1
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Tang C, Qiao X, Jin Y, Yang W, Yu Z, Wang L, Song L. An LPS-induced TNF-α factor involved in immune response of oyster Crassostrea gigas by regulating haemocytes apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109513. [PMID: 38521141 DOI: 10.1016/j.fsi.2024.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
LPS induced TNF-α Factor (LITAF) is a transcription factor widely involving in activation of Tumor Necrosis Factor (TNF) and other cytokines in the inflammatory response. In the present study, a homologue of LITAF with a conserved LITAF domain was identified from the Pacific oyster Crassostrea gigas. The transcripts of CgLITAF were detected in all examined tissues with highest expression in hepatopancrease. The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgLITAF protein in haemocytes. While the mRNA level of CgLITAF changed slightly after LPS stimulation. When the siRNA of CgLITAF was injected to inhibit its expression, the apoptotic level of haemocytes decreased observably after LPS stimulation. Consistently, the transcripts of CgTNF3 and CgTNF4 (LOC105343080, LOC105341146), the apoptotic-related molecules including CgBax, CgCytochrome c, CgCaspase9 and CgCaspase3, were significantly suppressed in the CgLITAF-RNAi oysters. While the mRNA expression level of CgBcl was enhanced significantly in the CgLITAF-RNAi oysters. These results indicated that CgLITAF promoted haemocyte apoptosis by regulating the expression of apoptotic-related factors, suggesting its important role in the immune response of oysters.
Collapse
Affiliation(s)
- Chunyu Tang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
4
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Li J, Nan B, Xu Z, Chang H, Xu S, Ren M, Zhang Y, Wu Y, Chen Y, Guo D, Shen H. Arsenic exposure caused male infertility indicated by testis and sperm metabolic dysfunction in SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166838. [PMID: 37689206 DOI: 10.1016/j.scitotenv.2023.166838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Arsenic containment is one of the most severe environmental problems. It has been reported that arsenic exposure could cause male reproductive damage. However, the evidence chain from sodium arsenite (NaAsO2) exposure to adverse male fertility outcomes has not been completed by molecular events. In this study, adult male rats were exposed to NaAsO2 for eight weeks via drinking water for verifying their reproductive capacity by checking the phenotypes of testis damage, sperm quality, and female pregnancy rate. H&E staining indicated testicular cells had atrophied, and necrosis was observed under transmission electron microscopy. Sperm viability tended to decrease, and sperm malformation increased. Notably, metabolites in the testes and sperm showed substantial disruption, especially sperm metabolites. The pregnancy rate tests showed that arsenic decreased male rats' reproduction, with some adverse outcomes of the increased numbers of unpregnant females. However, the fetal crown-rump length remained unaltered, indicating that the pregnancy rate was impacted by arsenic exposure but not fetal growth. On arsenic toxicometabolomics analysis, docosahexaenoic acid (DHA) in sperm was the clearest metabolic sign to correlate with the unpregnant rate. In summary, arsenic exposure can cause male infertility via the injured sperm, which results in decreased female pregnancy. The DHA information may imply the dietary intervention for improving sperm quality. Although the fetal growth of the successful pregnancy has not been affected, the changes in epigenetic phenotypes carried by sperms still need to be verified.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zehua Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Song Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Miaomiao Ren
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yike Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yaru Wu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yujie Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Dongbei Guo
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
6
|
Liu X, Zhang R, Fan J, Chen Y, Wang H, Ge Y, Liang H, Li W, Liu H, Lv Z, Dou W, Jiang H, Li X. The role of ROS/p38 MAPK/NLRP3 inflammasome cascade in arsenic-induced depression-/anxiety-like behaviors of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115111. [PMID: 37295304 DOI: 10.1016/j.ecoenv.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Arsenic pollution in groundwater remains a serious public health concern around the world. Recent years, arsenic-related neurological and psychiatric disorders have been reported increasingly. However, the exact mechanisms of it remains elusive. In this study, arsenic exposure through drinking water resulted in depression-/anxiety-like behaviors in mice accompanied by oxidative stress and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation in prefrontal cortex (PFC) and hippocampus, two main affected areas found in neurobehavioral disorders. Intervention by NAC, a ROS scavenger, diminished the social behavior impairments in mice as well as ROS generation and NLRP3 inflammasome activation. Further study revealed that it was p38 MAPK signaling pathway that mediated ROS-induced NLRP3 inflammasome activation. Overall, our findings suggested that ROS/p38 MAPK/NLRP3 inflammasome cascade was involved in arsenic-induced depression-/anxiety-disorders. Furthermore, NAC might be a potential therapeutic agent for arsenic-induced depression-/anxiety-disorders by inhibiting both ROS generation and ROS-induced NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xudan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Ruo Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Juanjun Fan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Yao Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huanhuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Yanhong Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huning Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Wanying Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huimin Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Zhengyang Lv
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Wenting Dou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, China.
| | - Xin Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
7
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
8
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
9
|
Arsenic trioxide promotes ERK1/2-mediated phosphorylation and degradation of BIM EL to attenuate apoptosis in BEAS-2B cells. Chem Biol Interact 2023; 369:110304. [PMID: 36509116 DOI: 10.1016/j.cbi.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Inorganic arsenic is highly toxic, widely distributed in the human environment and may result in multisystem diseases and several types of cancers. The BCL-2-interacting mediator of cell death protein (BIM) is a key modulator of the intrinsic apoptosis pathway. Interestingly, in the present study, we found that arsenic trioxide (As2O3) decreased BIMEL levels in human bronchial epithelial cell line BEAS-2B and increased BIMEL levels in human lung carcinoma cell line A549 and mouse Sertoli cell line TM4. Mechanismly, the 26S proteasome inhibitors MG132 and bortezomib could effectively inhibit BIMEL degradation induced by As2O3 in BEAS-2B cells. As2O3 activated extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, but only the ERK1/2 MAPK inhibitor PD98059 blocked BIMEL degradation induced by As2O3. Furthermore, As2O3 induced-phosphorylation of BIMEL at multiple sites was inhibited by ERK1/2 MAPK inhibitor PD98059. Inhibition of As2O3-induced ERK1/2 MAPK phosphorylation increased the levels of BIMEL and cleaved-caspase-3 proteins and decreased BEAS-2B cell viability. As2O3 also markedly mitigated tunicamycin-induced apoptosis of BEAS-2B cells by increasing ERK1/2 phosphorylation and BIMEL degradation. Our results suggest that As2O3-induced activation of the ERK1/2 MAPK pathway increases phosphorylation of BIMEL and promotes BIMEL degradation, thereby alleviating the role of apoptosis in As2O3-induced cell death. This study provides new insights into how to maintain the survival of BEAS-2B cells before malignant transformation induced by high doses of As2O3.
Collapse
|
10
|
Paricalcitol Ameliorates Acute Kidney Injury in Mice by Suppressing Oxidative Stress and Inflammation via Nrf2/HO-1 Signaling. Int J Mol Sci 2023; 24:ijms24020969. [PMID: 36674485 PMCID: PMC9861387 DOI: 10.3390/ijms24020969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Effective and targeted prevention and treatment methods for acute kidney injury (AKI), a common clinical complication, still needs to be explored. Paricalcitol is a biologically active chemical that binds to vitamin D receptors in the body to exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanism of the effect of paricalcitol on AKI remains unclear. The current study uses a paricalcitol pretreatment with a mouse AKI model induced by cisplatin to detect changes in renal function, pathology and ultrastructure. Results showed that paricalcitol significantly improved renal function in mice and reduced inflammatory cell infiltration and mitochondrial damage in renal tissue. Furthermore, paricalcitol markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI mice and increased the levels of glutathione, superoxide dismutase, Catalase and total anti-oxidant capacity. In addition, we detected renal necrosis and inflammation-related proteins in AKI mice by immunofluorescence and Western blot, and found that their levels were markedly decreased after paricalcitol pretreatment. Moreover, paricalcitol promotes nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus and activates the Nrf2/heme oxygenase-1 (HO-1) signaling pathway; while HO-1 is inhibited, the protective effect of paricalcitol on the kidney is attenuated. In conclusion, paricalcitol exerts a renoprotective effect by decreasing renal oxidative injury and inflammation through Nrf2/HO-1 signaling, providing a new insight into AKI prevention.
Collapse
|