1
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Adel RM, Helal H, Ahmed Fouad M, Sobhy Abd-Elhalem S. Regulation of miRNA-155-5p ameliorates NETosis in pulmonary fibrosis rat model via inhibiting its target cytokines IL-1β, TNF-α and TGF-β1. Int Immunopharmacol 2024; 127:111456. [PMID: 38159555 DOI: 10.1016/j.intimp.2023.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related inflammatory disease with no cure up till now.It is accompanied by neutrophils infiltration as the main responders to inflammation and fibrosis. Importantly, neutrophils release neutrophil extracellular traps (NETs) through NETosis process. The function of microRNAs during inflammation became of great biological attention. Owing to microRNAs' central role in immune system, microRNA-155-5p (miR-155-5p) is intensely involved in the inflammatory response. Capsaicin (Cap) is a bioactive compound that exhibits antioxidative and anti-inflammatory functions. Recent studies have shown its role in regulation of certain microRNAs' expressions. Accordingly, the present study aims to investigate the effect of miR-155-5p regulation in suppressing NETs production via ameliorating its target inflammatory cytokines, IL-1ß, TNF-α and TGF-ß1, in bleomycin (BLM)-induced pulmonary fibrosis rat model treated by Cap. The obtained results demonstrated that miR-155-5p downregulation was associated with significant decrease in IL-1ß, TNF-α, TGF-β1, which consequently, reduced hydroxyproline (HYP), NETs activity markers as NE and PAD-4, and alleviated CTGF levels in lung tissues of animals treated by Cap. Furthermore, NETosis ultrastructure examination by transmission electron microscope (TEM), MPO immunohistochemical staining and histopathological studies confirmed an abolishment in NETs formation and an improvement in lung tissue architecture in Cap-treated rats. This study concluded that Cap quenched the inflammatory response through interrupting IL-1β, TNF-α and TGF-β1 pathway via modulating miR-155-5p expression. In addition, Cap was able to alleviate pulmonary NETosis markers by restraining NETs activity markers. These findings provide novel insight into the application of Cap-based treatment in ameliorating pulmonary damage in IPF.
Collapse
Affiliation(s)
- Rana Mostafa Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757, Cairo, Egypt.
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Mona Ahmed Fouad
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757, Cairo, Egypt.
| | - Sahar Sobhy Abd-Elhalem
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757, Cairo, Egypt.
| |
Collapse
|
4
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
5
|
Wen J, Deng J, Xiao T, Liu Y, Meng W. Adipose Rheb deficiency promotes miR-182-5p expression via the cAMP/PPARγ signaling pathway. J Genet Genomics 2023; 50:20-26. [PMID: 35550871 DOI: 10.1016/j.jgg.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNAs (miRNAs) in adipocytes plays a critical role in the pathogenesis of obesity. However, the signaling mechanisms regulating miRNAs production in adipose tissue remain largely unclear. Here, we show that adipose tissue-specific knockout of Ras homolog enriched in brain (Rheb), a direct upstream activator of mTOR, increases miR-182-5p level in mouse subcutaneous white adipose tissues. Interestingly, the inhibition of mTOR signaling by rapamycin has no effect on miR-182-5p level in primary subcutaneous white adipocytes, suggesting the presence of a mTOR-independent mechanism regulating Rheb-mediated miR-182-5p expression. Consistent with this view, Rheb-ablation activates the cAMP/PPARγ signaling pathway. In addition, treatment of white adipocytes with pioglitazone, a PPARγ agonist, dramatically upregulates miR-182-5p levels. Our study reveals a unique mechanism by which Rheb regulates miR-182-5p in adipocytes. Given that increasing miR-182-5p in adipose tissue promotes beige fat development, our study also suggests a unique mechanism by which Rheb promotes thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- Jie Wen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiangming Deng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Wen Meng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Zhou Y, Chen J, Yao Z, Gu X. Gastrodin ameliorates Concanavalin A-induced acute hepatitis via the IL6/JAK2/STAT3 pathway. Immunopharmacol Immunotoxicol 2022; 44:925-934. [PMID: 35881007 DOI: 10.1080/08923973.2022.2093741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Gastrodin, the main active ingredient of Gastrodia elata Blume, has been shown to protect against many inflammatory diseases. Our study aimed to investigate the anti-inflammatory role of gastrodin in concanavalin A (ConA)-induced acute hepatitis in mice and to explore its precise mechanism. METHODS C57BL/6 mice were administered with gastrodin (50 or 100mg/kg) for 3 days prior to intravenous injection of ConA to induce acute autoimmune hepatitis (AIH). Serum aminotransferases levels and cytokine levels were measured. Liver tissue histology was conducted to assess the degree of liver injury. Splenocytes pretreated with gastrodin were stimulated with ConA to observe splenocyte proliferation. RESULTS Gastrodin greatly reduced the level of serum aminotransferases, inflammatory cytokine such as IL-6 and TNF-α and histopathological damage in ConA-induced hepatitis. Besides, gastrodin had an inhibitory effect on liver apoptosis, and autophagy. Furthermore, gastrodin inhibited the proliferation of splenocytes in vitro. The protein expression of p-JAK2 and p-STAT3 was markedly affected by gastrodin pretreatment. CONCLUSIONS The present study indicated that gastrodin pretreatment exerted protective effects against ConA-induced acute hepatitis, partly through the inhibition of the IL6/JAK2/STAT3 pathway. Further studies are recommended to determine the potential therapeutic role of gastrodin in acute AIH.
Collapse
Affiliation(s)
- Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Nanjing Medical, University, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Chongming Branch, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Nanjing Medical, University, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhilu Yao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Nanjing Medical, University, Shanghai, China
| | - Xuezhen Gu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Chen K, Shao Y, Li C. miR-137 modulates coelomocytes autophagy by targeting Atg13 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104486. [PMID: 35772590 DOI: 10.1016/j.dci.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
8
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Potential role of microRNAs in selective hepatic insulin resistance: From paradox to the paradigm. Front Endocrinol (Lausanne) 2022; 13:1028846. [PMID: 36479211 PMCID: PMC9720316 DOI: 10.3389/fendo.2022.1028846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | | - Panduka Karunanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
- *Correspondence: Dilan Amila Satharasinghe,
| |
Collapse
|
9
|
Luan P, Zhang H, Zhang X, Hu G, Zhang Z. Cadmium regulates FKBP5 through miR-9-5p and induces carp lymphocyte apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:353-359. [PMID: 34896595 DOI: 10.1016/j.fsi.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental pollutant produced by industrial activities, which has no known physiological benefits to organisms. In our previous study, the transcriptomic profiles of carp head kidney exposed to Cd was analyzed by genomics technique, and confirmed that miRNAs are important in the head kidney injury of carp induced by Cd, but the specific biological mechanism was unclear. In order to further explore the effect of Cd on carp head kidney lymphocyte damage, we established a model of Cd exposure in vitro. The results showed that Cd could increase the expression of Bax (Bcl-2 associated X protein), Caspase9 (Cysteinyl aspartate specific proteinase 9) and Caspase3 (Cysteinyl aspartate specific proteinase 3), inhibit the expression of Bcl-2 (B cell lymphoma/leukemia 2), and induce apoptosis of carp head kidney lymphocytes. In our previous study, we screened the differentially expressed miRNA in Cd-treated lymphocytes by high-throughput sequencing, and found that there was a significant difference in the expression of miR-9-5p. The expression trend of miR-9-5p in the vitro model was the same as that of high-throughput sequencing. We screened the differentially expressed gene FKBP5 (FK506-binding protein 51) in lymphocytes treated with Cd. It was confirmed by double luciferase reporter gene analysis that FKBP5 was the target gene of miR-9-5p. We established the overexpression/knockdown model of miR-9-5p in carp head kidney lymphocyte in vitro. The results showed that miR-9-5p could inhibit the expression of FKBP5, increase the phosphorylation level of Akt, inhibit apoptosis and improve the cell survival rate in carp head kidney lymphocytes. Together, Cd could down-regulate the expression of miR-9-5p, target up-regulate the expression of FKBP5, inhibit the phosphorylation of Akt, and promote the apoptosis of carp head kidney lymphocytes through mitochondrial pathway.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|