1
|
Wang W, Sun B, Luo D, Chen X, Yao M, Zhang A. Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19165-19177. [PMID: 39423902 DOI: 10.1021/acs.est.4c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Scholars have long been interested in the association between arsenic (As) exposure and neurological disorders; however, existing systematic epidemiological investigations are insufficient and lack the inclusion of diagnostic or predictive biological markers. This study sought to evaluate the association between As exposure and cognitive impairment and identify potential biomarkers by developing predictive models. Here, we found that logarithm (Ln)-transformed urinary As concentrations were negatively linearly related to the mini-mental state examination (MMSE) score exposure-response curves. Subsequently, we identified a unique plasma neurometabolite profile in subjects exposed to As compared with the reference group. Further analyses showed that tryptophan, tyrosine, dopamine, epinephrine, and homovanillic acid were all significantly associated with both urinary As concentrations and MMSE scores. Notably, the association between As exposure and MMSE scores was partly mediated by tryptophan, tyrosine, dopamine, and epinephrine. Importantly, an unprecedented prediction model utilizing neurotransmitters was established to assess the risk of cognitive impairment due to As exposure. A 91.1% consistency rate was found between the predicted and the actual probabilities. Additionally, machine learning models also produced highly accurate predictions. Overall, this study revealed a dose-dependent cognitive decline in As-exposed adults accompanied by a disturbance in the signature of neurotransmitter metabolites, offering new predictive insights.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
2
|
Bartos M, Gallegos CE, Mónaco N, Lencinas I, Dominguez S, Bras C, Del Carmen Esandi M, Bouzat C, Gumilar F. Developmental exposure to arsenic reduces anxiety levels and leads to a depressive-like behavior in female offspring rats: Molecular changes in the prefrontal cortex. Neurotoxicology 2024; 104:85-94. [PMID: 39079579 DOI: 10.1016/j.neuro.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABAA subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABAA receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.
Collapse
Affiliation(s)
- Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina E Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Ileana Lencinas
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Sergio Dominguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina.
| |
Collapse
|
3
|
Liao SL, Lai SH, Hsu YT, Chen LC, Tsai MH, Hua MC, Yao TC, Su KW, Yeh KW, Chiu CY, Huang SK, Huang JL. Early postnatal and concurrent exposure to metals and neurobehavioral outcomes at 5 years: Associations with individual environmental exposures and mixtures. Neurotoxicology 2024; 105:58-66. [PMID: 39214502 DOI: 10.1016/j.neuro.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Little is known about the effect of postnatal exposure to heavy metals on children's behavior problems. This study aimed to investigate the association between metal exposure during different stages of postnatal life and neurobehavioral outcomes in preschool children. METHODS Urinary concentrations of six metals (arsenic, cadmium, chromium, lead, manganese, and vanadium) were measured using inductively coupled plasma mass spectrometry in 220 participants at two time points: before 1 year and at 5 years of age. Mothers completed the Child Behavior Checklist when the children were 5 years old. Multivariable linear and logistic regression analyses were used to evaluate the association between metal concentrations and behavioral outcomes. We employed Bayesian kernel machine regression (BKMR) to assess possible joint effects and potential interactions between metal mixtures and behavioral outcomes. RESULTS Concentrations of urinary arsenic (As) in infants were associated with higher scores for anxious/shy behavior problems (β ranging from 0.03 to 0.23). Further analyses showed that As exposure increased the odds of scores falling into the borderline or clinical range on anxious/depressed, affective, and pervasive developmental problems (ORs: 2.45-3.40). Stratification by sex indicated significance in girls but not in boys. BKMR analysis showed that, among the metal mixtures, As displayed a major effect on behavior scores. Concentrations of urinary cadmium in infants were also associated with higher behavioral scores but did not increase the risk of clinical problems. A cross-sectional survey in 5-year-olds did not show a significant association between concurrent metal exposure and behavioral outcome. CONCLUSION Our results showed that exposure to As and Cd during infancy was associated with emotional problems in children. The effect of arsenic exposure was more pronounced among female infants. We suggest reducing exposure to toxic metals during early postnatal life to prevent behavioral problems in children."
Collapse
Affiliation(s)
- Sui-Ling Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shen-Hao Lai
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Pulmonology, Department of Pediatric, Chang Gung Memorial Hospital, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yuan-Ting Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Chunan, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Chunan, Taiwan
| | - Li-Chen Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Man-Chin Hua
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Tsung-Chieh Yao
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Kuan-Wen Su
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chih-Yung Chiu
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Pulmonology, Department of Pediatric, Chang Gung Memorial Hospital, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Chunan, Taiwan; Johns Hopkins University, School of Medicine, Baltimore, USA.
| | - Jing-Long Huang
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Pediatrics, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, Tucheng, Taiwan; Chang Gung University, College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Gu Q, Liu J, Zhang X, Huang A, Yu X, Wu K, Huang Y. Association between heavy metals exposure and risk of attention deficit hyperactivity disorder (ADHD) in children: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02546-z. [PMID: 39126497 DOI: 10.1007/s00787-024-02546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Heavy metals can negatively affect children's neurodevelopment, yet the relationship between heavy metals exposure and attention deficit hyperactivity disorder (ADHD) in children remains unclear. We aimed to examine associations between exposure to five common heavy metals (lead, arsenic, mercury, cadmium, and manganese) with neurodevelopmental toxicity and the risk of ADHD in children. Online databases of PubMed, Web of Science, and Embase were searched before February 29, 2024. A total of 31 studies involving 25,258 children were included in the final analysis. Our findings revealed that lead exposure was positively associated with ADHD risk in children (OR = 1.95, 95% CI: 1.57-2.41) overall, while the associations varied among different WHO regions, with the strongest in the Americas. Sensitivity analyses revealed significant associations between arsenic (OR = 1.53, 95% CI: 1.01-2.32) and manganese (OR = 1.79, 95% CI: 1.28-2.49) exposure and ADHD risk after omitting one study. Arsenic exposure was positively associated with ADHD risk in studies conducted in the Americas and adjusted for environmental smoke exposure. Positive associations between manganese exposure and ADHD risk were also found in several subgroup analyses. No significant associations were found for mercury and cadmium exposure. Dose-response meta-analysis suggested that children with higher blood lead levels exhibited a higher probability of ADHD diagnosis. Lead exposure consistently increases the risk of ADHD in children, while arsenic and manganese exposure may be associated with ADHD under different occasions. More research is required to understand heavy metals' impact on ADHD across varying exposure levels, particularly in less contaminated regions.
Collapse
Affiliation(s)
- Qianfei Gu
- School of Public Health, Shantou University, Shantou, Guangdong Province, China
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
| | - Jiayu Liu
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Xuanzhi Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Anyan Huang
- Shantou Maternity & Child Healthcare Hospital, Shantou, Guangdong Province, China
| | - Xinle Yu
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China.
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China.
| |
Collapse
|
5
|
Chirinos-Peinado D, Castro-Bedriñana J, Ríos-Ríos E, Castro-Chirinos G, Quispe-Poma Y. Lead, Cadmium, and Arsenic in Raw Milk Produced in the Vicinity of a Mini Mineral Concentrator in the Central Andes and Health Risk. Biol Trace Elem Res 2024; 202:2376-2390. [PMID: 37713056 PMCID: PMC10954997 DOI: 10.1007/s12011-023-03838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The bovine milk quality, safety, and security are of great concern mainly due to the dispersion of toxic substances from various anthropogenic activities and poor practices for organophosphates in agriculture use. This study evaluated the potential risk to human health from lead (Pb), cadmium (Cd), and arsenic (As) from the consumption of milk produced in an area of the Central Andes valley near a mini mineral concentrator by estimating the weekly intake (WI), dietary risk quotient (DRC), hazard quotient (THQ), and hazard index (HI) for the Peruvian population aged 2 to 85 years, in three scenarios of milk consumption by age (minimum, average, and maximum). Toxic element quantification was performed by flame atomic absorption spectrometry following standardized procedures. The mean amount ± standard deviation of Pb, Cd, and As in soils was 292±60.90, 3.54±1.58, and 5.60±2.20 mg/kg, the order of importance being Pb>As>Cd. The contents of Pb, Cd, and As in pastures were 23.17±10.02, 0.25±0.57, and 0.06±0.09 mg/kg, being from highest to lowest Pb>Cd>As. The means of Pb, Cd, and As content in 19 milk samples were 0.029±0.022, 0.007±0.006, and 0.010±0.004 mg/kg. Pb and Cd exceeded the maximum permissible limits (MPL), and the As was below the MPL. At all ages and milk consumption levels, the WI for Pb and Cd were below the estimated tolerable intake (TWI). The WI for As in < 19 years was higher than the TWI. The DRC for Pb and Cd at all three milk intake levels and all ages was < 1, and for As, it was > 1 in < 19 years, being the risk group. The TQH and HI for Pb and Cd were also > 1, signifying no health risk, and for As, the values were > 1 in < 11 years. Our results are valuable for preventing adverse health impacts from safe and innocuous milk consumption.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú.
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima, Perú
| | | | - Yubaly Quispe-Poma
- Zootechnical Faculty, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| |
Collapse
|
6
|
Chirinos-Peinado D, Castro-Bedriñana J, Barnes EPG, Ríos-Ríos E, García-Olarte E, Castro-Chirinos G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. TOXICS 2024; 12:308. [PMID: 38787087 PMCID: PMC11125971 DOI: 10.3390/toxics12050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
This study investigated lead (Pb) and cadmium (Cd) transfer in three dairy farming areas in the Mantaro river headwaters in the central Peruvian Andes and at varying distances from the mining complex at La Oroya. At each of these sites, the transfer of trace metals from the soil to raw milk was estimated, and a hazard assessment for lead and cadmium was carried out in scenarios of minimum, average, and maximum milk consumption in a Peruvian population aged 2-85. Pb and Cd were quantified by flame atomic absorption spectrometry. Significantly, the concentrations of lead and cadmium were found to exceed the maximum limits recommended by the World Health Organization, with a positive geospatial trend correlated with the distance from mining activity. Both Pb and Cd were found to be transferred through the soil-pasture-milk pathway, with the primary source of Cd being phosphate-based fertilizers used in pasture improvement. Pb was found to be the most significant contributor to the Hazard Index (HI) with those under 19 years of age and over 60 recording an HI of >1, with infants being the most vulnerable group due to their greater milk consumption in relation to their body weight. A marginal increase in contamination was observed in the dry season, indicating the need for studies to be expanded over several annual cycles.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Jorge Castro-Bedriñana
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Eustace P. G. Barnes
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Elva Ríos-Ríos
- Science Faculty, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | - Edgar García-Olarte
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | | |
Collapse
|
7
|
Li Y, Liu A, Chen K, Li L, Zhang X, Zou F, Zhang X, Meng X. Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the ACSS2/H3K9ac/BDNF pathway. ENVIRONMENT INTERNATIONAL 2024; 184:108479. [PMID: 38340407 DOI: 10.1016/j.envint.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lead is an environmentally widespread neurotoxic pollutant. Although the neurotoxicity of lead has been found to be closely associated with metabolic disorders, the effects of short-chain fatty acids on the neurotoxicity of lead and its mechanisms have not yet been explored. In this study, the results of open field tests and Morris water maze tests demonstrated that chronic lead exposure caused learning and memory deficits and anxiety-like symptoms in mice. The serum butyric acid content of lead-treated mice decreased in a dose-dependent manner, and oral administration of butyrate significantly improved cognitive memory impairment and anxiety symptoms in lead-exposed mice. Moreover, butyrate alleviated neuroinflammation caused by lead exposure by inhibiting the STAT3 signaling in microglia. Butyrate also promoted the expression of acetyl-CoA synthetase ACSS2 in hippocampal neurons, thereby increasing the content of acetyl-CoA and restoring the expression of both histone H3K9ac and the downstream BDNF. We also found that the median butyric acid concentration in high-lead exposure humans was remarkably lower than that in the low-lead exposure humans (45.16 μg/L vs. 60.92 μg/L, P < 0.01), and that butyric acid significantly mediated the relationship of lead exposure with the Montreal cognitive assessment scores, with a contribution rate of 27.57 %. In conclusion, our results suggest that butyrate supplementation is a possible therapeutic strategy for lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lifan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Schildroth S, Bauer JA, Friedman A, Austin C, Coull BA, Placidi D, White RF, Smith D, Wright RO, Lucchini RG, Arora M, Horton M, Claus Henn B. Early life manganese exposure and reported attention-related behaviors in Italian adolescents. Environ Epidemiol 2023; 7:e274. [PMID: 38912396 PMCID: PMC11189689 DOI: 10.1097/ee9.0000000000000274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 06/25/2024] Open
Abstract
Background Manganese (Mn) is an essential nutrient and neurotoxicant, and the neurodevelopmental effects of Mn may depend on exposure timing. Less research has quantitatively compared the impact of Mn exposure on neurodevelopment across exposure periods. Methods We used data from 125 Italian adolescents (10-14 years) from the Public Health Impact of Metals Exposure Study to estimate prospective associations of Mn in three early life exposure periods with adolescent attention-related behaviors. Mn was quantified in deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry to represent prenatal (2nd trimester-birth), postnatal (birth ~1.5 years), and childhood (~1.5-6 years) exposure. Attention-related behavior was evaluated using the Conners Behavior Rating Scales in adolescence. We used multivariable linear regression models to quantify associations between Mn in each exposure period, and multiple informant models to compare associations across exposure periods. Results Median tooth Mn levels (normalized to calcium) were 0.4 area under the curve (AUC) 55Mn:43Ca × 104, 0.1 AUC 55Mn:43Ca × 104, and 0.0006 55Mn:43Ca for the prenatal, postnatal, and childhood periods. A doubling in prenatal tooth Mn levels was associated with 5.3% (95% confidence intervals [CI] = -10.3%, 0.0%) lower (i.e., better) teacher-reported inattention scores, whereas a doubling in postnatal tooth Mn levels was associated with 4.5% (95% CI = -9.3%, 0.6%) and 4.6% (95% CI = -9.5%, 0.6%) lower parent-reported inattention and attention deficit/hyperactivity disorder index scores, respectively. Childhood Mn was not beneficially associated with reported attention-related behaviors. Conclusion Protective associations in the prenatal and postnatal periods suggest Mn is beneficial for attention-related behavior, but not in the childhood period.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University, Boston, Massachusetts
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
9
|
Castro-Bedriñana J, Chirinos-Peinado D, Ríos-Ríos E, Castro-Chirinos G, Chagua-Rodríguez P, De La Cruz-Calderón G. Lead, Cadmium, and Arsenic in Raw Cow's Milk in a Central Andean Area and Risks for the Peruvian Populations. TOXICS 2023; 11:809. [PMID: 37888660 PMCID: PMC10611204 DOI: 10.3390/toxics11100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Milk and its derivatives are basic foods in Peru, especially for children. The Junín region, in the central Andes, is one of the leading dairy basins. However, the safety of milk is affected by mining-metallurgical activities, wastewater dumping, organic residues, and inappropriate use of organophosphate fertilizers in agriculture whose contaminants reach the food chain, putting human health at risk. The purpose of this study was to evaluate the bioaccumulation of lead (Pb), cadmium (Cd), and arsenic (As) in milk produced on a representative farm in central Peru, which uses phosphorous agrochemicals and is adjacent to a small mineral concentrator and a municipal solid waste dump, and to evaluate the potential risk for the Peruvian population of 2-85 years considering three levels of daily intake by age, which constitutes the innovative contribution of the study. These three elements were quantified by flame atomic absorption spectrometry following standardized procedures. The mean contents of Pb (0.062 mg/kg), Cd (0.014 mg/kg), and As (0.030 mg/kg) in milk exceeded the maximum limits allowed by international standards. At all ages, the target quotient hazard followed a descending order of As > Pb > Cd, being > 1 in the case of As. The hazard index was >1 for children under 7, 9, and 11 years of age in the scenarios of low, medium, and high milk intake. The information is valid for formulating policies to prevent adverse health effects and develop standards and awareness programs, monitoring, and control of heavy metals in milk in Peru.
Collapse
Affiliation(s)
- Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima 14024, Peru;
| | | | - Perfecto Chagua-Rodríguez
- Faculty of Agroindustrial Engineering, Universidad Nacional Autónoma Altoandina de Tarma, Tarma 12701, Peru;
| | | |
Collapse
|
10
|
Zhang S, Zhang J, Wu L, Chen L, Niu P, Li J. Glutamine supplementation reverses manganese neurotoxicity by eliciting the mitochondrial unfolded protein response. iScience 2023; 26:107136. [PMID: 37408687 PMCID: PMC10318524 DOI: 10.1016/j.isci.2023.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Excessive exposure to manganese (Mn) can cause neurological abnormalities, but the mechanism of Mn neurotoxicity remains unclear. Previous studies have shown that abnormal mitochondrial metabolism is a crucial mechanism underlying Mn neurotoxicity. Therefore, improving neurometabolic in neuronal mitochondria may be a potential therapy for Mn neurotoxicity. Here, single-cell sequencing revealed that Mn affected mitochondrial neurometabolic pathways and unfolded protein response in zebrafish dopaminergic neurons. Metabolomic analysis indicated that Mn inhibited the glutathione metabolic pathway in human neuroblastoma (SH-SY5Y) cells. Mechanistically, Mn exposure inhibited glutathione (GSH) and mitochondrial unfolded protein response (UPRmt). Furthermore, supplementation with glutamine (Gln) can effectively increase the concentration of GSH and triggered UPRmt which can alleviate mitochondrial dysfunction and counteract the neurotoxicity of Mn. Our findings highlight that UPRmt is involved in Mn-induced neurotoxicity and glutathione metabolic pathway affects UPRmt to reverse Mn neurotoxicity. In addition, Gln supplementation may have potential therapeutic benefits for Mn-related neurological disorders.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Kordas K, Cantoral A, Desai G, Halabicky O, Signes-Pastor AJ, Tellez-Rojo MM, Peterson KE, Karagas MR. Dietary Exposure to Toxic Elements and the Health of Young Children: Methodological Considerations and Data Needs. J Nutr 2022; 152:2572-2581. [PMID: 36774123 PMCID: PMC10157815 DOI: 10.1093/jn/nxac185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Concerns have been raised regarding toxic-element (arsenic, cadmium, lead, and mercury) contamination of commercially available infant foods around the world. Young children are vulnerable to the effects of toxic elements, based on higher absorption levels and potentially poorer detoxification capacities. Toxic-element exposures in early life exact high societal costs, but it is unclear how much dietary exposure to these elements contributes to adverse health outcomes. Well-designed epidemiological studies conducted in different geographical and socioeconomic contexts need to estimate dietary toxicant exposure in young children and to determine whether causal links exist between toxicants in children's diets and health outcomes. This commentary outlines the methodological considerations and data needs to advance such research.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA.
| | | | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA
| | - Olivia Halabicky
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Antonio J Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
12
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
13
|
Ke T, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Santamaria A, Aschner M. Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab014. [PMID: 34881051 PMCID: PMC8648069 DOI: 10.1093/eep/dvab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the competence of academic performance and social wellness in children and adults. The causes of ADHD are unclear. Both genetic and environmental factors contribute to the development of ADHD. The behavioral impairments in ADHD are associated with epigenetic changes in genes that are important for neurodevelopment. Among environmental causes of ADHD, the neurotoxin methylmercury (MeHg) is associated with an increased risk for ADHD. Developing children are susceptible to neurotoxic effects of prenatal MeHg exposure. Human epidemiology studies have shown that prenatal MeHg exposure could invoke epigenetic changes in genes that are involved in ADHD. In addition, the pathogenesis of ADHD involves dopaminergic system, which is a target of developmental MeHg exposure. MeHg-induced alterations in the dopaminergic system have a profound impact on behavioral functions in adults. As a trace level of MeHg (around nM) can induce long-lasting behavioral alterations, potential mechanisms of MeHg-induced functional changes in the dopaminergic system may involve epigenetic mechanisms. Here, we review the relevant evidence on developmental MeHg exposures and the risk for ADHD. We also point out research gaps in understanding environmental causes of ADHD.
Collapse
Affiliation(s)
- Tao Ke
- **Correspondence address. Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA. Tel: +1 718 430 4047; Fax: +1 718 430 8922; E-mail:
| | - Alexey A Tinkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Antoly V Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Medical Elementology, K.G. Razumovsky Moscow State University of Technologies and Management, Moscow 109004, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA
| |
Collapse
|