1
|
Song Q, Xiao S, Zeng X, Zhang B, Zhu Z, Liang Y, Yu Z. Presence of polycyclic aromatic compounds in river sediment and surrounding soil: Possible impact from shale gas wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176186. [PMID: 39265685 DOI: 10.1016/j.scitotenv.2024.176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Shale gas has been extensively extracted in the Sichuan Basin in China in recent years. To gain insight into the potential impact of shale gas wastewater (SGW) discharge, sediment in a small river receiving treated SGW, as well as cultivated soil and paddy soil irrigated by the river water were collected. The occurrence and distribution of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their alkylated/oxygenated derivatives (APAHs/OPAHs), and thiophenes were investigated, the resultant potential ecological risks were assessed subsequently. The total concentration of PACs varied in the range of 1299.9-9286.4, 2069.4-11,512.3, and 475.7-2927.9 ng/g in sediment, cultivated soil and paddy soil, respectively, with thiophenes followed by APAHs being the abundant components in all the studied samples, demonstrating the potential impact of SGW discharge on sediment and surrounding soil environment. Based on the measured concentrations, potential ecological risks posed by PAHs and APAHs were calculated, and moderate to high ecological risks were observed in partial sampling sites, which mainly caused by 3-4 rings PAHs and APAHs.
Collapse
Affiliation(s)
- Qian Song
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Xiao
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Biao Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Zhu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Sakai M, Mori JF, Kanaly RA. Assessment of bacterial biotransformation of alkylnaphthalene lubricating base oil component 1-butylnaphthalene by LC/ESI-MS(/MS). CHEMOSPHERE 2024; 364:143269. [PMID: 39241838 DOI: 10.1016/j.chemosphere.2024.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, 1-butylnaphthalene (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,β-unsaturated aldehydes from alkylated phenols. Until now, α,β-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,β-unsaturated aldehydes, and toxic potential during spilled oil biodegradation.
Collapse
Affiliation(s)
- Miharu Sakai
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| |
Collapse
|
3
|
Yang F, Cheng I, Mamun AA, Zhang L. Measurement constrained emission estimates of alkylated polycyclic aromatic hydrocarbons in the Canadian Athabasca oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123602. [PMID: 38382731 DOI: 10.1016/j.envpol.2024.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons (APAH) are important contaminants of crude oil production and exhibit similar toxicity to their parent compounds. This study developed an emission inventory of APAH in a major oil sands development region of Alberta, Canada, and validated the inventory with ambient concentration measurements through dispersion modeling. The initial estimate of regional total annual emissions of 21 APAH species was 362 tonnes/year in the last decade, of which 309 and 53 tonnes/year were in particle-bound and gas-phase APAH, respectively. Fugitive dust from oil sands mining activities is the primary source of particle-bound APAH, emitting 274 tonnes/year. Other major sources of APAH include point sources (31), tailings ponds (21), anthropogenic fuel consumption from mine fleet (17), and local transportation (13). The group of species with highest emissions was C1-C4 alkylnaphthalenes (53%), followed by C1-C4 alkylphenanthrenes/anthracenes (19%), C1-C4 fluorenes (13%), and C1-C4 fluoranthenes/pyrenes and C1-C4 benz[a]anthracenes/chrysene/triphenylenes (7% each). CALPUFF dispersion modeling was performed using the APAH emissions as model input. The model-predicted annual average ambient APAH concentrations at 17 monitoring sites were 1%-52% (19% on average) lower than the measurements. Inverse dispersion modeling was then applied to adjust APAH emissions higher by 19% for each of the 21 APAH species, which resulted in a revised estimate of APAH emissions to 431 tonnes/year. With the revised emissions as model input, model bias in the predicted ambient concentration was reduced from -19% to -8%. The model results showed the highest concentrations of APAH were near tailings ponds and open mining faces and downwind areas, with total APAH concentrations being higher than 50 ng/m3.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| |
Collapse
|
4
|
Zühlke M, Genin L, Riebe D, Beitz T. Selective ionization of marker molecules in fuels by laser-based ion mobility spectrometry (LIMS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:864-872. [PMID: 38240373 DOI: 10.1039/d3ay01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Careful quality control of complex matrices such as fuels and food is necessary due to the prevalence of counterfeit and pirated goods in global trade. The addition of taggants (indicator substances) to products or their packaging helps to ensure traceability. In order to prevent the mixing of different liquid products, such as different taxed fuels, invisible labelling (marker) can be used to detect illegal activities. This study investigates the qualitative and quantitative analysis of markers in complex fuel matrices using Resonance-Enhanced Multiphoton Ionisation (REMPI) Ion Mobility Spectrometry (IMS). The potential of REMPI as a selective ionisation technique for the detection of markers is highlighted, particularly with respect to minimizing matrix background and the possibility of detection without chromatographic pre-separation. Finding a suitable marker-wavelength combination that provides a suitable marker-to-matrix ratio allows selective ionization of markers while minimising matrix background. Matrix analysis shows that higher excitation wavelengths result in reduced matrix signals, with the low intensities observed at 355 nm for diesel and petrol matrices. Several candidate markers are evaluated based on the criteria of intense signal at 355 nm and non-leachability for the low tax labelling. The analytical performance of selected markers is evaluated, with a focus on the charge transfer reaction (CTR) between markers and matrix components. Our findings demonstrate the potential of REMPI-IMS for marker analysis in fuels without the need for chromatographic pre-separation, providing a promising approach for detecting illegal or fraudulent activities in the supply chain.
Collapse
Affiliation(s)
- Martin Zühlke
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Leonard Genin
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Daniel Riebe
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Toralf Beitz
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Yeh CK, Tzu FM, Chen PY, Shen HC, Yuan CS, Lin C, Pu HP, Ngo HH, Bui XT. Emission characteristics of naphthalene from ship exhausts under global sulfur cap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166172. [PMID: 37562633 DOI: 10.1016/j.scitotenv.2023.166172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The global sulfur limit regulation mandates the use of 0.5 % low sulfur fuel oil (LSFO) to reduce emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM). However, the addition of naphthalene (Nap) to LSFO to stabilize its quality has led to an increase in polycyclic aromatic hydrocarbons (PAHs), with Nap being the main pollutant. This study investigates the effects of Nap in ship exhaust by analyzing the emission concentrations of volatile organic compounds (VOCs) and Nap in the exhaust of 16 ships, including 2 container ships, 6 bulk carriers, 1 tanker, 2 ferries, 3 fishing vessels, and 2 harbor crafts, based on USEPA method TO-15A. The results show that the percentage of Nap emissions in the exhaust gases of the 16 ship engines ranged from 77 % to 97 % of the total volatile organic compound (TVOC). The Nap concentration in the exhaust of fishing vessels, tanker, and harbor craft exceeded the occupational exposure limit of 50,000 μg/m3, with fishing vessels having the highest TVOC and Nap concentrations. The enhanced Nap emission in the air degrades air quality in port cities and poses an obvious potential public health risk. While the benefits of the global sulfur cap are being secured, additional efforts should be made to reduce the undetected side effects. Alternative stabilizers of LSFO should be considered, or Nap emission control should be boosted to mitigate the potential negative impact on harbor air quality.
Collapse
Affiliation(s)
- Chin-Ko Yeh
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Fu-Ming Tzu
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Po-Yang Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Hsueh-Chen Shen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan.
| | - Han-Pin Pu
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
6
|
Carregosa JC, Castiblanco JEB, Santos TM, Prata PS, Santos JM, Wisniewski A. Assessment of the effect of short-term weathering on the molecular-level chemical composition of crude oils in contact with aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95738-95757. [PMID: 37556063 DOI: 10.1007/s11356-023-29148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Multiple studies have focused on the effect of long-term weathering processes on oils after spill events, without considering the chemical compositional changes occurring shortly after the release of oil into the environment. Therefore, the present study provides a broad chemical characterization for understanding of the changes occurring in the chemical compositions of intermediate (°API = 27.0) and heavy (°API = 20.9) oils from the Sergipe-Alagoas basin submitted to two simulated situations, one under marine conditions and the other in a riverine environment. Samples of the oils were collected during the first 72 h of contact with the simulated environments, followed by evaluation of their chemical compositions. SARA fractionation was used to isolate the resins, which were characterized at the molecular level by UHRMS. The evaporation process was highlighted, with the GC-FID chromatographic profiles showing the disappearance of compounds from n-C10 until n-C16, as well as changes in the weathering indexes and pristane + n-C17/phytane + n-C18 ratios for the crude oils submitted to the riverine conditions. Analysis of the resins fraction showed that basic polar compounds underwent little or no alterations during the early stages of weathering. The marine environment was shown to be much less oxidative than the riverine environment. For both environments, a feature highlighted was an increase of acidic oxygenated compounds with the increase of weathering, especially for the crude oil with °API = 27.0.
Collapse
Affiliation(s)
- Jhonattas Carvalho Carregosa
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Julian Eduardo Ballén Castiblanco
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Tarcísio Martins Santos
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Paloma Santana Prata
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Jandyson Machado Santos
- Department of Chemistry, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Alberto Wisniewski
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
7
|
Borecki M, Geca M, Korwin-Pawlowski ML. Automotive Diesel Fuel Internal Stability Testing with the Use of UV and Temperature as Degradation Factors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8548. [PMID: 36500043 PMCID: PMC9741291 DOI: 10.3390/ma15238548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Diesel fuel stability can be considered from many points of view, of which the two considered most important are stability in contact with the environment and internal stability. Fuel stability in touch with the environment is often defined as oxidation stability, of which measurement procedures are well developed. The presented paper shows that fuel's internal stability can also be important. The internal stability of diesel fuel with the local use of thermal and ultraviolet radiation (UV) as degradation factors and fluorescence signals as a probe is presented in this paper. We show that the internal degradation of fuel with temperature use differs from that with UV and simultaneous both factors use. Our study shows that using temperature as a degradation factor introduces significant fluorescence fading. Moreover, the fluorescence signal restores significantly later than the sample stabilizes at room temperature. The novelty proposed based on examination is hybrid degradation and an examination cycle that enables the simultaneous use of degradation factors and fluorescence reading. For this purpose, a dedicated measurement setup of signal control and processing was constructed and programmed. The measurement procedure of the data series for specific wavelength enables calculation of signal shifts that allow the internal stability classification of diesel fuel samples in less than 30 min with the cost of a single disposable capillary probe and one polymer plug. Premium and regular fuel examination results show that internal fuel stability can be related to polycyclic aromatic hydrocarbons (PAH) concentrations and can be modified with dedicated additives.
Collapse
Affiliation(s)
- Michal Borecki
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Mateusz Geca
- Department of Electronics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland
| | | |
Collapse
|
8
|
Lee D, Seo JM, Kooistra K, Lee H. Identification of bilge oil with lubricant: Recent oil spill case studies. ENVIRONMENTAL RESEARCH 2022; 212:113325. [PMID: 35439455 DOI: 10.1016/j.envres.2022.113325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Oil spills have many adverse effects on the marine environment. Bilge oil spills occur frequently in the sea as a result of maritime accidents or illegal discharge. It is difficult to unambiguously identify the specific sources of such spills because bilge oil contains a mixture of fuel oil and lubricant. In this study, bilge oils with different fuel oil/lubricant ratios were prepared and analyzed using a modified version of the CEN/TR methodology (European Committee for Standardization, 2012). As the lubricant content of bilge oil increased, the intensity of the C20-C24 group, which is the commonly-used normalization compound group for fuel oil in the percentage weathering (PW) plot, also changed. Therefore, the mean area of the C15-C18 group, which was affected by the lubricant content, was used instead. Although heavy fuel oil is usually normalized to a hopane, bilge oil with a high lubricant content cannot be analyzed based on a mass spectrometry (MS)-PW plot; thus, heavy fuel oil-based bilge oil was normalized to a phytane in this study. Although hopanes and styrenes are unsuitable comparison compounds for heavy fuel oil-based bilge oil analysis, for light fuel oil-based bilge oil, hopanes and steranes could be applied as diagnostic ratio comparisons when the lubricant peak was clearly detected in the chromatograms of the spilled and suspected oil samples. By applying the CEN/TR methodology according to this approach, the similarities between spilled and suspected oil samples were more easily revealed. In addition, the field applicability of the proposed method was tested for four actual oil spills.
Collapse
Affiliation(s)
- Duwon Lee
- Korea Coast Guard Research Center, Korea Coast Guard Academy, Korea Coast Guard, Cheonan, 31254, South Korea
| | - Jeong Mog Seo
- Korea Coast Guard Research Center, Korea Coast Guard Academy, Korea Coast Guard, Cheonan, 31254, South Korea
| | - Kees Kooistra
- Rijkswaterstaat Laboratory, Ministry of Infrastructure and Water Management, Lelystad, 8224, the Netherlands
| | - Heejin Lee
- Korea Coast Guard Research Center, Korea Coast Guard Academy, Korea Coast Guard, Cheonan, 31254, South Korea.
| |
Collapse
|