1
|
Wang Y, Li X, Wang T, Zhang J, Li L, Zhang Y. Experimental analysis and model prediction of elbow pipe's erosion in water-cooled radiator. Sci Rep 2024; 14:6880. [PMID: 38519531 PMCID: PMC10959968 DOI: 10.1038/s41598-024-57174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
The radiator with heat transfer capability is able to guarantee the stable operation of hydro generator set, while the long-term and continuous scouring on radiator pipes by cooling medium will lead to thinning or even perforation of pipe wall, which triggers wall failure. This paper analyzes and predicts the failure mechanism of radiator's pipe wall, and investigates the effects of water flow velocity, sand content and sand particle size on erosion damage of radiator pipe by establishing a test bench for pipe erosion. The results show that the increase of above parameters will lead to the increasing erosion rate, especially when the sand content is 1%, the velocity is 8 m/s and the sand particle size is 0.85 mm, the erosion damage will be particularly serious. Based on experimental data, BP and LSSVM models are employed to predict the pipe wall failure, and PSO algorithm is used to optimize the two models. The optimized PSO-BP has the highest accuracy with the mean absolute error (MAE) of 0.2070 and the mean absolute percentage error (MAPE) of 4.702%. The findings provide a reference for wall failure analysis of radiator, which is of great significance for unit's safe operation.
Collapse
Affiliation(s)
- Yongfei Wang
- Chn Energy Dadu River Repair & Installation Co., Ltd., Leshan, 614900, China
| | - Xiaofei Li
- Chn Energy Dadu River Repair & Installation Co., Ltd., Leshan, 614900, China
| | - Tong Wang
- Chn Energy Dadu River Repair & Installation Co., Ltd., Leshan, 614900, China
| | - Jian Zhang
- Chn Energy Dadu River Repair & Installation Co., Ltd., Leshan, 614900, China
| | - Longcheng Li
- Institute of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yu Zhang
- Institute of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
2
|
Asri AK, Lee HY, Chen YL, Wong PY, Hsu CY, Chen PC, Lung SCC, Chen YC, Wu CD. A machine learning-based ensemble model for estimating diurnal variations of nitrogen oxide concentrations in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170209. [PMID: 38278267 DOI: 10.1016/j.scitotenv.2024.170209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Air pollution is inextricable from human activity patterns. This is especially true for nitrogen oxide (NOx), a pollutant that exists naturally and also as a result of anthropogenic factors. Assessing exposure by considering diurnal variation is a challenge that has not been widely studied. Incorporating 27 years of data, we attempted to estimate diurnal variations in NOx across Taiwan. We developed a machine learning-based ensemble model that integrated hybrid kriging-LUR, machine-learning, and an ensemble learning approach. Hybrid kriging-LUR was performed to select the most influential predictors, and machine-learning algorithms were applied to improve model performance. The three best machine-learning algorithms were suited and reassessed to develop ensemble learning that was designed to improve model performance. Our ensemble model resulted in estimates of daytime, nighttime, and daily NOx with high explanatory powers (Adj-R2) of 0.93, 0.98, and 0.94, respectively. These explanatory powers increased from the initial model that used only hybrid kriging-LUR. Additionally, the results depicted the temporal variation of NOx, with concentrations higher during the daytime than the nighttime. Regarding spatial variation, the highest NOx concentrations were identified in northern and western Taiwan. Model evaluations confirmed the reliability of the models. This study could serve as a reference for regional planning supporting emission control for environmental and human health.
Collapse
Affiliation(s)
- Aji Kusumaning Asri
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiao-Yun Lee
- Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| | - Yu-Ling Chen
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan.
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taiwan.
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Institute of Environmental Health, School of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
3
|
Ma X, Zou B, Deng J, Gao J, Longley I, Xiao S, Guo B, Wu Y, Xu T, Xu X, Yang X, Wang X, Tan Z, Wang Y, Morawska L, Salmond J. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. ENVIRONMENT INTERNATIONAL 2024; 183:108430. [PMID: 38219544 DOI: 10.1016/j.envint.2024.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans' exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.
Collapse
Affiliation(s)
- Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China; College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Bin Zou
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China.
| | - Jun Deng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jay Gao
- School of Environment, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Ian Longley
- National Institute of Water and Atmospheric Research, Auckland 1010, New Zealand
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bin Guo
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yarui Wu
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tingting Xu
- School of Software Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, China
| | - Xin Xu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Xiaosha Yang
- Shandong Nova Fitness Co., Ltd., Baoji, Shaanxi 722404, China
| | - Xiaoqi Wang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zelei Tan
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yifan Wang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Jennifer Salmond
- School of Environment, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Masood A, Hameed MM, Srivastava A, Pham QB, Ahmad K, Razali SFM, Baowidan SA. Improving PM 2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Sci Rep 2023; 13:21057. [PMID: 38030733 PMCID: PMC10687010 DOI: 10.1038/s41598-023-47492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Fine particulate matter (PM2.5) is a significant air pollutant that drives the most chronic health problems and premature mortality in big metropolitans such as Delhi. In such a context, accurate prediction of PM2.5 concentration is critical for raising public awareness, allowing sensitive populations to plan ahead, and providing governments with information for public health alerts. This study applies a novel hybridization of extreme learning machine (ELM) with a snake optimization algorithm called the ELM-SO model to forecast PM2.5 concentrations. The model has been developed on air quality inputs and meteorological parameters. Furthermore, the ELM-SO hybrid model is compared with individual machine learning models, such as Support Vector Regression (SVR), Random Forest (RF), Extreme Learning Machines (ELM), Gradient Boosting Regressor (GBR), XGBoost, and a deep learning model known as Long Short-Term Memory networks (LSTM), in forecasting PM2.5 concentrations. The study results suggested that ELM-SO exhibited the highest level of predictive performance among the five models, with a testing value of squared correlation coefficient (R2) of 0.928, and root mean square error of 30.325 µg/m3. The study's findings suggest that the ELM-SO technique is a valuable tool for accurately forecasting PM2.5 concentrations and could help advance the field of air quality forecasting. By developing state-of-the-art air pollution prediction models that incorporate ELM-SO, it may be possible to understand better and anticipate the effects of air pollution on human health and the environment.
Collapse
Affiliation(s)
- Adil Masood
- Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India
| | | | - Aman Srivastava
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Quoc Bao Pham
- Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200, Sosnowiec, Poland
| | - Kafeel Ahmad
- Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Siti Fatin Mohd Razali
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Smart and Sustainable Township Research Centre (SUTRA), Universiti Kebangsaan Malaysia (UKM), 43600, UKM Bangi, Selangor, Malaysia
- Green Engineering and Net Zero Solution (GREENZ), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Souad Ahmad Baowidan
- Information Technology Department Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, Al-Ansari N, Marhoon HA, Shahid S, Yaseen ZM. Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters. ENVIRONMENT INTERNATIONAL 2023; 175:107931. [PMID: 37119651 DOI: 10.1016/j.envint.2023.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/18/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
Collapse
Affiliation(s)
- Hai Tao
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China; State Key Laboratory of Public Big Data, Guizhou University, Guizhou, Guiyang 550025, China; Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Ali H Jawad
- Faculty of Applied Sciences, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - A H Shather
- Dep of Computer Technology Engineering, Engineering Technical College, University of Alkitab, Iraq.
| | - Zainab Al-Khafaji
- Department of Building and Construction Technologies Engineering, AL-Mustaqbal University College, Hillah 51001, Iraq.
| | - Tarik A Rashid
- Computer Science and Engineering Department, University of Kurdistan Hewler, Erbil, KR, Iraq.
| | - Mumtaz Ali
- UniSQ College, University of Southern Queensland, QLD 4350, Australia.
| | - Nadhir Al-Ansari
- Dept. of Civil, Environmental and Natural Resources Engineering, Lulea Univ. of Technology, Lulea T3334, Sweden.
| | - Haydar Abdulameer Marhoon
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq; College of Computer Sciences and Information Technology, University of Kerbala, Karbala, Iraq.
| | - Shamsuddin Shahid
- Department of Hydraulics and Hydrology, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudia, Johor, Malaysia.
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
6
|
Islam ARMT, Al Awadh M, Mallick J, Pal SC, Chakraborty R, Fattah MA, Ghose B, Kakoli MKA, Islam MA, Naqvi HR, Bilal M, Elbeltagi A. Estimating ground-level PM 2.5 using subset regression model and machine learning algorithms in Asian megacity, Dhaka, Bangladesh. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1117-1139. [PMID: 37303964 PMCID: PMC9961308 DOI: 10.1007/s11869-023-01329-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) has become a prominent pollutant due to rapid economic development, urbanization, industrialization, and transport activities, which has serious adverse effects on human health and the environment. Many studies have employed traditional statistical models and remote-sensing technologies to estimate PM2.5 concentrations. However, statistical models have shown inconsistency in PM2.5 concentration predictions, while machine learning algorithms have excellent predictive capacity, but little research has been done on the complementary advantages of diverse approaches. The present study proposed the best subset regression model and machine learning approaches, including random tree, additive regression, reduced error pruning tree, and random subspace, to estimate the ground-level PM2.5 concentrations over Dhaka. This study used advanced machine learning algorithms to measure the effects of meteorological factors and air pollutants (NOX, SO2, CO, and O3) on the dynamics of PM2.5 in Dhaka from 2012 to 2020. Results showed that the best subset regression model was well-performed for forecasting PM2.5 concentrations for all sites based on the integration of precipitation, relative humidity, temperature, wind speed, SO2, NOX, and O3. Precipitation, relative humidity, and temperature have negative correlations with PM2.5. The concentration levels of pollutants are much higher at the beginning and end of the year. Random subspace is the optimal model for estimating PM2.5 because it has the least statistical error metrics compared to other models. This study suggests ensemble learning models to estimate PM2.5 concentrations. This study will help quantify ground-level PM2.5 concentration exposure and recommend regional government actions to prevent and regulate PM2.5 air pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s11869-023-01329-w.
Collapse
Affiliation(s)
| | - Mohammed Al Awadh
- Department of Industrial Engineering, College of Engineering, King Khalid University, Abha, 61421 Saudi Arabia
| | - Javed Mallick
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Rabin Chakraborty
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Md. Abdul Fattah
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Bonosri Ghose
- Department of Disaster Management, Begum Rokeya University, Rangpur, Rangpur, 5400 Bangladesh
| | | | - Md. Aminul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Rangpur, 5400 Bangladesh
| | - Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 45003 China
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept., Faculty of Agriculture, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
7
|
Guo Q, He Z, Wang Z. Predicting of Daily PM 2.5 Concentration Employing Wavelet Artificial Neural Networks Based on Meteorological Elements in Shanghai, China. TOXICS 2023; 11:51. [PMID: 36668777 PMCID: PMC9864912 DOI: 10.3390/toxics11010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic sources of fine particulate matter (PM2.5) threaten ecosystem security, human health and sustainable development. The accuracy prediction of daily PM2.5 concentration can give important information for people to reduce their exposure. Artificial neural networks (ANNs) and wavelet-ANNs (WANNs) are used to predict daily PM2.5 concentration in Shanghai. The PM2.5 concentration in Shanghai from 2014 to 2020 decreased by 39.3%. The serious COVID-19 epidemic had an unprecedented effect on PM2.5 concentration in Shanghai. The PM2.5 concentration during the lockdown in 2020 of Shanghai is significantly reduced compared to the period before the lockdown. First, the correlation analysis is utilized to identify the associations between PM2.5 and meteorological elements in Shanghai. Second, by estimating twelve training algorithms and twenty-one network structures for these models, the results show that the optimal input elements for daily PM2.5 concentration predicting models were the PM2.5 from the 3 previous days and fourteen meteorological elements. Finally, the activation function (tansig-purelin) for ANNs and WANNs in Shanghai is better than others in the training, validation and forecasting stages. Considering the correlation coefficients (R) between the PM2.5 in the next day and the input influence factors, the PM2.5 showed the closest relation with the PM2.5 1 day lag and closer relationships with minimum atmospheric temperature, maximum atmospheric pressure, maximum atmospheric temperature, and PM2.5 2 days lag. When Bayesian regularization (trainbr) was used to train, the ANN and WANN models precisely simulated the daily PM2.5 concentration in Shanghai during the training, calibration and predicting stages. It is emphasized that the WANN1 model obtained optimal predicting results in terms of R (0.9316). These results prove that WANNs are adept in daily PM2.5 concentration prediction because they can identify relationships between the input and output factors. Therefore, our research can offer a theoretical basis for air pollution control.
Collapse
Affiliation(s)
- Qingchun Guo
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Zhenfang He
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaosheng Wang
- Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Cui Z, Ren FR, Wei Q, Xi Z. What drives the spatio-temporal distribution and spillover of air quality in China’s three urban agglomerations? Evidence from a two-stage approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.977598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beijing-Tianjin-Hebei urban agglomeration (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) are the most important economic hinterlands in China, offering high levels of economic development. In 2020, their proportion of China’s total GDP reached 39.28%. Over the 5 years of 2014–2018, the annual maximum air quality index (AQI) of the three major urban agglomerations was greater than 100, thus maintaining a grade III light pollution (100 < AQI < 200) in Chinese air standards. This research thus uses a two-stage empirical analysis method to explore the spatial-temporal dispersal physiognomies and spillover effects of air quality in these three major urban agglomerations. In the first stage, the Kriging interpolation method regionally estimates and displays the air quality monitoring sampling data. The results show that the air quality of these three major urban agglomerations is generally good from 2014 to 2018, the area of good air is gradually expanding, the AQI value is constantly decreasing, the air pollution of YRD is shifting from southeast to northwest, and the air pollution of PRD is increasing. The dyeing industry shows a trend of concentration from northwest to south-central. In the second stage, Moran’s I and Spatial Durbin Model (SDM) explore the spatial autocorrelation and spillover effects of air quality related variables. The results show that Moran’s I values in the spatial autocorrelation analysis all pass the significance test. Moreover, public transport, per capita GDP, science and technology expenditure, and the vegetation index all have a significant influence on the spatial dispersal of air quality in the three urban agglomerations, among which the direct effect of public transport and the indirect effect and total effect of the vegetation index are the most significant. Therefore, the China’s three major urban agglomerations (TMUA) ought to adjust the industrial structure, regional coordinated development, and clean technology innovation.
Collapse
|
9
|
Zhang P, Yang L, Ma W, Wang N, Wen F, Liu Q. Spatiotemporal estimation of the PM 2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China. ENVIRONMENTAL RESEARCH 2022; 208:112759. [PMID: 35077716 DOI: 10.1016/j.envres.2022.112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 pollution endangers human health and urban sustainable development. Land use regression (LUR) is one of the most important methods to reveal the temporal and spatial heterogeneity of PM2.5, and the introduction of characteristic variables of geographical factors and the improvement of model construction methods are important research directions for its optimization. However, the complex non-linear correlation between PM2.5 and influencing indicators is always unrecognized by the traditional regression model. The two-dimensional landscape pattern index is difficult to reflect the real information of the surface, and the research accuracy cannot meet the requirements. As such, a novel integrated three-dimensional landscape pattern index (TDLPI) and machine learning extreme gradient boosting (XGBOOST) improved LUR model (LTX) are developed to estimate the spatiotemporal heterogeneity in the fine particle concentration in Shaanxi, China, and health risks of exposure and inhalation of PM2.5 were explored. The LTX model performed well with R2 = 0.88, RMSE of 8.73 μg/m3 and MAE of 5.85 μg/m3. Our findings suggest that integrated three-dimensional landscape pattern information and XGBOOST approaches can accurately estimate annual and seasonal variations of PM2.5 pollution The Guanzhong Plain and northern Shaanxi always feature high PM2.5 values, which exhibit similar distribution trends to those of the observed PM2.5 pollution. This study demonstrated the outstanding performance of the LTX model, which outperforms most models in past researches. On the whole, LTX approach is reliable and can improve the accuracy of pollutant concentration prediction. The health risks of human exposure to fine particles are relatively high in winter. Central part is a high health risk area, while northern area is low. Our study provides a new method for atmospheric pollutants assessing, which is important for LUR model optimization, high-precision PM2.5 pollution prediction and landscape pattern planning. These results can also contribute to human health exposure risks and future epidemiological studies of air pollution.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710075, China.
| | - Lianwei Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wenjie Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Ning Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Feng Wen
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Qi Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; The First Institute of Photogrammetry and Remote Sensing, MNR, Xi'an, 710054, China.
| |
Collapse
|