1
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Liu FF, Xiong AS. DcMYB62, a transcription factor from carrot, enhanced cadmium tolerance of Arabidopsis by inducing the accumulation of carotenoids and hydrogen sulfide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109114. [PMID: 39250846 DOI: 10.1016/j.plaphy.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) is a significant heavy metal contaminant within the environment, carrying a notable level of toxicity that presents a substantial hazard to both plant and human. Carrot (Daucus carota), a significant root vegetable crop globally, have evolved multiple transcriptional regulatory mechanisms to cope with Cd stress, with a crucial involvement of the myeloblastosis (MYB) transcription factor. In this study, the DcMYB62 gene encoding 288 amino acids, localized in the nucleus and demonstrated transcription activation property, was isolated from carrot (cv. 'Kuroda'). There was a positive relationship observed between the levels of DcMYB62 expression and the accumulation patterns of carotenoids in two distinct carrot cultivars. Further investigation revealed that the expression of DcMYB62 improved Cd tolerance of Arabidopsis by increasing seed germination rate, root length, and overall survival rate. The levels of carotenoids in DcMYB62 transgenic Arabidopsis surpassed those in wild type, accompanied by elevated expression levels of 15-cis-phytoene desaturase, zeta-carotene desaturase, and carotenoid isomerase. Meanwhile, the heterologous expression of DcMYB62 promoted the biosynthesis of abscisic acid (ABA) and hydrogen sulfide (H2S), which in turn suppressed the formation of hydrogen peroxide and superoxide anion, while also stimulating stomatal closure. Furthermore, the heterologous expression of DcMYB62 increased the transcription of genes associated with heavy metal resistance in Arabidopsis, notably nicotianamine synthase. Overall, this study contributes to understanding how DcMYB62 promote Cd stress resistance of plants by regulating the biosynthesis pathways of carotenoids, ABA, and H2S, which offers valuable insights into the regulatory mechanism connecting DcMYBs with Cd stress response of carrot.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Fang-Fang Liu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
2
|
Yu Y, Fotopoulos V, Zhou K, Fernie AR. The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00232-2. [PMID: 39358104 DOI: 10.1016/j.tplants.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a significant risk to both plant growth and human health. To mitigate or lessen Cd toxicity, plants have evolved a wide range of sensing and defense strategies. The gasotransmitter hydrogen sulfide (H2S) is involved in plant responses to Cd stress and exhibits a crucial role in modulating Cd tolerance through a well-orchestrated interaction with several signaling pathways. Here, we review potential experimental approaches to manipulate H2S signals, concluding that research on another gasotransmitter, namely nitric oxide (NO), serves as a good model for research on H2S. Additionally, we discuss potential strategies to leverage H2S-reguated Cd tolerance to improve plant performance under Cd stress.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
3
|
Liu M, Ma L, Tang Y, Yang W, Yang Y, Xi J, Wang X, Zhu W, Xue J, Zhang X, Xu S. Maize Autophagy-Related Protein ZmATG3 Confers Tolerance to Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1637. [PMID: 38931070 PMCID: PMC11207562 DOI: 10.3390/plants13121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stresses pose a major increasing problem for the cultivation of maize. Autophagy plays a vital role in recycling and re-utilizing nutrients and adapting to stress. However, the role of autophagy in the response to abiotic stress in maize has not yet been investigated. Here, ZmATG3, which is essential for ATG8-PE conjugation, was isolated from the maize inbred line B73. The ATG3 sequence was conserved, including the C-terminal domains with HPC and FLKF motifs and the catalytic domain in different species. The promoter of the ZmATG3 gene contained a number of elements involved in responses to environmental stresses or hormones. Heterologous expression of ZmATG3 in yeast promoted the growth of strain under salt, mannitol, and low-nitrogen stress. The expression of ZmATG3 could be altered by various types of abiotic stress (200 mM NaCl, 200 mM mannitol, low N) and exogenous hormones (500 µM ABA). GUS staining analysis of ZmATG3-GUS transgenic Arabidopsis revealed that GUS gene activity increased after abiotic treatment. ZmATG3-overexpressing Arabidopsis plants had higher osmotic and salinity stress tolerance than wild-type plants. Overexpression of ZmATG3 up-regulated the expression of other AtATGs (AtATG3, AtATG5, and AtATG8b) under NaCl, mannitol and LN stress. These findings demonstrate that overexpression of ZmATG3 can improve tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Mengli Liu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Li Ma
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yao Tang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Wangjing Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yuying Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jing Xi
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xuan Wang
- Yangling Qinfeng Seed-Industry Co., Ltd., Yangling 712100, China;
| | - Wanchao Zhu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| |
Collapse
|
4
|
Qiao Z, Sun X, Gong K, Zhan X, Luo K, Fu M, Zhou S, Han Y, He Y, Peng C, Zhang W. Toxicity of decabromodiphenyl ethane on lettuce: Evaluation through growth, oxidative defense, microstructure, and metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122724. [PMID: 37832780 DOI: 10.1016/j.envpol.2023.122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) as the most widely used novel brominated flame retardants (NBFRs), has become a ubiquitous emerging pollutant in the environment. However, its toxic effects on vegetable growth during agricultural production have not been reported. In this study, we investigated the response mechanisms of hydroponic lettuce to DBDPE accumulation, antioxidant stress, cell structure damage, and metabolic pathways after exposure to DBDPE. The concentration of DBDPE in the root of lettuce was significantly higher than that in the aboveground part. DBDPE induced oxidative stress on lettuce, which stimulated the defense of the antioxidative system of lettuce cells, and the cell structure produced slight plasma-wall separation. In terms of metabolism, metabolic pathway disorders were caused, which are mainly manifested as inhibiting amino acid biosynthesis and metabolism-related pathways, interfering with the biosyntheses of amino acids, organic acids, fatty acids, carbohydrates, and other substances, and ultimately manifested as decreased total chlorophyll content and root activity. In turn, metabolic regulation alleviated antioxidant stress. The mechanisms of the antioxidative reaction of lettuce to DBDPE were elucidated by IBR, PLS-PM analysis, and molecular docking. Our results provide a theoretical basis and research necessity for the evaluation of emerging pollutants in agricultural production and the safety of vegetables.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinlin Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Extension and Service Center, Shanghai, 201103, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuyou He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Huo L, Wang H, Wang Q, Gao Y, Xu K, Sun X. Exogenous treatment with melatonin enhances waterlogging tolerance of kiwifruit plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1081787. [PMID: 36570925 PMCID: PMC9780670 DOI: 10.3389/fpls.2022.1081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging stress has an enormous negative impact on the kiwifruit yield and quality. The protective role of exogenous melatonin on water stress has been widely studied, especially in drought stress. However, the research on melatonin-induced waterlogging tolerance is scarce. Here, we found that treatment with exogenous melatonin could effectively alleviate the damage on kiwifruit plants in response to waterlogging treatment. This was accompanied by higher antioxidant activity and lower ROS accumulation in kiwifruit roots during stress period. The detection of changes in amino acid levels of kiwifruit roots during waterlogging stress showed a possible interaction between melatonin and amino acid metabolism, which promoted the tolerance of kiwifruit plants to waterlogging. The higher levels of GABA and Pro in the roots of melatonin-treated kiwifruit plants partly contributed to their improved waterlogging tolerance. In addition, some plant hormones were also involved in the melatonin-mediated waterlogging tolerance, such as the enhancement of ACC accumulation. This study discussed the melatonin-mediated water stress tolerance of plants from the perspective of amino acid metabolism for the first time.
Collapse
Affiliation(s)
| | | | | | | | - Kai Xu
- *Correspondence: Kai Xu, ; Liuqing Huo,
| | | |
Collapse
|
6
|
Qian R, Zhao H, Liang X, Sun N, Zhang N, Lin X, Sun C. Autophagy alleviates indium-induced programmed cell death in wheat roots. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129600. [PMID: 35870211 DOI: 10.1016/j.jhazmat.2022.129600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Indium released in agroecosystems is becoming an emerging plant stressor, causing cellular damage and consequently crop yield losses. Previous studies have focused on indium-induced toxicity in plants, while plant adaptive responses to such emerging metal xenobiotics are poorly understood. Here, we explored the relationship of autophagy and programmed cell death (PCD) in wheat roots under indium stress. Indium treatment significantly decreased root activity and cell viability, and suppressed the length of root epidermal cells in the elongation zones. These symptoms may be associated with indium-induced PCD, as indium-stressed wheat roots displayed condensed and granular nuclei, increased number of TUNEL-positive nuclei, enhanced nuclear DNA fragmentation and caspase-3-like protease activity compared to untreated roots. Accordingly, indium enhanced the expression levels of TaMCA1 and TaMCA4, two major metacaspase genes mediated PCD in wheat plants. The enhanced expression of autophagy genes and formation of autophagosomes indicate that autophagy could regulate metabolic adaptation and repair stress-induced damage in wheat roots. Furthermore, reinforcing autophagy by activator rapamycin significantly decreased the number of TUNEL-positive nuclei and the activity of caspase-3-like protease, whereas inhibition of autophagy by 3-methyladenine aggravated diagnostic markers for PCD. These results together suggest that autophagy suppresses indium-induced PCD in wheat roots.
Collapse
Affiliation(s)
- Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Magen S, Seybold H, Laloum D, Avin-Wittenberg T. Metabolism and autophagy in plants - A perfect match. FEBS Lett 2022; 596:2133-2151. [PMID: 35470431 DOI: 10.1002/1873-3468.14359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is a eukaryotic cellular transport mechanism that delivers intracellular macromolecules, proteins, and even organelles to a lytic organelle (vacuole in yeast and plants/lysosome in animals) for degradation and nutrient recycling. The process is mediated by highly conserved Autophagy-Related (ATG) proteins. In plants, autophagy maintains cellular homeostasis under favorable conditions, guaranteeing normal plant growth and fitness. Severe stress such as nutrient starvation and plant senescence further induce it, thus ensuring plant survival under unfavorable conditions by providing nutrients through the removal of damaged or aged proteins, or organelles. In this article, we examine the interplay between metabolism and autophagy, focusing on the different aspects of this reciprocal relationship. We show that autophagy has a strong influence on a range of metabolic processes, whereas, at the same time, even single metabolites can activate autophagy. We highlight the involvement of ATG genes in metabolism, examine the role of the macronutrients carbon and nitrogen, as well as various micronutrients, and take a closer look at how the interaction between autophagy and metabolism impacts on plant phenotypes and yield.
Collapse
Affiliation(s)
- Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Heike Seybold
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Daniel Laloum
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| |
Collapse
|