Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt.,Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Khalil MA, El-Shanshoury AERR, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J, Ali SS. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Front Microbiol 2022; 12:705673. [PMID: 35211096 PMCID: PMC8862148 DOI: 10.3389/fmicb.2021.705673] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Nanoparticles have recently emerged as a popular research topic. Because of their potential applications in therapeutic applications, biosynthesized silver nanoparticles (Bio-AgNPs) have gained much attention in recent years. Cell-free extracts (CFE) from a marine culture of actinobacteria and silver nitrate were used to reduce Ag+ ions and create Bio-AgNPs. Nocardiopsis dasonvillei KY772427, a new silver-tolerant actinomycete strain, was isolated from marine water and used to synthesize AgNPs. In order to characterize Bio-AgNPs, UV-Vis spectral analysis, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), and dynamic light scattering spectroscopy (DLS) were all utilized. Using UV-Vis spectroscopy, a peak in the surface plasmon resonance (SPR) spectrum at 430 nm revealed the presence of Bio-AgNPs. The TEM revealed spherical AgNPs with a diameter of 29.28 nm. DLS determined that Bio-AgNPs have a diameter of 56.1 nm and a negative surface charge (-1.46 mV). The minimum inhibitory concentration (MIC) of Bio-AgNPs was determined against microbial strains. Using resazurin-based microtiter dilution, the synergistic effect of Bio-AgNPs with antimicrobials was investigated. Pseudomonas aeruginosa had the lowest MIC of Bio-AgNPs (4 μg/ml). Surprisingly, the combination of antimicrobials and Bio-AgNPs had a significant synergistic effect on the tested strains. The insecticidal activity of Bio-AgNPs (200 μg/ml) against Macrosiphum rosae was found to be maximal after 36 h. Additionally, Bio-AgNPs demonstrated significant scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl (OH - ) radicals, with IC 50 values of 4.08 and 8.9 g/ml, respectively. In vitro studies using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay revealed a concentration-dependent decrease in cell viability when CaCo2 cells were exposed to Bio-AgNPs. With the decrease in cell viability, lactate dehydrogenase leakage (LDH) increased. The findings of this study open up a new avenue for the use of marine Nocardiopsis dasonvillei to produce Bio-AgNPs, which have significant antimicrobial, antioxidant, insecticidal, and anticancer potential.
Collapse
Affiliation(s)
- Maha A. Khalil
- Biology Department, College of Science, Taif University, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Maha A. Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Fatin A. Alsalmi
- Biology Department, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Samia F. Mohamed
- Pharmacology and Toxicology Unit, Department of Biochemistry, Animal Health Institute, Giza, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S. Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Green Synthesis of Silver Nanoparticles Using Ocimum basilicum L. and Hibiscus sabdariffa L. Extracts and Their Antibacterial Activity in Combination with Phage ZCSE6 and Sensing Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02234-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractOne of the dangerous pathogens that display high resistance to antibiotics is Salmonella enterica (S. enterica), which infects humans and animals. In this study, a new approach was proposed to fight antibiotic-resistant bacteria by using silver nanoparticles (AgNPs) with adding the phage ZCSE6. The biosynthesized AgNPs were characterized by analysis of spectroscopy profile of the UV–Vis, visualize the morphology, and size with transmission electron microscopy. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed. In addition, the AgNPs were able to control the biofilm formation of S. enterica, also, heavy metals detection by AgNPs and their application in milk. UV–Vis spectra showed a surface resonance peak of 400 and 430 nm corresponding to the formation of AgNPs capping with Ocimum basilicum L. and Hibiscus sabdariffa L., respectively. The MIC and MBC values were 6.25 µg/ml to inhibit the growth of S. enterica and 12.5 µg/ml from killing the bacteria and it was decreased to 1.5 µg/ml when combined with the phage. In the present study, AgNPs were combined with phage ZCSE6 to obtain a synergetic antimicrobial activity. Moreover, it increases the milk’s shelf-life and senses the Cd2+ at a concentration of 1 mM in the water.
Graphical Abstract
Collapse
|
16
|
Raguvaran K, Kalpana M, Manimegalai T, Maheswaran R. Insecticidal, not-target organism activity of synthesized silver nanoparticles using Actinokineospora fastidiosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|