1
|
Bai X, Li L, Wu Y, Jie B. Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. Cell Biochem Biophys 2024:10.1007/s12013-024-01551-y. [PMID: 39505796 DOI: 10.1007/s12013-024-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/08/2024]
Abstract
Euphorbia hirta has anti-inflammatory effects in traditional medicine, but its anti-inflammatory mechanism has not been explored at the cellular and molecular levels. To unravel these mechanisms, the main active components in the 65 and 95% ethanol extracts of Euphorbia hirta were first identified by UPLC-Q-TOF/MS. Subsequently, potential anti-inflammatory targets and signaling pathways were predicted using network pharmacology and experimentally validated using RT-PCR and flow cytometry in a lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells. The results revealed flavonoids as the key active components. Network pharmacology uncovered 71 potential anti-inflammation targets, with a protein-protein interaction (PPI) network highlighting 8 cores targets, including IL-6, TNF, NFκB and Nrf2 et al. Furthermore, Euphorbia hirta exerts anti-inflammation effects through modulation of Nrf2 and NF-κB signaling pathways. Specifically, the 65% ethanol extract of Euphorbia hirta (EE65) and quercitrin (HPG) exerted anti-inflammatory activity by inhibiting the expression of inflammatory genes associated with the NF-κB signaling pathway, whereas baicalein (HCS) suppressed cellular inflammation by promoting Nrf2-mediated antioxidant gene expression and enhancing apoptosis of inflammatory cells. The results of the study suggest that Euphorbia hirta has potential for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaolin Bai
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lijun Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuning Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Bai Jie
- College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Li J, Dai X, Hu S, Yang Q, Jing Z, Zhou Y, Jian X. Nickel Induces Pyroptosis via the Nrf2/NLRP3 Pathway in Kidney of Mice. Biol Trace Elem Res 2024; 202:3248-3257. [PMID: 37872361 DOI: 10.1007/s12011-023-03922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Nickel (Ni) is considered a toxic metal, and excessive exposure can cause kidney damage. This study was designed to explore whether nickel chloride (NiCl2) can induce cell pyroptosis and its possible mechanism. Here, we found that NiCl2 treatment could reduce the kidney index and result in kidney damage. Meanwhile, NiCl2 could obviously induce renal pyroptosis, which was characterized by an increase in IL-18, IL-1β, NLRP3, and GSDMD expression. Furthermore, NiCl2 induced pyroptosis through the Nrf2/NLRP3 pathway which featured down-regulated protein and mRNA expression levels of Nrf2 and up-regulated protein and mRNA expression levels of Caspase-1, NLRP3, and GSDMD. In summary, excessive Ni exposure can induce renal cell pyroptosis, ultimately leading to kidney tissue damage and hindering normal development, and its possible mechanism may be due to the inhibition of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jing Li
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621010, People's Republic of China
- Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xiaoyu Dai
- Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Mianyang Central Hospital, Mianyang, Sichuan, 621010, People's Republic of China
| | - Shide Hu
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621010, People's Republic of China
| | - Qiaolan Yang
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621010, People's Republic of China
| | - Zhong Jing
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621010, People's Republic of China
| | - Yalu Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xun Jian
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621010, People's Republic of China.
| |
Collapse
|
3
|
Abdolmaleki A, Karimian A, Khoshnazar SM, Asadi A, Samarein ZA, Smail SW, Bhattacharya D. The role of Nrf2 signaling pathways in nerve damage repair. Toxicol Res (Camb) 2024; 13:tfae080. [PMID: 38799411 PMCID: PMC11116835 DOI: 10.1093/toxres/tfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Imam Khomeini Highway, Mustafa Khomeini Boulevard, Ibn Sina, Kerman, 9986598, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Zahra Akhavi Samarein
- Department of Counseling, Faculty of Education and Psychology, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, 1235897, Iraq
| | - Deepak Bhattacharya
- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, Sri Radha Krishna Raas Mandir, KedarGouri Road, Bhubaneswar, Odisa 751002, India
| |
Collapse
|
4
|
Yang Y, Tian Z, He L, Meng H, Xie X, Yang Z, Wang X, Zhao Y, Huang C. RhoGDIβ inhibition via miR-200c/AUF1/SOX2/miR-137 axis contributed to lncRNA MEG3 downregulation-mediated malignant transformation of human bronchial epithelial cells. Mol Carcinog 2024; 63:977-990. [PMID: 38376344 DOI: 10.1002/mc.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.
Collapse
Affiliation(s)
- Yichao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiong He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Meng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziyi Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinxing Wang
- Laboratory of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Kang YT, Yang WJ, Huang HC, Tang SC, Ko JL. Exposure to nickel chloride induces epigenetic modification on detoxification enzyme glutathione S-transferase M2. ENVIRONMENTAL TOXICOLOGY 2024; 39:1729-1736. [PMID: 38050843 DOI: 10.1002/tox.24055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Nickel (Ni) is a human carcinogen with genotoxic and epigenotoxic effects. Environmental and occupational exposure to Ni increases the risk of cancer and chronic inflammatory diseases. Our previous findings indicate that Ni alters gene expression through epigenetic regulation, specifically impacting E-cadherin and angiopoietin-like 4 (ANGPTL4), involved in epithelial-mesenchymal transition and migration. GST-M2, a member of the glutathione S-transferase (GST) enzyme family, plays a crucial role in cellular defense against oxidative damage and has been increasingly associated with cancer. GST-M2 overexpression inhibits lung cancer invasion and metastasis in vitro and in vivo. Hypermethylation of its promoter in cancer cells reduces gene expression, correlating with poor prognosis in non-small-cell lung cancer patients. The impact of Ni on GST-M2 remains unclear. We will investigate whether nickel exerts regulatory effects on GST-M2 through epigenetic modifications. Additionally, metformin, an antidiabetic drug, is being studied as a chemopreventive agent against nickel-induced damage. Our findings indicate that nickel chloride (NiCl2 ) exposure, both short-term and long-term, represses GST-M2 expression. However, the expression can be restored by demethylation agent 5-aza-2'-deoxycytidine and metformin. NiCl2 promotes hypermethylation of the GST-M2 promoter, as confirmed by methylation-specific PCR and bisulfite sequencing. Additionally, NiCl2 also influences histone acetylation, and metformin counteracts the suppressive effect of NiCl2 on histone H3 expression. Metformin reestablishes the binding of specificity protein 1 to the GST-M2 promoter, which is otherwise disrupted by NiCl2 . These findings elucidate the mechanism by which Ni reduces GST-M2 expression and transcriptional activity, potentially contributing to Ni-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Jung Yang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu Chih Huang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Shi W, Wang J, Li Z, Xu S, Wang J, Zhang L, Yang H. Reprimo (RPRM) mediates neuronal ferroptosis via CREB-Nrf2/SCD1 pathways in radiation-induced brain injury. Free Radic Biol Med 2024; 213:343-358. [PMID: 38272326 DOI: 10.1016/j.freeradbiomed.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Neuronal ferroptosis has been found to contribute to degenerative brain disorders and traumatic and hemorrhagic brain injury, but whether radiation-induced brain injury (RIBI), a critical deleterious effect of cranial radiation therapy for primary and metastatic brain tumors, involves neuronal ferroptosis remains unclear. We have recently discovered that deletion of reprimo (RPRM), a tumor suppressor gene, ameliorates RIBI, in which its protective effect on neurons is one of the underlying mechanisms. In this study, we found that whole brain irradiation (WBI) induced ferroptosis in mouse brain, manifesting as alterations in mitochondrial morphology, iron accumulation, lipid peroxidation and a dramatic reduction in glutathione peroxidase 4 (GPX4) level. Moreover, the hippocampal ferroptosis induced by ionizing irradiation (IR) mainly happened in neurons. Intriguingly, RPRM deletion protected the brain and primary neurons against IR-induced ferroptosis. Mechanistically, RPRM deletion prevented iron accumulation by reversing the significant increase in the expression of iron storage protein ferritin heavy chain (Fth), ferritin light chain (Ftl) and iron importer transferrin receptor 1 (Tfr1), as well as enhancing the expression of iron exporter ferroportin (Fpn) after IR. RPRM deletion also inhibited lipid peroxidation by abolishing the reduction of GPX4 and stearoyl coenzyme A desaturase-1 (SCD1) induced by IR. Importantly, RPRM deletion restored or even increased the expression of nuclear factor, erythroid 2 like 2 (Nrf2) in irradiated neurons. On top of that, compromised cyclic AMP response element (CRE)-binding protein (CREB) signaling was found to be responsible for the down-regulation of Nrf2 and SCD1 after irradiation, specifically, RPRM bound to CREB and promoted its degradation after IR, leading to a reduction of CREB protein level, which in turn down-regulated Nrf2 and SCD1. Thus, RPRM deletion recovered Nrf2 and SCD1 through its impact on CREB. Taken together, neuronal ferroptosis is involved in RIBI, RPRM deletion prevents IR-induced neuronal ferroptosis through restoring CREB-Nrf2/SCD1 pathways.
Collapse
Affiliation(s)
- Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho- Diseases, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China
| | - Jin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Zhaojun Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Shuning Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho- Diseases, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Institute of Radiotherapy & Oncology of Soochow University, Suzhou, Jiangsu Province, 215004, PR China.
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China; Institute of Radiotherapy & Oncology of Soochow University, Suzhou, Jiangsu Province, 215004, PR China.
| |
Collapse
|
7
|
Lv Y, Chen D, Tian X, Xiao J, Xu C, Du L, Li J, Zhou S, Chen Y, Zhuang R, Gong Y, Ying B, Gao-Smith F, Jin S, Gao Y. Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis. J Transl Med 2023; 21:293. [PMID: 37121999 PMCID: PMC10150510 DOI: 10.1186/s12967-023-04111-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/08/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. METHODS A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. RESULTS PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. CONCLUSION This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI.
Collapse
Affiliation(s)
- Ya Lv
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Deming Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinyi Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Congcong Xu
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Linan Du
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiacong Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxiang Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Zhuang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqiang Gong
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Gao-Smith
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
- Birmingham Acute Care Research Center, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Ye Gao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
8
|
Gallorini M, Di Valerio V, Bruno I, Carradori S, Amoroso R, Cataldi A, Ammazzalorso A. Phenylsulfonimide PPARα Antagonists Enhance Nrf2 Activation and Promote Oxidative Stress-Induced Apoptosis/Pyroptosis in MCF7 Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24021316. [PMID: 36674831 PMCID: PMC9864319 DOI: 10.3390/ijms24021316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The NF-E2-related factor 2 transcription factor (Nrf2) orchestrates the basal and stress-inducible activation of a vast array of antioxidant genes. A high amount of reactive oxygen species (ROS) promotes carcinogenesis in cells with defective redox-sensitive signaling factors such as Nrf2. In breast cancer (BC), emerging evidence indicates that increased Nrf2 activity enhances cell metastatic potential. An interconnection between peroxisome proliferator-activated receptors (PPARs) and Nrf2 pathways in cancer has been shown. In this light, newly synthesized PPARα antagonists, namely IB42, IB44, and IB66, were tested in the BC cell line MCF7 in parallel with GW6471 as the reference compound. Our results show that the most promising compound of this phenylsulfonimide series (IB66) is able to decrease MCF7 proliferation by blocking cells at the G2/M checkpoint. The underlying mechanism has been investigated, disclosing a caspase 3/Akt-dependent apoptotic/pyroptotic pathway induced by the increased generation of oxidative stress. Moreover, the involvement of Nrf2 and COX2 in IB66-treated MCF7 cell response has been highlighted. The reported data lay the groundwork for the development of alternative targeted therapy involving the Nrf2/PPARα molecular axis, able to overcome BC cell chemoresistance and cause better clinical outcomes, promoting other forms of programmed cell death, such as pyroptosis.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| | - Valentina Di Valerio
- Department of Medicine and Aging Sciences, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Isabella Bruno
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| |
Collapse
|