1
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
2
|
Liu Q, Li X, Tang Q, Liu X, Wang Y, Song M, Chen X, Pozzolina M, Höfer J, Ma X, Xiao L. Copper-induced oxidative stress inhibits asexual reproduction of Aurelia coerulea polyps. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117112. [PMID: 39332202 DOI: 10.1016/j.ecoenv.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Our research aims to investigate the specific mechanisms by which copper inhibits the asexual proliferation of Aurelia coerulea polyps. METHODS Aurelia coerulea polyps were exposed to various CuSO4 concentrations to study metamorphosis and budding proliferation. Oxidative stress markers (ROS, MDA, CAT, H2O2, T-AOC, SOD) were measured in polyps and early strobilae. Transcriptomic analysis were used to compare differences in gene expression and enrichment pathways between untreated and copper-exposed polyps. Additionally, RT-qPCR was used to analyze the expression of key molecules. Antioxidant L-Ascorbic acid was applied to determine the role of oxidative stress in asexual reproduction of Aurelia coerulea polyps when exposed to copper. RESULTS Copper inhibited strobilization and budding of Aurelia coerulea polyps in a dose-dependent manner, in which oxidative stress was involved. Transcriptomic data suggested that the DNA replication pathway was significantly enriched in early strobilae compared to polyps. However, copper treatment repealed the difference of DNA replication pathway between early strobilae compared and polyps. Transcriptomic data suggested that alanine, aspartate, and glutamate metabolism pathways were enriched in untreated budding polyps compared to copper-exposed polyps. After applying the antioxidant L-Ascorbic acid to copper-exposed polyps, various oxidative indicators changed to different extents, with increases in ROS, MDA, CAT, H2O2, and SOD and a decrease in T-AOC. Further more, the time required for polyps to develop into early strobila was shortened, indicating that the delay in metamorphosis caused by copper exposure was effectively alleviated. And the budding rate increased, indicating that the inhibition of budding proliferation caused by copper exposure was effectively alleviated. The expression of key genes were consist with the transcriptomic sequencing results. CONCLUSION Copper exposure causes oxidative stress resulting in the inhibition of asexual reproduction in Aurelia coerulea polyps, including metamorphosis and budding.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xiangyu Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing 100120, China
| | - Xuecun Liu
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Mingshuai Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoxiao Chen
- School of Marine Science and Ecology, Shanghai Ocean University, Shanghai 201306, China
| | - Marina Pozzolina
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, Genova 16132, Italy
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Xueqi Ma
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Peng Z, Liao Y, Yang W, Liu L. Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. ENVIRONMENT INTERNATIONAL 2024; 192:109017. [PMID: 39317009 DOI: 10.1016/j.envint.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Human exposure to metal(loid)s has dramatically increased over the past five decades, which has triggered public concern worldwide. Recently, gut microbiota has been considered a target for metal(loid)s, and some literature has reviewed the interactions between gut microbiota and heavy metal(loid)s (HMs) with high toxicity. However, whether there is an interaction between gut microbiota and metal(loid)s with essential roles or some normal functions are far from clear to date. Importantly, in addition to traditional probiotics that have been clarified to alleviate the adverse effect of HMs on the body, some novel probiotics, prebiotics, synbiotics, and postbiotics may also exhibit comparable or even better abilities of metal(loid) remediation. In this review, we mainly outline and discuss recent research findings on the metal(loid)-gut microbiota interactions and microbiota-related protective strategies.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
4
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Estevinho MM, Midya V, Cohen-Mekelburg S, Allin KH, Fumery M, Pinho SS, Colombel JF, Agrawal M. Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms. Gut 2024:gutjnl-2024-332523. [PMID: 39179372 DOI: 10.1136/gutjnl-2024-332523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Epidemiological and translational data increasingly implicate environmental pollutants in inflammatory bowel disease (IBD). Indeed, the global incidence of IBD has been rising, particularly in developing countries, in parallel with the increased use of chemicals and synthetic materials in daily life and escalating pollution levels. Recent nationwide and ecological studies have reported associations between agricultural pesticides and IBD, particularly Crohn's disease. Exposure to other chemical categories has also been linked with an increased risk of IBD. To synthesise available data and identify knowledge gaps, we conducted a systematic review of human studies that reported on the impact of environmental pollutants on IBD risk and outcomes. Furthermore, we summarised in vitro data and animal studies investigating mechanisms underlying these associations. The 32 included human studies corroborate that heavy and transition metals, except zinc, air pollutants, per- and polyfluorinated substances, and pesticides are associated with an increased risk of IBD, with exposure to air pollutants being associated with disease-related adverse outcomes as well. The narrative review of preclinical studies suggests several overlapping mechanisms underlying these associations, including increased intestinal permeability, systemic inflammation and dysbiosis. A consolidated understanding of the impact of environmental exposures on IBD risk and outcomes is key to the identification of potentially modifiable risk factors and to inform strategies towards prediction, prevention and mitigation of IBD.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirley Cohen-Mekelburg
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Mathurin Fumery
- Department of Gastroenterology, CHU Amiens and PériTox, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Salome S Pinho
- i3S, Institute for Research and Innovation in Health, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Zhang Z, Zhong Q, Qian Z, Zeng X, Zhang J, Xu X, Hylkema MN, Nolte IM, Snieder H, Huo X. Alterations of gut microbiota and its metabolomics in children with 6PPDQ, PBDE, PCB, and metal(loid) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134862. [PMID: 38885585 DOI: 10.1016/j.jhazmat.2024.134862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
7
|
Wang Y, Guan Q, Jiao W, Li J, Zhao R, Zhang X, Fan W, Wang C. Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18. Biodegradation 2024; 35:551-564. [PMID: 38530488 DOI: 10.1007/s10532-024-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Qi Guan
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rui Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiqian Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
8
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
9
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
10
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
11
|
Zhao P, Yang S, Zheng Y, Zhang L, Li Y, Li J, Wang W, Wang Z. Polylactic acid microplastics have stronger positive effects on the qualitative traits of rice (Oryza sativa L.) than polyethylene microplastics: Evidence from a simulated field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170334. [PMID: 38301794 DOI: 10.1016/j.scitotenv.2024.170334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Soil pollution by microplastics (MPs) from different types of agricultural films has received substantial attention due to its potential effects on crop quality. To date, the effects of different types of MPs on rice grain quality and their underlying molecular mechanisms have not been clarified. In this study, we examined the effects of polyethylene MPs (PE-MPs) and biodegradable polylactic acid MPs (PLA-MPs) on rice grain quality at the environmental level (0.5 %) and evaluated the molecular mechanism through transcriptome analysis. PE- and PLA-MPs increased the number of rice grains per plant by 19.83 % and 24.66 %, respectively, and decreased the rice empty-shell rate by 55.89 % and 26.53 %, respectively. However, PLA-MPs increased the 1000-seed weight by 11.37 %, whereas PE-MPs had no obvious impact in this respect. Furthermore, MP exposure, especially that of PE-MPs, affected the content of mineral elements, fatty acids, and amino acids of rice grains by disturbing the expression of genes related to these functions and metabolism. Our findings provide insights into the response of rice grains to the stress caused by different MPs.
Collapse
Affiliation(s)
- Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Siyu Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yaoying Zheng
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yongli Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Wei Wang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
12
|
Liu P, Liu Y, Cheng J, Xia Y, Yang Y. Copper exposure causes alteration in the intestinal microbiota and metabolites in Takifugu rubripes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116064. [PMID: 38340599 DOI: 10.1016/j.ecoenv.2024.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Copper is an environmental pollutant, and copper in aquatic environments mainly comes from soil and water. It enters the environment through atmospheric deposition, sewage discharge, and industrial production, and enters aquatic organisms, causing toxicity. Takifugu rubripes (T. rubripes) is a marine fish with high economic value. Due to the toxic effects of heavy metals on aquatic organisms such as fish, it can affect the gut community and metabolites of fish. The gut is an important channel for fish to communicate with the outside world and a necessary pathway for the metabolism of nutrients and toxic substances in the fish body. Studies have shown that due to changes in global water emissions and the high sensitivity of aquatic organisms to the environment, copper may pose greater potential hazards to aquatic organisms. Copper poses a greater risk to aquatic species than other heavy metals and metal/metal like pollutants (such as cadmium, lead, mercury, arsenic, etc.) . In order to elucidate the effects of copper exposure on the gut of T. rubripes. In this study, we exposed T. rubripes to 0, 50, 100, or 500 μg/L of copper for three days, the effects of copper exposure on the gut microbiota structure and metabolites of the T. rubripes were investigated using 16 S rRNA gene and metabolomics techniques. The research results indicate that with the increase copper concentration, the intestinal tissue of T. rubripes undergoes significant damage. 16 S rRNA sequencing results show that copper exposure alters the structure and metabolites of intestinal microbiota. Copper exposure of 100 and 500 μg/L inhibited the colonization of the bacterial gut, disrupted the intestinal barrier, and made the fish susceptible to the pathogens. Liquid chromatography-mass spectrometry analysis showed that copper regulated the production of metabolites such as L-histidine, arachidonic acid, and L-glutamic acid, which are related to energy and immunity. Microbiome-metabolome correlation analysis showed that Subdoligranulum, Family_XIII_AD3011_group, and Clostridium_sensu_stricto_1 were the key bacteria for copper ion intervention, and they might up-regulate the levels of metabolites such as indole-3-acetic acid, 3-indoleacrylic acid, and 5-hydroxyindole in the tryptophan metabolism pathway. In summary, our research has demonstrated that copper exposure can cause pathological changes in the intestinal tissue of the T. rubripes. High concentrations of copper ions can affect the colonization of the T. rubripes microbiota in the intestine, damage the fish's immune system, and alter the structure and metabolites of the intestinal microbiota, this can lead to intestinal metabolic dysfunction. providing a reference for the evaluation of the biological toxicity effects of heavy metal elements in the marine environment. This study provides a reference for evaluating the biological toxicity effects of heavy metal elements in marine environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Yanyun Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jianxin Cheng
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Takemura Mariano MV, Paganotto Leandro L, Gomes KK, Dos Santos AB, de Rosso VO, Dafre AL, Farina M, Posser T, Franco JL. Assessing the disparity: comparative toxicity of Copper in zebrafish larvae exposes alarming consequences of permissible concentrations in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:166-184. [PMID: 38073470 DOI: 10.1080/15287394.2023.2290630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.
Collapse
Affiliation(s)
- Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
- Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
14
|
Pesce S, Mamy L, Sanchez W, Artigas J, Bérard A, Betoulle S, Chaumot A, Coutellec MA, Crouzet O, Faburé J, Hedde M, Leboulanger C, Margoum C, Martin-Laurent F, Morin S, Mougin C, Munaron D, Nélieu S, Pelosi C, Leenhardt S. The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32145-z. [PMID: 38324154 DOI: 10.1007/s11356-024-32145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.
Collapse
Affiliation(s)
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Et Environnement (LMGE), 63000, Clermont-Ferrand, France
| | - Annette Bérard
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, 51100, Reims, France
| | | | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro-Agrocampus Ouest, IFREMER, Rennes, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, Service Santé-Agri, 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | | | | | - Fabrice Martin-Laurent
- Agroécologie, Institut Agro, INRAE, Université Bourgogne-Franche-Comté, 21110, Dijon, France
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Sophie Leenhardt
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, 75338, Paris, France
| |
Collapse
|
15
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
16
|
Feng D, Zhao Y, Li W, Li X, Wan J, Wang F. Copper neurotoxicity: Induction of cognitive dysfunction: A review. Medicine (Baltimore) 2023; 102:e36375. [PMID: 38050287 PMCID: PMC10695595 DOI: 10.1097/md.0000000000036375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Cognitive dysfunction occurs mainly in certain diseases and in the pathological process of aging. In addition to this, it is also widespread in patients undergoing anesthesia, surgery, and cancer chemotherapy. Neuroinflammation, oxidative stress, mitochondrial dysfunction, impaired synaptic plasticity, and lack of neurotrophic support are involved in copper-induced cognitive dysfunction. In addition, recent studies have found that copper mediates cuproptosis and adversely affects cognitive function. Cuproptosis is a copper-dependent, lipoylated mitochondrial protein-driven, non-apoptotic mode of regulated cell death, which provides us with new avenues for identifying and treating related diseases. However, the exact mechanism by which cuproptosis induces cognitive decline is still unclear, and this has attracted the interest of many researchers. In this paper, we analyzed the pathological mechanisms and therapeutic targets of copper-associated cognitive decline, mainly in the context of neurodegenerative diseases, psychiatric and psychological disorders, and diabetes mellitus.
Collapse
Affiliation(s)
- Duan Feng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Zhao
- General Surgery Department, Enyang District People’s Hospital, Bazhong City, China
| | - Wei Li
- ICU, Bazhong District People’s Hospital, Bazhong, China
| | - Xuechao Li
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jixiang Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fangjun Wang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
17
|
Zhou F, Qi M, Li J, Huang Y, Chen X, Liu W, Yao G, Meng Q, Zheng T, Wang Z, Ding X. Comparative Transcriptomic Analysis of Largemouth Bass ( Micropterus salmoides) Livers Reveals Response Mechanisms to High Temperatures. Genes (Basel) 2023; 14:2096. [PMID: 38003039 PMCID: PMC10671503 DOI: 10.3390/genes14112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the 'ECM-receptor interaction' pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the 'ECM-receptor interaction' pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS.
Collapse
Affiliation(s)
- Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Yuanfei Huang
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Xiaoming Chen
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Wei Liu
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Gaohua Yao
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Qinghui Meng
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Tianlun Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| |
Collapse
|
18
|
Huang L, Shui X, Wang H, Qiu H, Tao C, Yin H, Wang P. Effects of Bacillus halophilus on growth, intestinal flora and metabolism of Larimichthys crocea. Biochem Biophys Rep 2023; 35:101546. [PMID: 37731665 PMCID: PMC10507136 DOI: 10.1016/j.bbrep.2023.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
The incorporation of probiotics into the diet of large yellow croaker has been demonstrated by several studies to confer partial disease resistance. Bacillus halophilic isolated from the intestinal flora was used to study its effects on performance growth indicators, intestinal tissue structure, intestinal flora and the metabolism of Larimichthys crocea. A total of 180 fishes with an initial body weight of (164.00 ± 54.00) g were fed diets with three different concentrations of Bacillus halophilic: 0 cfu/mL (FC0, control group), 108 cfu/mL (FC8, treatment group), and 1012 cfu/mL (FC12, treatment group). The results showed that there were no significant differences in specific growth rate among all groups (P > 0.05). Compared to the FC0 group, the final body weight and Weight gain rate were significantly higher in FC8 and FC12 groups (P < 0.05). The Survival of the FC12 group significantly improved (P < 0.05). Compared to the FC0 group, crude protein content in muscle of the FC8 group significantly increased (P < 0.05), crude fat content significantly increased in the FC12 group (P < 0.05), crude protein content in whole fish experimental groups significantly increased (P < 0.05), and ash content significantly increased in the FC8 group (P < 0.05). In terms of antioxidant ability, the content of LZM in blood increased significantly in the FC8 group (P < 0.05), GSH content in liver of the FC12 group increased significantly (P < 0.05), while the content of MDA and AKP in blood and liver had no significant difference (P > 0.05). At the level of intestinal structure, there were no significant differences in villus height, crypt depth and goblet cell number between control group and treatment groups (P > 0.05). At the phylum level, Firmicutes was the dominant phylum, and the genus level, Lactobacillus and Bacteroides were the dominant bacteria in FC8 and FC12. A total of 1070 metabolites were identified, among which lipid metabolites accounted for 46.7%. Metabolites were involved in six main ways, mainly related to the metabolism of amino acids and lipids. The correlation analysis between microbes and metabolites showed that the intestinal flora of Larimichthys crocea could promote the synthesis of metabolites, among which Bacteroides and Megamonas could promote the synthesis of beneficial metabolites such as amino acids and vitamins. Through this study, we found that Bacillus halophilic can significantly improve growth, the antioxidant immunity ability and promote the expression of growth related metabolites, with the FC12 group being the better successful.
Collapse
Affiliation(s)
- Ling Huang
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Xiaomei Shui
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Hanying Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Haoyu Qiu
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Chenzhi Tao
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Heng Yin
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Ping Wang
- College of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| |
Collapse
|
19
|
Ma S, Liu Y, Zhao C, Chu P, Yin S, Wang T. Copper induced intestinal inflammation response through oxidative stress induced endoplasmic reticulum stress in Takifugu fasciatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106634. [PMID: 37453186 DOI: 10.1016/j.aquatox.2023.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Copper (Cu) pollution in aquaculture water has seriously threatened the healthy and sustainable development of the aquaculture industry. Recently, many researchers have studied the toxic effects of Cu exposure on fish. However, the relationship between endoplasmic reticulum stress (ERS) and the inflammatory response, as well as its possible mechanisms, remain unclear. Particularly, information related to fish intestines must be expanded. Our study initially investigated the mechanisms underlying intestinal toxicity and inflammation resulting from Cu-induced ERS in vivo and in vitro in Takifugu fasciatus. In vivo study, T. fasciatus were treated with different concentrations (control, 20, and 100 µg/L) of Cu exposure for 28 days, causing intestinal oxidative stress, ERS, inflammatory responses, and histopathological and ultrastructural damage. Transcriptomic data further showed that Cu exposure caused ERS, as well as inflammatory responses, in the intestinal tracts of T. fasciatus. In vitro experiments on the intestinal cells of T. fasciatus showed that Cu exposure treatment (7.5 µg/mL) for 24 h induced ERS and increased mitochondrial numbers and inflammatory responses. In contrast, the addition of 4-phenylbutyric acid (4-PBA) alleviated ERS and inflammatory response in the Cu-exposed group. Furthermore, the reactive oxygen species (ROS) inhibitor, N-Acetyl-l-cysteine (NAC), effectively alleviated Cu-induced ERS. In conclusion, our in vivo and in vitro studies have confirmed that oxidative stress triggers the ERS pathway, which is involved in the intestinal inflammatory response. Our study provides new insights into the relationship among Cu-induced oxidative stress, ERS, and inflammatory responses in fish, as well as for the healthy culture of fish in aqueous environments.
Collapse
Affiliation(s)
- Sisi Ma
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Yuxi Liu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
20
|
Gao Y, Yu T, Wu Y, Huang X, Teng J, Zhao N, Zheng X, Yan F. Bacillus coagulans (Weizmannia coagulans) XY2 attenuates Cu-induced oxidative stress via DAF-16/FoxO and SKN-1/Nrf2 pathways and gut microbiota regulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131741. [PMID: 37270965 DOI: 10.1016/j.jhazmat.2023.131741] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Copper (Cu) pollution has become a serious environmental problem especially in recent decades. In this study, the mechanisms of Bacillus coagulans (Weizmannia coagulans) XY2 against Cu-induced oxidative stress were explored through a dual model. In mice, Cu disturbed microbial community structure, revealing an increased level of Enterorhabdus abundance and decreased levels of Intestinimonas, Faecalibaculu, Ruminococcaceae and Coriobacteriaceae_UCG-002 abundance. Meanwhile, B. coagulans (W. coagulans) XY2 intervention reversed this trend along with alleviated Cu-induced metabolic disturbances by increasing levels of hypotaurine and L-glutamate and declining levels of phosphatidylcholine and phosphatidylethanolamine. In Caenorhabditis elegans, nuclear translocation of DAF-16 and SKN-1 was inhibited by Cu, which in turn suppressed antioxidant-related enzymes activities. XY2 mitigated biotoxicity associated with oxidative damage caused by Cu exposure via regulating DAF-16/FoxO and SKN-1/Nrf2 pathways and intestinal flora to eliminate excess ROS. Our study provides a theoretical basis formulating future strategy of probiotics against heavy metal contamination.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|