1
|
Chen X, Xu R, Jiang M. In silico prediction of carcinogenic mechanisms induced by mixture of toxic substances from E-waste dust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117369. [PMID: 39561563 DOI: 10.1016/j.ecoenv.2024.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Humans are constantly exposed to low doses of various metals and organic compounds in electronic waste (e-waste) recycling areas. Although these substances individually have been identified as environmental carcinogens that influence the onset and progression of tumors, their combined effect on human cancers has not been sufficiently investigated. For this reason, the goal of the current analysis is to evaluate the possible molecular mechanisms between exposure to a mixture of As, Cd, Cr, Hg, Pb, Sb, DBDE, DBDPE, and TBBPA from e-waste and the onset and progression of common human cancers via in silico toxicogenomic tools. The CTD, GeneMANIA, ToppGene Suite portal, and TIMER2 online server were utilized as the primary data-mining tools. Eleven genes that were linked to different types of cancer were found to be shared by most of the substances under investigation. Notably, co-expression (58.91 %) was the most common interaction among these genes. The examined mixture's primary molecular route linked to human cancers was found to be the interleukin 4 and interleukin 13 signaling pathway, which was further connected to the macrophage infiltration. These results underline the critical need for the future research that focus on examining the 11 particular genes as well as the mechanism involving IL4/IL13-mediated macrophage infiltration, to address this environmental health hazard and the development of targeted tumor prevention and control policies for populations exposed to the toxic substance from e-waste recycling process.
Collapse
Affiliation(s)
- Xue Chen
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Renjie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Paun I, Pirvu F, Chiriac FL, Iancu VI, Pascu LF. Organophosphate flame retardants in Romania coastline: Occurrence, faith and environmental risk. MARINE POLLUTION BULLETIN 2024; 208:116982. [PMID: 39312814 DOI: 10.1016/j.marpolbul.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
This research comprehensively assesses phosphorus-based flame retardants (OPFRs) in seawater, sediment, and algae from the Romanian Black Sea coastline, evaluating their concentrations, distribution patterns, and potential environmental risks. OPFR concentrations ranged from 479 to 2229 ng/L in abiotic samples and 44 to 1953 ng/g dry weight in sediments, while algae samples showed concentrations between 273 and 10,301 ng/g dry weight. The most common OPFRs identified were tri-propyl phosphate (TPP), tri(2-chloroethyl) phosphate (TCEP), and tri(2-chloroisopropyl) phosphate (TCPP) in abiotic samples, with TCEP, diphenyl phosphate (DPHP), TPP, and TCPP dominating in algae. Notably, TPP reached concentrations of 1417 ng/L and 10,062 ng/g dry weight in algae. The environmental risk assessment indicated that these contaminants pose risks ranging from low to medium, highlighting a moderate concern for aquatic organisms. The findings underscore the need for ongoing monitoring and evaluation of OPFR levels in marine environments to inform management strategies and mitigate potential ecological impacts on the Black Sea ecosystem.
Collapse
Affiliation(s)
- Iuliana Paun
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| | - Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| | - Vasile Ion Iancu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania
| | - Luoana Florentina Pascu
- National Research and Development Institute for Industrial Ecology-ECOIND, Drumul Podu Dambovitei street 57-73, 060652 Bucharest, Romania.
| |
Collapse
|
3
|
Wang C, Li M, Huang S, Huang W, He T, Wusiman M, Zhu H, Liu Z. Choline ameliorates tris (2‐chloroisopropyl) phosphate‐induced hepatocellular carcinoma metastasis by inhibiting ROS/Nrf2/Keap1‐mediated autophagy. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractTris (2‐chloroisopropyl) phosphate (TCPP) is an emerging environmental pollutant associated with liver diseases. However, its effects on hepatocellular carcinoma (HCC) remain unknown. Choline, a necessary dietary nutrient, has previously demonstrated inhibitory effects on HCC. Therefore, elucidating the underlying mechanism of TCPP exposure on HCC development and investigating whether choline could mitigate these effects may improve the prognosis of HCC patients. In this study, we examined the tumor‐promoting effects of TCPP on HCC and explored the protective effects of choline. Our findings revealed that choline treatment attenuated the tumor‐promoting effects of TCPP exposure on HCC cells’ epithelial‐mesenchymal transition (EMT) and lung metastasis. Further investigation showed that TCPP exposure induced ROS production via NOX4 upregulation, while choline inhibited ROS generation, thereby mitigating the effects of TCPP on EMT and metastasis in HCC cells. Mechanistic analysis demonstrated that excessive ROS inhibited levels of Keap1, leading to upregulation and nuclear translocation of Nrf2, which promoted autophagy flux and accelerated EMT and metastasis of HCC cells. However, choline treatment significantly impaired TCPP‐induced autophagy by attenuating the ROS/Nrf2/Keap1 pathway. Overall, our data illustrate the adverse effects of TCPP on the malignant progression of HCC and suggest that choline may serve as a potential nutrient to counteract the tumor‐promoting effects of TCPP on HCC.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Meng‐chu Li
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Si‐yu Huang
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Wen‐ge Huang
- Center of Experimental Animals Sun Yat‐sen University Guangzhou Guangdong Province China
| | - Tong‐tong He
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Maierhaba Wusiman
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Hui‐lian Zhu
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Zhao‐yan Liu
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| |
Collapse
|
4
|
Wang W, Liu P, Ma J, Li J, Leng L. Establishment of a CD8+ T cells-related prognostic risk model for acral melanoma based on single-cell and bulk RNA sequencing. Skin Res Technol 2024; 30:e13900. [PMID: 39093712 PMCID: PMC11296306 DOI: 10.1111/srt.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND CD8+ T cells have been recognized as crucial factors in the prognosis of melanoma. However, there is currently a lack of gene markers that accurately describe their characteristics and functions in acral melanoma (AM), which hinders the development of personalized medicine. METHODS Firstly, we explored the composition differences of immune cells in AM using single-cell RNA sequencing (scRNA-seq) data and comprehensively characterized the immune microenvironment of AM in terms of composition, developmental differentiation, function, and cell communication. Subsequently, we constructed and validated a prognostic risk scoring model based on differentially expressed genes (DEGs) of CD8+ T cells using the TCGA-SKCM cohort through Lasso-Cox method. Lastly, immunofluorescence staining was performed to validate the expression of four genes (ISG20, CCL4, LPAR6, DDIT3) in AM and healthy skin tissues as included in the prognostic model. RESULTS The scRNA-seq data revealed that memory CD8+ T cells accounted for the highest proportion in the immune microenvironment of AM, reaching 70.5%. Cell-cell communication analysis showed extensive communication relationships among effector CD8+ T cells. Subsequently, we constructed a prognostic scoring model based on DEGs derived from CD8+ T cell sources. Four CD8+ T cell-related genes were included in the construction and validation of the prognostic model. Additionally, immunofluorescence results demonstrated that ISG20 and CCL4 were downregulated, while LPAR6 and DDIT3 were upregulated in AM tissues compared to normal skin tissues. CONCLUSION Identifying biomarkers based on the expression levels of CD8+ T cell-related genes may be an effective approach for establishing prognostic models in AM patients. The independently prognostic risk evaluation model we constructed provides new insights and theoretical support for immunotherapy in AM.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of DermatologyPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Stem Cell and Regenerative Medicine LabDepartment of Medical Science Research CenterState Key Laboratory for ComplexSevere, and Rare DiseasesCenter for Translational MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pu Liu
- Chongqing Key Laboratory on Big Data for Bio IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijingChina
| | - Jie Ma
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijingChina
| | - Jun Li
- Department of DermatologyPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ling Leng
- Stem Cell and Regenerative Medicine LabDepartment of Medical Science Research CenterState Key Laboratory for ComplexSevere, and Rare DiseasesCenter for Translational MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Wang W, Wang H, Ren X, Zhang W, Li Q. Organophosphate esters uptake, translocation and accumulation in rice ( Oryza sativa L.): impacts of lipid transporters and chemical properties. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1171-1183. [PMID: 38888146 DOI: 10.1039/d4em00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To explore key factors involved in the uptake, translocation and accumulation of organophosphate esters (OPEs), computer simulation analysis and hydroponic experiments were executed. Lipid transporters with stocky-like active (SAC) cavities usually showed stronger binding affinities with the OPEs, especially when the SAC cavities belong to the Fish Trap model according to molecular docking. In our hydroponic trial, the binding affinity and gene expression of the lipid transporters and log Kow of the OPEs could be charged to the uptake, translocation and accumulation of the OPEs; however, these three factors played various important roles in roots and shoots. In detail, the effect of gene expression and binding affinity were stronger than log Kow in roots uptake and accumulation, but the result was the opposite in the shoots translocation. Transporters OsTIL and OsLTPL1 among all investigated transporters could play key roles in transporter-mediated OPE uptake, translocation and accumulation in the roots and shoots. OsMLP could be involved in the bidirected vertical translocation of the OPEs. OsLTP2 and OsLTP4 mainly acted as transporters of the OPEs in roots.
Collapse
Affiliation(s)
- Wenxuan Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Haiou Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Xiaoyu Ren
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Wenxiao Zhang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Qian Li
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| |
Collapse
|
6
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
7
|
Jung AR, Shin S, Kim MY, Ha US, Hong SH, Lee JY, Kim SW, Chung YJ, Park YH. Integrated Bioinformatics Analysis Identified ASNS and DDIT3 as the Therapeutic Target in Castrate-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:2836. [PMID: 38474084 PMCID: PMC10932076 DOI: 10.3390/ijms25052836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Many studies have demonstrated the mechanisms of progression to castration-resistant prostate cancer (CRPC) and novel strategies for its treatment. Despite these advances, the molecular mechanisms underlying the progression to CRPC remain unclear, and currently, no effective treatments for CRPC are available. Here, we characterized the key genes involved in CRPC progression to gain insight into potential therapeutic targets. Bicalutamide-resistant prostate cancer cells derived from LNCaP were generated and named Bical R. RNA sequencing was used to identify differentially expressed genes (DEGs) between LNCaP and Bical R. In total, 631 DEGs (302 upregulated genes and 329 downregulated genes) were identified. The Cytohubba plug-in in Cytoscape was used to identify seven hub genes (ASNS, AGT, ATF3, ATF4, DDIT3, EFNA5, and VEGFA) associated with CRPC progression. Among these hub genes, ASNS and DDIT3 were markedly upregulated in CRPC cell lines and CRPC patient samples. The patients with high expression of ASNS and DDIT3 showed worse disease-free survival in patients with The Cancer Genome Atlas (TCGA)-prostate adenocarcinoma (PRAD) datasets. Our study revealed a potential association between ASNS and DDIT3 and the progression to CRPC. These results may contribute to the development of potential therapeutic targets and mechanisms underlying CRPC progression, aiming to improve clinical efficacy in CRPC treatment.
Collapse
Affiliation(s)
- Ae Ryang Jung
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - Sun Shin
- Department of Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.S.); (Y.-J.C.)
- Department of Microbiology, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mee Young Kim
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - U-Syn Ha
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| | - Yeun-Jun Chung
- Department of Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.S.); (Y.-J.C.)
- Department of Microbiology, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (A.R.J.); (M.Y.K.); (U.-S.H.); (S.-H.H.); (J.Y.L.); (S.W.K.)
| |
Collapse
|
8
|
Zhang D, Zhao K, Han T, Zhang X, Xu X, Liu Z, Ren X, Zhang X, Lu Z, Qin C. Bisphenol A promote the cell proliferation and invasion ability of prostate cancer cells via regulating the androgen receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115818. [PMID: 38091676 DOI: 10.1016/j.ecoenv.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
A synthetic organic substance called bisphenol A (BPA) is used to make polyester, epoxy resin, polyacrylate, and polycarbonate plastic. BPA exposure on a regular basis has increased the risk of developing cancer. Recent research has shown that there is a strong link between BPA exposure and a number of malignancies. We want to investigate any connections between BPA and prostate cancer in this work. The scores of bisphenols in the prostate cancer cohort were obtained using the ssGSEA algorithm. The analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment was used to investigate probable pathways that are closely related to the genes tied to BPA. The BPA-based risk model was built using regression analysis. Additionally, the molecular docking method was employed to assess BPA's capacity to attach to important genes. Finally, we were able to successfully get the BPA cohort ratings for prostate cancer patients. Additionally, the KEGG enrichment study showed that of the malignancies linked to BPA, prostate cancer is the most highly enriched. In a group of men with prostate cancer, the BPA-related prognostic prediction model exhibits good predictive value. The BPA demonstrated strong and efficient binding to the androgen receptor, according to the molecular docking studies. According to cell proliferation and invasion experiments, exposing prostate cancer cells to BPA at a dosage of 10-7 uM could greatly enhance their ability to proliferate and invade.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Kai Zhao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Tian Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xi Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xinchi Xu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zhanpeng Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiaohan Ren
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xu Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zhongwen Lu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
9
|
Xu X, Zhang D, Zhao K, Liu Z, Ren X, Zhang X, Lu Z, Qin C, Wang J, Wang S. Comprehensive analysis of the impact of emerging flame retardants on prostate cancer progression: The potential molecular mechanisms and immune infiltration landscape. Toxicology 2024; 501:153681. [PMID: 38006928 DOI: 10.1016/j.tox.2023.153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Emerging flame retardants have been used to replace traditional flame retardants, but their potential impact on cancer, especially prostate cancer, is not well understood. Our study aimed to explore the link between flame retardants and prostate cancer, and identify potential carcinogenic mechanisms among populations exposed to emerging flame retardants. We screened flame retardant interacting genes differentially expressed in prostate cancer patients and identified hub genes by protein-protein interaction (PPI) analysis based on the STRING database. Univariate and multivariate Cox regression analyses were performed to construct risk models and identify flame retardant-related prognostic genes. We calculated the proportion of immune cell infiltration to explore the potential mechanism of the prognostic gene, and verified the target cell population of the prognostic gene in the single-cell transcriptome dataset. Our study revealed a significant link between emerging flame retardants and prostate cancer. We constructed a risk model with good predictive ability for prostate cancer prognosis using TCGA dataset, and identified six flame retardant-related prognostic genes validated in the GSE70769 dataset. We found that the expression of M2 macrophages was up-regulated in patients with high expression of prognostic genes, and the single-cell dataset confirmed the expression of prognostic genes in macrophages. Our study confirms the link between emerging flame retardants and prostate cancer, and highlights the role of immune-related pathways in the high-risk population exposed to these flame retardants.
Collapse
Affiliation(s)
- Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China; Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China
| | - Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Kai Zhao
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhanpeng Liu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China.
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
10
|
Li H, Xu H, Guo H, Du K, Chen D. Integrative analysis illustrates the role of PCDH7 in lung cancer development, cisplatin resistance, and immunotherapy resistance: an underlying target. Front Pharmacol 2023; 14:1217213. [PMID: 37538171 PMCID: PMC10394841 DOI: 10.3389/fphar.2023.1217213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Background: Cisplatin resistance is a common clinical problem in lung cancer. However, the underlying mechanisms have not yet been fully elucidated, highlighting the importance of searching for biological targets. Methods: Bioinformatics analysis is completed through downloaded public data (GSE21656, GSE108214, and TCGA) and specific R packages. The evaluation of cell proliferation ability is completed through CCK8 assay, colony formation, and EdU assay. The evaluation of cell invasion and migration ability is completed through transwell and wound-healing assays. In addition, we evaluated cell cisplatin sensitivity by calculating IC50. Results: Here, we found that PCDH7 may be involved in cisplatin resistance in lung cancer through public database analysis (GSE21656 and GSE108214). Then, a series of in vitro experiments was performed, which verified the cancer-promoting role of PCDH7 in NSCLC. Moreover, the results of IC50 detection showed that PCDH7 might be associated with cisplatin resistance of NSCLC. Next, we investigated the single-cell pattern, biological function, and immune analysis of PCDH7. Importantly, we noticed PCDH7 may regulate epithelial-mesenchymal transition activity, and the local infiltration of CD8+ T and activated NK cells. Furthermore, we noticed that patients with high PCDH7 expression might be more sensitive to bortezomib, docetaxel, and gemcitabine, and resistant to immunotherapy. Finally, a prognosis model based on three PCDH7-derived genes (GPX8, BCAR3, and TNS4) was constructed through a machine learning algorithm, which has good prediction ability on NSCLC patients' survival. Conclusion: Our research has improved the regulatory framework for cisplatin resistance in NSCLC and can provide direction for subsequent related research, especially regarding PCDH7.
Collapse
|
11
|
Pu Y, Meng X, Zou Z. Identification and immunological characterization of cuproptosis-related molecular clusters in ulcerative colitis. BMC Gastroenterol 2023; 23:221. [PMID: 37370003 PMCID: PMC10304604 DOI: 10.1186/s12876-023-02831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ulcerative colitis is one of the two main forms of inflammatory bowel disease. Cuproptosis is reported to be a novel mode of cell death. METHODS We examined clusters of cuproptosis related genes and immune cell infiltration molecules in 86 ulcerative colitis samples from the GSE179285 dataset. We identified the differentially expressed genes according to the clustering method, and the performance of the SVM model, the random forest model, the generalized linear model, and the limit gradient enhancement model were compared, and then the optimal machine model was selected. To assess the accuracy of the learning predictions, the nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis have been accurately predicted. RESULTS Significant cuproptosis-related genes and immune response cells were detected between the ulcerative colitis and control groups. Two cuproptosis-associated molecular clusters were identified. Immune infiltration analysis indicated that different clusters exhibited significant heterogeneity. The immune scores for Cluster2 were elevated. Both the residual error and root mean square error of the random forest machine model had clinical significance. There was a clear correlation between the differentially expressed genes in cluster 2 and the response of immune cells. The nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis had sufficient accuracy. CONCLUSION We examined the complex relationship between cuproptosis and ulcerative colitis in a systematic manner. To estimate the likelihood that each subtype of cuproptosis will occur in ulcerative colitis patients and their disease outcome, we developed a promising prediction model.
Collapse
Affiliation(s)
- Yunfei Pu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianzhi Meng
- Department of Minimally Invasive Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Zhichen Zou
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Chen FS, Chen CC, Tsai CC, Lu JH, You HL, Chen CM, Huang WT, Tsai KF, Cheng FJ, Kung CT, Li SH, Wang CC, Ou YC, Lee WC, Chang YT, Hashim F, Chao HR, Wang LJ. Urinary levels of organophosphate flame retardants metabolites in a young population from Southern Taiwan and potential health effects. Front Endocrinol (Lausanne) 2023; 14:1173449. [PMID: 37334296 PMCID: PMC10272846 DOI: 10.3389/fendo.2023.1173449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Organophosphate flame retardants (OPFRs) are widely distributed in the environment and their metabolites are observed in urine, but little is known regarding OPFRs in a broad-spectrum young population from newborns to those aged 18 years. Objectives Investigate urinary levels of OPFRs and OPFR metabolites in Taiwanese infants, young children, schoolchildren, and adolescents within the general population. Methods Different age groups of subjects (n=136) were recruited from southern Taiwan to detect 10 OPFR metabolites in urine samples. Associations between urinary OPFRs and their corresponding metabolites and potential health status were also examined. Results The mean level of urinary Σ10 OPFR in this broad-spectrum young population is 2.25 μg/L (standard deviation (SD) of 1.91 μg/L). Σ10 OPFR metabolites in urine are 3.25 ± 2.84, 3.06 ± 2.21, 1.75 ± 1.10, and 2.32 ± 2.29 μg/L in the age groups comprising of newborns, 1-5 year-olds, 6-10 year-olds, and 11-18 year-olds, respectively, and borderline significant differences were found in the different age groups (p=0.125). The OPFR metabolites of TCEP, BCEP, DPHP, TBEP, DBEP, and BDCPP predominate in urine and comprise more than 90% of the total. TBEP was highly correlated with DBEP in this population (r=0.845, p<0.001). The estimated daily intake (EDI) of Σ5OPFRs (TDCPP, TCEP, TBEP, TNBP, and TPHP) was 2,230, 461, 130, and 184 ng/kg bw/day for newborns, 1-5 yr children, 6-10 yr children, and 11-17 yr adolescents, respectively. The EDI of Σ5OPFRs for newborns was 4.83-17.2 times higher than the other age groups. Urinary OPFR metabolites are significantly correlated with birth length and chest circumference in newborns. Conclusion To our knowledge, this is the first investigation of urinary OPFR metabolite levels in a broad-spectrum young population. There tended to be higher exposure rates in both newborns and pre-schoolers, though little is known about their exposure levels or factors leading to exposure in the young population. Further studies should clarify the exposure levels and factor relationships.
Collapse
Affiliation(s)
- Feng-Shun Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-He Lu
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Mei Chen
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ting Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fahimah Hashim
- Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Yu S, Yang Y, Yang H, Peng L, Wu Z, Sun L, Wu Z, Yu X, Yin X. Pancancer analysis of oncogenic BARX2 identifying its prognostic value and immunological function in liver hepatocellular carcinoma. Sci Rep 2023; 13:7560. [PMID: 37161008 PMCID: PMC10170086 DOI: 10.1038/s41598-023-34519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
The transcription factor BarH-like homeobox 2 (BARX2), a member of the Bar-like homeobox gene family, is involved in cell proliferation, differentiation, immune responses and tumorigenesis. However, the potential role of BARX2 in the development of liver hepatocellular carcinoma (LIHC) remains unclear. Therefore, we aimed to study the biological role of BARX2 in hepatocellular carcinoma. Through the UALCAN, GTEx PORTAL, TIMER 2.0, LinkedOmics, SMART, MethSurv, Metascape, GSEA and STRING public databases, the BARX2 mRNA level, prognostic value, coexpressed genes, associated differentially expressed genes, DNA methylation and functional enrichment of LIHC patients were studied. The relationships between BARX2 expression and various clinical or genetic parameters of LIHC patients were determined using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and BEAT LIHC databases. In addition, the biological function of BARX2 in LIHC was studied in vitro. Through large-scale data mining, our study showed that BARX2 was differentially expressed between different normal and tumour tissues.BARX2 expression in LIHC tissues was significantly lower than that in corresponding controls, especially in patients with T2-4 stage disease. In patients with LIHC, overexpression of BARX2 was an independent poor prognostic factor associated with poor cytogenetic risk and gene mutations. Genomic hypermethylation of the BARX2 gene was associated with upregulated BARX2 expression and poor overall survival (OS) in LIHC. Functional enrichment analysis showed that BARX2 had an immunomodulatory role and was involved in the inflammatory response in LIHC occurrence. In conclusion, the oncogene BARX2 may serve as a new biomarker and prognostic factor for patients with LIHC. The immunomodulatory function of BARX2 deserves further validation in LIHC.
Collapse
Affiliation(s)
- Shian Yu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yu Yang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hanqing Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Long Peng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhipeng Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Liang Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhengyi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuzhe Yu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiangbao Yin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
14
|
Wei S, Bao M, Zhu Y, Zhang W, Jiang L. Identifying potential targets for lung cancer intervention by analyzing the crosstalk of cancer-associated fibroblasts and immune and metabolism microenvironment. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186041 DOI: 10.1002/tox.23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been reported to play a crucial role in the tumor microenvironment and progression. METHODS The data used in this study were obtained from the Cancer Genome Atlas and Gene Expression Omnibus databases, and all analyses were performed using R software. RESULTS We first quantified the CAFs infiltration through single sample gene set enrichment analysis in the TCGA and combined GEO cohort (GSE30219, GSE37745, and GSE50081). Our result showed that patients with high levels of CAF infiltration were associated with worse clinical features and poor prognosis. Immune microenvironment analysis indicated that high CAF infiltration might result in increased infiltration of immune cells, including aDC, B cells, CD8+ T cells, cytotoxic cells, DC, eosinophils, iDC, macrophages, mast cells, neutrophils, NK CD56dim cells, NK cells, pDC, and T cells. Correlation analysis showed a significant positive correlation between CAFs and M2 macrophages, while a negative correlation was found between CAFs and glycerophospholipid metabolism. Kaplan-Meier survival curves indicated that glycerophospholipid metabolism was a protective factor against lung cancer. Biological enrichment analysis showed that pathways such as allograft rejection, epithelial-mesenchymal transition, KRAS signaling, TNF-α signaling, myogenesis, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling were upregulated in the patients with high CAF infiltration. Moreover, patients with high CAF infiltration had a lower proportion of immunotherapy responders. Genome analysis showed that low CAFs infiltration was associated with high genome instability. We identified FGF5 and CELF3 as key genes involved in the interaction between CAFs, M2 macrophages, and glycerophospholipid metabolism, and further analyzed FGF5. In vitro experiments showed that FGF5 promoted the proliferation, invasion and migration of lung cancer cells and was primarily localized in the nucleoli fibrillar center. CONCLUSIONS Our study provides novel insights into the roles of CAFs in lung cancer progression and the underlying crosstalk of tumor metabolism and immune microenvironment.
Collapse
Affiliation(s)
- Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minwei Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Lin Z, Zhang W, Li X, Du B, Li T, He H, Lu X, Zhang C, Liu Y, Ni J, Li L, Shi M. Triphenyl phosphate-induced macrophages dysfunction by activation TLR4-mediated ERK/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36929861 DOI: 10.1002/tox.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the most widely used organic phosphorus flame retardants and is ubiquitous in the environment. Studies have been reported that TPHP may lead to obesity, neurotoxicity and reproductive toxicity, but its impact on the immune system is almost blank. The present study was aimed to investigate the potential immunotoxicity of TPHP on macrophages and its underlying mechanism. The results demonstrated for the first time that TPHP (12.5, 25, and 50 μM)-induced F4/80+ CD11c+ phenotype of RAW 264.7 macrophages, accompanied by increased mRNA levels of inflammatory mediators, antigen-presenting genes (Cd80, Cd86, and H2-Aa), and significantly enhanced the phagocytosis of macrophage. Meanwhile, TPHP increased the expression of Toll-like receptor 4 (TLR4), and its co-receptor CD14, leading to significant activation of the downstream ERK/NF-κB pathway. However, co-exposure of cells to TAK-242, a TLR4 inhibitor, suppressed TPHP-induced F4/80+ CD11c+ phenotype, and down-regulated inflammatory mediators and antigen-presentation related genes, via blocked the TLR4/ERK/NF-κB pathway. Taken together, our results suggested that TPHP could induce macrophage dysfunction through activating TLR4-mediated ERK/NF-κB signaling pathway, and it may be the potential reason for health-threatening consequences.
Collapse
Affiliation(s)
- Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jindong Ni
- Precision Key Laboratory of Public Health, School of Public Health and Institute of Public Health and Wellness, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
16
|
Jiang F, Ma Q. Comprehensive Analysis Based on the Cancer Immunotherapy and Immune Activation of Gastric Cancer Patients. Genet Res (Camb) 2023; 2023:4674536. [PMID: 36923953 PMCID: PMC10010888 DOI: 10.1155/2023/4674536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
When it comes to aggressiveness and prognosis, immune cells play an important role in the microenvironment of gastric cancer (GC). Currently, there is no well-established evidence that immune status typing is reliable as a prognostic tool for gastric cancer. This study aimed to develop a genetic signature based on immune status typing for the stratification of gastric cancer risk. TCGA data were used for gene expression and clinical characteristics analysis. A ssGSEA algorithm was applied to type the gastric cancer cohorts. A multivariate and univariate Cox regression and a lasso regression were conducted to determine which genes are associated with gastric cancer prognosis. Finally, we were able to produce a 6-gene prognostic prediction model using immune-related genes. Further analysis revealed that the prognostic prediction model is closely related to the prognosis of patients with GC. Nomograms incorporating genetic signatures and risk factors produced better calibration results. The relationship between the risk score and gastric cancer T stage was also significantly correlated with multiple immune markers related to specific immune cell subsets. According to these results, patients' outcomes and tumor immune cell infiltration correlate with risk scores. In addition, immune cellular-based genetic signatures can contribute to improved risk stratification for gastric cancer. Clinical decisions regarding immunotherapy and followup can be guided by these features.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Qilong Ma
- Department of General Surgery, Jining Hospital, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Xie J, Tu H, Chen Y, Chen Z, Yang Z, Liu Y. Triphenyl phosphate induces clastogenic effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes. Chem Biol Interact 2023; 369:110259. [PMID: 36372259 DOI: 10.1016/j.cbi.2022.110259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 μM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 μM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 μM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 μM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Zhang W, Song G. A comprehensive analysis-based study of triphenyl phosphate-environmental explanation of glioma progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114346. [PMID: 36455348 DOI: 10.1016/j.ecoenv.2022.114346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
As BFRs have gradually been banned recently, organophosphorus flame retardants (OPFRs) have been manufactured and used in their place. Although OPFRs are considered the better alternatives to BFRs, many studies have discovered that OPFRs may be associated with various cancers, including prostate cancer, bladder cancer, hepatocellular carcinoma, and colorectal cancer. However, few studies have examined the relationship between OPFRs and gliomas. This study investigated the relationship between triphenyl phosphate (TPP) and glioma using bioinformatics analysis approaches. The comparative toxicogenomics database (CTD) and The Cancer Genome Atlas (TCGA) databases were accessed for TPP-related genes and gene expression data from glioma patients. The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses show that TPP might be closely related to many pathways. Further, the analysis of protein-protein interactions revealed strong intrinsic relationships between TPP-related genes. In addition, the TPP-based prognostic prediction model demonstrated promising results in predicting the prognosis of patients with gliomas. Several TPP-related genes were closely related to glioma patients' overall survival rates. The proliferation and migration abilities of glioma cells were further demonstrated to be significantly enhanced by TPP. In a bioinformatics analysis, we also discovered that melatonin is highly correlated with the presence of TPP and gliomas. According to the cell proliferation and migration assays, exposure to melatonin and TPP inhibited the ability of glioma cells to invade compared with the TPP group.
Collapse
Affiliation(s)
- Wanyun Zhang
- Guihang Guiyang Hospital, Guiyang 550000, Guizhou Province, China
| | - Guoping Song
- The Fourth People's Hospital of Guiyang, Guiyang 550000, Guizhou Province, China.
| |
Collapse
|
19
|
Guo X, Wu B, Xia W, Gao J, Xie P, Feng L, Sun C, Liang M, Ding X, Zhao D, Ma S, Liu H, Lowe S, Bentley R, Huang C, Qu G, Sun Y. Association of organophosphate ester exposure with cardiovascular disease among US adults: Cross-sectional findings from the 2011-2018 National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 308:136428. [PMID: 36115470 DOI: 10.1016/j.chemosphere.2022.136428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers worldwide. Therefore, the potentially deleterious effect of OPE on human beings deserves extensive attention. The primary objective of this present study was to untangle the relationship between OPE exposure and cardiovascular disease (CVD) among general population. Detailed information about participants' baseline characteristics, involving socioeconomic data, demographic data and key covariates was obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2018. Multivariate logistic regression models with adjustment for prior-determined covariates were utilized to examine the relationship between various OPEs and CVD among US adults and calculate odd ratios (ORs) and corresponding confidence intervals (CIs). Two multi-pollutant statistical strategies (weighted quantile sum regression and Bayesian kernel machine regression) were employed to investigate the joint effect of OPE mixture on CVD. A total of 5067 participants were included in this study. In completely-adjusted logistic model, the highest tertiles of OPE metabolites were positively associated with CVD risk, while the relationships did not reach statistical significance. The weighted quantile sum (WQS) index was significantly correlated with increased prevalence of CVD (adjusted OR: 1.25; CI: 1.02, 1.53, p value = 0.032) and Diphenyl phosphate (DPHP) was the greatest contributor (31.38%). The BKMR also indicated that mixed OPE exposure associated with an increased risk of CVD. Taken together, the present study demonstrated that there were possible links between OPE exposures and increased risk of CVD, while the relationships did not reach statistical significance. Our study provided the suggestive evidence that cumulative effect of OPE mixtures on CVD. DPHP may be a major driver of this positive association. Given the limitation of cross-sectional design and relatively limited kinds of OPE metabolites, further studies are warranted to longitudinally evaluate the potential effect of a wider range of OPEs on CVD or cardiac metabolism.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV, 89014, United States
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|
20
|
Wang Q, Zhang X, Du K, Wu X, Zhou Y, Chen D, Zeng L. Machine learning identifies characteristics molecules of cancer associated fibroblasts significantly correlated with the prognosis, immunotherapy response and immune microenvironment in lung adenocarcinoma. Front Oncol 2022; 12:1059253. [PMID: 36439484 PMCID: PMC9682016 DOI: 10.3389/fonc.2022.1059253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a highly lethal disease with a dramatic pro-fibrocytic response. Cancer-associated fibroblasts (CAFs) have been reported to play a key role in lung adenocarcinoma. METHODS Marker genes of CAFs were obtained from the Cell Marker website. Single sample gene set enrichment analysis (ssGSEA) was used for CAFs quantification. R and GraphPad Prism software were utilized for all analysis. Quantitative real-time PCR (qRT-PCR) was utilized to detect the RNA level of specific molecules. RESULTS Based on the ssGSEA algorithm and obtained CAFs markers, the LUAD patients with low- and high-CAFs infiltration were successfully identified, which had different response patterns to immunotherapy. Through the machine learning algorithm - LASSO logistic regression, we identified 44 characteristic molecules of CAFs. Furthermore, a prognosis signature consisting of seven characteristic genes was established, which showed great prognosis prediction ability. Additionally, we found that patients in the low-risk group might have better outcomes when receiving immunotherapy of PD-1, but not CTLA4. Also, the biological enrichment analysis revealed that immune response-related pathways were significantly associated with CAFs infiltration. Meanwhile, we investigated the underlying biological and microenvironment difference in patients with high- and low-risk groups. Finally, we identified that AMPD1 might be a novel target for LUAD immunotherapy. Patients with a high level of AMPD1 were correlated with worse responses to immunotherapy. Moreover, immunohistochemistry showed that the protein level of AMPD1 was higher in lung cancer. Results of qRT-PCR demonstrated that AMPD1 was upregulated in A549 cells compared with BEAS-2B. Meanwhile, we found that the knockdown of AMPD4 can significantly reduce the expression of CTLA4 and PDCD1, but not CD274 and PDCD1LG2. CONCLUSION We comprehensively explored the role of CAFs and its characteristics molecules in LUAD immunotherapy and developed an effective signature to indicate patients prognosis and immunotherapy response. Moreover, AMPD1 was identified as a novel target for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xunlang Zhang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kangming Du
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinhui Wu
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yexin Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Diang Chen
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Zeng
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Identification of Glucose Metabolism-Related Genes in the Progression from Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma. Genet Res (Camb) 2022; 2022:8566342. [PMID: 36407083 PMCID: PMC9649330 DOI: 10.1155/2022/8566342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a manifestation of hepatic metabolic syndrome that varies in severity. Hepatocellular carcinoma progresses from NAFLD when there is heterogeneity in the infiltration of immune cells and molecules. A precise molecular classification of NAFLD remains lacking, allowing further exploration of the link between NAFLD and hepatocellular carcinoma. In this work, a weighted gene coexpression network analysis was used to identify two coexpression modules based on multiple omics data used to differentiate NAFLD subtypes. Additionally, key genes in the process of glucose metabolism and NAFLD were used to construct a prognostic model in a cohort of patients with hepatocellular carcinoma. Furthermore, the specific expression of signature genes in hepatocellular carcinoma cells was analyzed using a single-cell RNA sequencing approach. A total of 19 liver tissues of NAFLD patients were obtained from the GEO database, and 81 glucose metabolism-related genes were downloaded from the CTD database. In addition, based on nine signature genes, we constructed a prognostic model to divide the HCC cohort into high and low-risk groups. We also demonstrated a significant correlation between prognostic models and clinical phenotypes. Furthermore, we integrated single-cell RNA-sequencing data and immunology data to assess potential relationships between different molecular subtypes and hepatocellular carcinoma. Finally, our study discovered that the glucose metabolism pathway may play an important role in the process of NAFLD-hepatocellular carcinoma. In addition, three glucose metabolism-related genes (SERPINE1, VCAN, and TFPI2) may be the potential targets for the immunotherapy of patients with NAFLD-hepatocellular carcinoma.
Collapse
|
22
|
Ye L, Zhang X, Wang P, Zhang Y, He S, Li Y, Li S, Liang K, Liao S, Gao Y, Zhou S, Peng Q. Low concentration triphenyl phosphate fuels proliferation and migration of hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2445-2459. [PMID: 35776891 DOI: 10.1002/tox.23609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used due to their unique properties. The OPFRs are mainly metabolized in the liver. However, whether the plasma level of OPFRs was involved in the progression of liver cancer remains unclear. Triphenyl phosphate (TPP) is one of the OPFRs that are mostly detected in environment. In this study, we performed CCK8, ATP, and EdU analyses to evaluate the effect of TPP at the concentrations at 0.025-12.8 μM on the proliferation, invasion, and migration of Hep3B, a hepatocellular carcinoma (HCC) cell line. Tumor-bearing mouse model was used for in vivo validation. The results showed that low concentrations of TPP at (0.025-0.1 μM), which are obtained in the plasma of patients with cancers, remarkably promoted cell invasion and migration of Hep3B cells. Animal experiments confirmed that TPP treatment significantly enhanced tumor growth in the xenograft HCC model. To explore the possible molecular mechanisms that might mediate the actions of TPP on Hep3B cells, we profiled gene expression in groups treated with or without TPP at the concentrations of 0.05 and 0.1 μM using transcriptional sequencing. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-protein interaction (PPI) analyses demonstrated that pathways affected by differentially expressed genes (DEGs) were mainly in nuclear-transcribed mRNA catabolic processes, cytosolic ribosome, and ATPase activity. A 0.05 and 0.1 μM TPP led to up-regulation of a series of genes including EREG, DNPH1, SAMD9, DUSP5, PFN1, CKB, MICAL2, SCUBE3, and CXCL8, but suppressed the expression of MCC. These genes have been shown to be associated with proliferation and movement of cells. Taken together, our findings suggest that low concentration of TPP could fuel the proliferation, invasion, and migration of HCC cells. Thus, TPP is a risk factor in the progression of HCC in human beings.
Collapse
Affiliation(s)
- Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shujiao He
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuguang Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Shuqing Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Zhou X, Zhou X, Yao L, Zhang X, Cong R, Luan J, Zhang T, Song N. Organophosphate flame retardant TDCPP: A risk factor for renal cancer? CHEMOSPHERE 2022; 305:135485. [PMID: 35764118 DOI: 10.1016/j.chemosphere.2022.135485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a chlorinated organophosphate flame retardants(OPFRs), is widely used in a range of plastic foams, resins, and latexes. It can be detected in human tissues, including urine, and milk. Recent research has suggested that TDCPP has neurotoxic, reproductive, and potentially carcinogenic. In our study, we proposed a novel method for predicting the gene associated with tumor-compound interactions. We firstly used The Comparative Toxicogenomics Database (CTD) and downloaded potentially interactive genes about TDCPP in renal carcinoma. Gene expression data and the corresponding clinical information of the Kidney renal clear cell cancer (KIRC) patients were obtained from The Cancer Genome Atlas database (TCGA). Data from normal people in The Genotype-Tissue Expression (GTEx) databases was used to supplement the calculations. After being predicted by PharmMapper database, and validated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, 25 genes were selected to construct protein-protein interaction network analysis. The prognostic value of these genes was evaluated with Kaplan-Meier analysis, and four interactive genes were selected. Gene set variation analysis and drug-target binding prediction proved the hub gene has a potential relationship with renal clear cell carcinoma. We then used the ChEA3 (Chip-X Enrichment Analysis, Version 3) database to predict the upstream of these interactive genes. Molecular docking was used to predict the binding of these transcription factors to TDCPP and interactive genes to TDCPP. Moreover, in cell lines and in vivo experiments demonstrated the cancer-promoting effect of TDCPP. The expression of the interactive genes was verified by qPCR and Western blot. Combining binding energy and qPCR results, we choose EPAS1 to verify its function in renal carcinoma cell lines. Our study provides a novel method to predict the potential interactive genes between TDCPP and renal cancer, which may reveal potential targets for the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, 845350, China.
| |
Collapse
|
24
|
Hong Z, Li Y, Deng X, Chen M, Pan J, Chen Z, Zhang X, Wang C, Qiu C. Comprehensive analysis of triphenyl phosphate: An environmental explanation of colorectal cancer progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113778. [PMID: 36068737 DOI: 10.1016/j.ecoenv.2022.113778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate flame retardants (OPFRs) are alternatives to brominated flame retardants (BFRs) and have recently gained wide acceptance in various materials. For the treatment and prevention of diseases, it is also important to clarify the relationship between OPFRs and tumors, despite the fact that OPFRs are less toxic than BFRs. This research used the TCGA and CTD databases for transcriptome profiling and identifying OPFRs-related genes. GO and KEGG analyses suggested that OPFRs may be closely related to colorectal cancer (CRC), and genes correlated with OPFRs were significantly and differently expressed between tumor and normal group. Further, OPFRs-related genes were associated with a good prognosis in CRC patients. The deeper research demonstrated that one of the OPFRs-triphenyl phosphate could significantly increased the viability and proliferation of CRC cell lines compared with the control group. In addition, Our research also found that melatonin at 50 μM could significantly impact CRC cell proliferation and migration ability induced by TPP.
Collapse
Affiliation(s)
- Zhongshi Hong
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Yachen Li
- Medical Department of the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Xian Deng
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Mingliang Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Jianpeng Pan
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhichuan Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
25
|
Yu K, Du Z, Xuan H, Chen Q. Comprehensive analysis based in silico study of organophosphate flame retardants - environmental explanation of bladder cancer progression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103851. [PMID: 35346870 DOI: 10.1016/j.etap.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Brominated flame retardants are associated with increased toxicity and high concerns for environmental pollution. Therefore, organophosphate flame retardants (OPFRs) are considered safer alternatives and are widely used in building materials and electronics. This study aimed to determine whether organophosphate flame retardants are implicated in bladder cancer development and progression. Data of interactive genes associated with OPFRs was obtained from the CTD database (http://ctdbase.org/) in July 2021. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that organophosphate flame retardants were closely linked to bladder cancer. Furthermore, the immune-related genes showed a strong correlation with bladder cancer. Further analysis revealed that the immune-related genes were associated with the prognosis, clinical characteristics, and response to immunotherapies in bladder cancer. In conclusion, OPFRs and their metabolites could promote the progression of bladder cancer by affecting the expression of immune genes.
Collapse
Affiliation(s)
- Kai Yu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Zhebin Du
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Hanqing Xuan
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China.
| |
Collapse
|
26
|
Liu S, He B, Li H. Bisphenol S promotes the progression of prostate cancer by regulating the expression of COL1A1 and COL1A2. Toxicology 2022; 472:153178. [DOI: 10.1016/j.tox.2022.153178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
27
|
Organelle specific fluorescent phenomics and transcriptomic profiling to evaluate cellular response to tris(1,3 dichloro 2 propyl)phosphate. Sci Rep 2022; 12:4660. [PMID: 35304560 PMCID: PMC8933422 DOI: 10.1038/s41598-022-08799-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) has been suspected to cause toxicity invertebrates, but its phenotypic effects and the underlying regulatory mechanism have not been fully revealed. Generally, cellular responses tightly control and affect various phenotypes. The scope of the whole organism or cellular toxicological phenotyping, however, has been limited, and quantitative analysis methods using phenotype data have not been fully established. Here, we demonstrated that fluorescence imaging of sub-organelle-based phenomic analysis together with transcriptomic profiling can enable a comprehensive understanding of correlations between molecular and phenomic events. To reveal the cellular response to TDCPP exposure, we obtained three sub-organelle images as fluorescent phenotypes. Transcriptomic perturbation data were measured from the RNA-seq experiment, and both profiling results were analyzed together. Interestingly, organelle phenomic data showed a unique fluorescent intensity increase in the endoplasmic reticulum (ER), and pathway analysis using transcriptomic data also revealed that ER was significantly enriched in gene ontology terms. Following the series of analyses, RNA-seq data also revealed potential carcinogenic effects of TDCPP. Our multi-dimensional profiling approach for organophosphate chemicals can uniquely correlate phenotypic changes with transcriptomic perturbations.
Collapse
|