1
|
Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, Song Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci (China) 2025; 151:200-210. [PMID: 39481933 DOI: 10.1016/j.jes.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024]
Abstract
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
Collapse
Affiliation(s)
- Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Camerano Spelta Rapini C, Di Berardino C, Peserico A, Capacchietti G, Barboni B. Can Mammalian Reproductive Health Withstand Massive Exposure to Polystyrene Micro- and Nanoplastic Derivatives? A Systematic Review. Int J Mol Sci 2024; 25:12166. [PMID: 39596233 PMCID: PMC11595230 DOI: 10.3390/ijms252212166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The widespread use of plastics has increased environmental pollution by micro- and nanoplastics (MNPs), especially polystyrene micro- and nanoplastics (PS-MNPs). These particles are persistent, bioaccumulative, and linked to endocrine-disrupting toxicity, posing risks to reproductive health. This review examines the effects of PS-MNPs on mammalian reproductive systems, focusing on oxidative stress, inflammation, and hormonal imbalances. A comprehensive search in the Web of Science Core Collection, following PRISMA 2020 guidelines, identified studies on the impact of PS-MNPs on mammalian fertility, including oogenesis, spermatogenesis, and folliculogenesis. An analysis of 194 publications revealed significant reproductive harm, such as reduced ovarian size, depleted follicular reserves, increased apoptosis in somatic cells, and disrupted estrous cycles in females, along with impaired sperm quality and hormonal imbalances in males. These effects were linked to endocrine disruption, oxidative stress, and inflammation, leading to cellular and molecular damage. Further research is urgently needed to understand PS-MNPs toxicity mechanisms, develop interventions, and assess long-term reproductive health impacts across generations, highlighting the need to address these challenges given the growing environmental exposure.
Collapse
Affiliation(s)
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.S.R.); (C.D.B.); (G.C.); (B.B.)
| | | | | |
Collapse
|
3
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
4
|
Zhang Z, Meng J, Tian J, Li N, Chen Z, Yun X, Song D, Li F, Duan S, Zhang L. Reproductive and developmental implications of micro- and nanoplastic internalization: Recent advances and perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117245. [PMID: 39461235 DOI: 10.1016/j.ecoenv.2024.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
A growing body of evidence exhibits the ubiquitous presence and accumulation of micro- and nanoplastics (MNPs) in the air, drinking water, food, and even inside the body, which has raised concerns about their potential impact on reproductive and developmental health. To comprehensively examine the current state of knowledge regarding MNPs-induced reproductive and developmental toxicity, we conducted this systematic review by focusing on the prevalence of MNPs determined in reproductive tissues and their influences on parental reproduction and offspring development. Our findings demonstrate the detection of MNPs in various human reproductive tissues, including semen, placenta, and ovarian follicular fluid, as well as in reproductive tissues of diverse animal species. We show a potential relationship between MNP exposure and increased prevalence of infertility and adverse pregnancy outcomes based on the fact that MNPs exert detrimental effects on reproductive parameters, including sperm quality, ovarian function, and steroidogenesis. In male reproductive systems, MNPs disrupt testicular tissue structure, impair reproductive endocrinology, and reduce sperm quality. In females, MNPs affect ovarian tissue structure and function, interfere with hormone secretion, and impact the endometrium and embryo implantation. Additionally, MNPs cause developmental toxicity in animal models, affecting embryonic development and offspring health, and produce transgenerational effects. Notably, in-depth literature study suggests a crucial role for oxidative stress, inflammation, and epigenetic modification in MNPs-induced toxicity. In conclusion, we integrated systematic knowledge on MNPs-induced reproductive and developmental toxicity, and the systematic finding underscores future study to fully elucidate the risks posed by MNPs to reproductive and developmental health and to inform policy decisions and public health interventions aimed at mitigating their harmful effects.
Collapse
Affiliation(s)
- Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Zhen Chen
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Xiang Yun
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Fei Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China.
| |
Collapse
|
5
|
Ren H, Yin K, Lu X, Liu J, Li D, Liu Z, Zhou H, Xu S, Li H. Synergy between nanoplastics and benzo[a]pyrene promotes senescence by aggravating ferroptosis and impairing mitochondria integrity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174418. [PMID: 38960162 DOI: 10.1016/j.scitotenv.2024.174418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Micro-nano plastics have been reported as important carriers of polycyclic aromatic hydrocarbons (PAHs) for long-distance migration in the environment. However, the combined toxicity from long-term chronic exposure beyond the vehicle-release mechanism remains elusive. In this study, we investigated the synergistic action of Benzo[a]pyrene (BaP) and Polystyrene nanoparticles (PS) in Caenorhabditis elegans (C. elegans) as a combined exposure model with environmental concentrations. We found that the combined exposure to BaP and PS, as opposed to single exposures at low concentrations, significantly shortened the lifespan of C. elegans, leading to the occurrence of multiple senescence phenotypes. Multi-omics data indicated that the combined exposure to BaP and PS is associated with the disruption of glutathione homeostasis. Consequently, the accumulated reactive oxygen species (ROS) cannot be effectively cleared, which is highly correlated with mitochondrial dysfunction. Moreover, the increase in ROS promoted lipid peroxidation in C. elegans and downregulated Ferritin-1 (Ftn-1), resulting in ferroptosis and ultimately accelerating the aging process of C. elegans. Collectively, our study provides a new perspective to explain the long-term compound toxicity caused by BaP and PS at real-world exposure concentrations.
Collapse
Affiliation(s)
- Huasheng Ren
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Kai Yin
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xinhe Lu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiaojiao Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dandan Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zuojun Liu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Basini G, Bertini S, Bussolati S, Zappavigna F, Berni M, Scaltriti E, Ramoni R, Grolli S, Quintavalla F, Grasselli F. The porcine corpus luteum as a model for studying the effects of nanoplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104503. [PMID: 39025424 DOI: 10.1016/j.etap.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Nanoplastics (NPs) affect fertility. We evaluated the effects of NPs treatment on luteal and endothelial cells. We examined crucial markers of growth and redox status. NPs treatment did not induce changes in ATP levels in luteal cells, while it increased (p< 0.05) their proliferation. In endothelial cells, no change in proliferation was detected, while an increase (p<0.05) in ATP levels was observed. The increase of reactive oxygen species, superoxide anion (p<0.05) and nitric oxide (p<0.001) was detected in both cell types, which also showed changes in superoxide dismutase enzyme activity as well as an increase of non-enzymatic antioxidant power (p<0.05). A decrease (p<0.05) in progesterone production as well as an increase of vascular endothelial growth factor A levels were detected (p<0.05). In addition, a dose-dependent accumulation of NPs in endothelial cells was shown, that likely occurred through adhesion and internalization. Results underline potential risk of NPs for corpus luteum functionality.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Simone Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Zappavigna
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, Parma 43126, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, Parma 43126, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Fausto Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
7
|
Xue Y, Cheng X, Ma ZQ, Wang HP, Zhou C, Li J, Zhang DL, Hu LL, Cui YF, Huang J, Luo T, Zheng LP. Polystyrene nanoplastics induce apoptosis, autophagy, and steroidogenesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. J Nanobiotechnology 2024; 22:460. [PMID: 39090717 PMCID: PMC11293132 DOI: 10.1186/s12951-024-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17β-estradiol. CONCLUSIONS This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.
Collapse
Affiliation(s)
- Yue Xue
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiu Cheng
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Zhang-Qiang Ma
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Hou-Peng Wang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Chong Zhou
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jia Li
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Da-Lei Zhang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Liao-Liao Hu
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-Fan Cui
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jian Huang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China.
| | - Li-Ping Zheng
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Wang M, Wu Y, Li G, Xiong Y, Zhang Y, Zhang M. The hidden threat: Unraveling the impact of microplastics on reproductive health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173177. [PMID: 38750730 DOI: 10.1016/j.scitotenv.2024.173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Microplastics, with intricate physical and chemical characteristics, infiltrate the food chain and extensively impact ecosystems. Despite acknowledging the link between environmental pollution and declining fertility, the specific mechanisms affecting reproductive health remain to be elucidated. This review emphasizes the global correlation between microplastics and subfertility, focusing on entry pathways and impacts on ecosystems. Research suggests that microplastics disrupt the neuroendocrine system, influencing sex hormone synthesis through the hypothalamic-pituitary-gonadal (HPG) axis. In the reproductive system, microplastics interfere with the blood-testis barrier, impairing spermatogenesis in males, and causing placental dysfunction, ovarian atrophy, endometrial hyperplasia, and fibrosis in females. Moreover, microplastics potentially affect offspring's lipid metabolism and reproductive functions. However, complex microplastic compositions and detection method limitations impede research progress. Mitigation strategies for reproductive effects, combined with addressing microplastic pollution through sustainable practices, are imperative. This review underscores the urgency of global initiatives and collaborative research to safeguard reproductive health amid escalating microplastic contamination.
Collapse
Affiliation(s)
- Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ying Wu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Guigui Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
9
|
Peng Y, He Q. Reproductive toxicity and related mechanisms of micro(nano)plastics in terrestrial mammals: Review of current evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116505. [PMID: 38810287 DOI: 10.1016/j.ecoenv.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Micro(nano)plastics (MNPs) have been detected in various ecological environments and are widely used due to their stable properties, raising widespread concern about their potential human reproductive toxicity. Currently, infertility affects approximately 10-30% of couples of reproductive age globally. MNPs, as environmental pollutants, have been shown to exhibit reproductive toxicity through intrinsic mechanisms or as carriers of other hazardous substances. Numerous studies have established that MNPs of varying sizes and types can penetrate biological barriers, and enter tissues and even organelles of organisms through four main routes: dietary ingestion, inhalation, dermal contact, and medical interventions. However, historical research on the toxic effects of MNPs on reproduction mainly focused on lower and aquatic species. We conducted an inclusive review of studies involving terrestrial mammals, revealing that MNPs can induce reproductive toxicity via various mechanisms such as oxidative stress, inflammation, fibrosis, apoptosis, autophagy, disruption of intestinal flora, endocrine disruption, endoplasmic reticulum stress, and DNA damage. In terrestrial mammals, reproductive toxicity predominantly manifests as disruption in the blood-testis barrier (BTB), impaired spermatogenesis, sperm malformation, sperm DNA damage, reduced sperm fertilizing capacity, compromised oocyte maturation, impaired follicular growth, granulosa cell apoptosis, diminished ovarian reserve function, uterine and ovarian fibrosis, and endocrine disruption, among other effects. Furthermore, MNPs can traverse the maternal-fetal interface, potentially impacting offspring reproductive health. To gain a comprehensive understanding of the potential reproductive toxicity and underlying mechanisms of MNPs with different sizes, polymer types, shapes, and carried toxins, as well as to explore effective protective interventions for mitigating reproductive damage, further in-depth animal studies, clinical trials, and large-scale epidemiological studies are urgently required.
Collapse
Affiliation(s)
- Yangyang Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| | - Qi He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| |
Collapse
|
10
|
Li X, Cheng X, Wu J, Cai Z, Wang Z, Zhou J. Multi-omics reveals different impact patterns of conventional and biodegradable microplastics on the crop rhizosphere in a biofertilizer environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133709. [PMID: 38330650 DOI: 10.1016/j.jhazmat.2024.133709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) from the incomplete degradation of agricultural mulch can stress the effectiveness of biofertilizers and ultimately affect the rhizosphere environment of crops. Yet, the involved mechanisms are poorly known and robust empirical data is generally lacking. Here, conventional polyethylene (PE) MPs and poly(butylene adipate-co-butylene terephthalate) (PBAT) / poly(lactic acid) (PLA) biodegradable MPs (PBAT-PLA BioMPs) were investigated to assess their potential impact on the rhizosphere environment of Brassica parachinensis in the presence of Bacillus amyloliquefaciens biofertilizer. The results revealed that both MPs caused different levels of inhibited crop both above- and belowground crop biomass (up to 50.11% and 57.09%, respectively), as well as a significant decrease in plant height (up to 48.63% and 25.95%, respectively), along with an imbalance of microbial communities. Transcriptomic analyses showed that PE MPs mainly affected root's vitamin metabolism, whereas PBAT-PLA BioMPs mainly interfered with the lipid's enrichment. Metabolomic analyses further indicated that PE MPs interfered with amino acid synthesis that involved in crops' oxidative stress, and that PBAT-PLA BioMPs mainly affected the pathways associated with root growth. Additionally, PBAT-PLA BioMPs had a bigger ecological negative impact than did PE MPs, as evidenced by more pronounced alterations in root antioxidant abilities, a higher count of identified differential metabolites, more robust interrelationships among rhizosphere parameters, and a more intricate pattern of impacts on rhizosphere metrics. This study highlights the MPs' impact on crop rhizosphere in a biofertilizer environment from a rhizosphere multi-omics perspective, and has theoretical implications for scientific application of biofertilizers.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jialing Wu
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
11
|
Wang W, Zhou C, Ma Z, Zeng L, Wang H, Cheng X, Zhang C, Xue Y, Yuan Y, Li J, Hu L, Huang J, Luo T, Zheng L. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116121. [PMID: 38402792 DOI: 10.1016/j.ecoenv.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 μg/mL) and TCS (15 μM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Wencan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Chong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangqiang Ma
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Lianjie Zeng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Houpeng Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Xiu Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Chenchen Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Yue Xue
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yangyang Yuan
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liaoliao Hu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jian Huang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liping Zheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China.
| |
Collapse
|
12
|
Li J, Liu Y, He J, Wu Z, Wang F, Huang J, Zheng L, Luo T. Progestin and adipoQ receptor 7 (PAQR7) mediate the anti-apoptotic effect of P4 on human granulosa cells and its deficiency reduces ovarian function in female mice. J Ovarian Res 2024; 17:35. [PMID: 38317224 PMCID: PMC10845654 DOI: 10.1186/s13048-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE PAQR7 plays a key role in cell apoptosis as a progesterone membrane receptor. The physiological mechanism of PAQR7 in ovarian function and its anti-apoptotic action in mammals remain poorly understood. METHODS We first added 0.2 µM aminoglutethimide (AG), an inhibitor of endogenous progesterone (P4) secretion, and transfected siPAQR7 co-incubated with P4 in human KGN cells to identify granulosa cell apoptosis, respectively. Additionally, we used Paqr7 knockout (PAQR7 KO) mice to assess the role of PAQR7 in the ovary. RESULTS The PAQR7 deficiency significantly increased apoptosis of KGN cells, and this significant difference disappeared following P4 supplementation. The Paqr7-/- female mice showed a prolonged estrous cycle, reduced follicular growth, increased the number of atresia follicles, and decreased the concentrations of E2 and AMH. The litters, litter sizes, and spontaneous ovulation in the Paqr7-/- mice were significantly decreased compared with the Paqr7+/+ mice. In addition, we also found low expression of PAQR7 in GCs from human follicular fluids of patients diagnosed with decreased ovarian reserve (DOR) and ovaries of mice with a DOR-like phenotype, respectively. CONCLUSIONS The present study has identified that PAQR7 is involved in mouse ovarian function and fertilization potential. One possible mechanism is mediating the anti-apoptotic effect of P4 on GC apoptosis via the BCL-2/BAX/CASPASE-3 signaling pathway. The mechanism underlying the effect of PAQR7 on ovarian development and aging remains to be identified.
Collapse
Affiliation(s)
- Jia Li
- School of Basic Medical science, Nanchang University, Nanchang, Jiangxi, 330031, China
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yiting Liu
- School of Basic Medical science, Nanchang University, Nanchang, Jiangxi, 330031, China
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jinxia He
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Affiliated Maternal and Child Health Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zixuan Wu
- School of Basic Medical science, Nanchang University, Nanchang, Jiangxi, 330031, China
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Fang Wang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jian Huang
- School of Basic Medical science, Nanchang University, Nanchang, Jiangxi, 330031, China
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China.
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China.
| | - Tao Luo
- School of Basic Medical science, Nanchang University, Nanchang, Jiangxi, 330031, China.
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, 330031, China.
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
13
|
Wan S, Wang X, Chen W, Xu Z, Zhao J, Huang W, Wang M, Zhang H. Polystyrene Nanoplastics Activate Autophagy and Suppress Trophoblast Cell Migration/Invasion and Migrasome Formation to Induce Miscarriage. ACS NANO 2024; 18:3733-3751. [PMID: 38252510 DOI: 10.1021/acsnano.3c11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.
Collapse
Affiliation(s)
- Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
14
|
Zurub RE, Cariaco Y, Wade MG, Bainbridge SA. Microplastics exposure: implications for human fertility, pregnancy and child health. Front Endocrinol (Lausanne) 2024; 14:1330396. [PMID: 38239985 PMCID: PMC10794604 DOI: 10.3389/fendo.2023.1330396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Plastics found in our everyday environment are becoming an increasing concern for individual and population-level health, and the extent of exposure and potential toxic effects of these contaminants on numerous human organ systems are becoming clear. Microplastics (MPs), tiny plastic particles, appear to have many of the same biological effects as their plastic precursors and have the compounded effect of potential accumulation in different organs. Recently, microplastic accumulation was observed in the human placenta, raising important questions related to the biological effects of these contaminants on the health of pregnancies and offspring. These concerns are particularly heightened considering the developmental origins of health and disease (DOHaD) framework, which postulates that in utero exposure can programme the lifelong health of the offspring. The current review examines the state of knowledge on this topic and highlights important avenues for future investigation.
Collapse
Affiliation(s)
- Rewa E. Zurub
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael G. Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Chen G, Shan H, Xiong S, Zhao Y, van Gestel CAM, Qiu H, Wang Y. Polystyrene nanoparticle exposure accelerates ovarian cancer development in mice by altering the tumor microenvironment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167592. [PMID: 37802340 DOI: 10.1016/j.scitotenv.2023.167592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Microplastics and nanoplastics are ubiquitous pollutants, widely spread in the living and natural environment. Although their potential impact on human health has been investigated, many doubts remain about their effects in carcinogenic processes. We investigated the potential effects and its molecular mechanisms of polystyrene nanoplastics (PS-NPs) on epithelial ovarian cancer (EOC) using the human EOC cell line HEY as an in vitro cell model and mice as a mammalian model. In vivo exposure to PS-NPs (100 nm; 10 mg/L) via drinking water significantly accelerated EOC tumor growth in mice. In in vitro tests the PS-NPs reduced the relative viability of EOC cells in a dose-dependent manner. Histological analysis showed increased mitotic counts in EOC tumor tissues of PS-NP exposed mice. PS-NP exposure significantly affected gene expression and disturbed many metabolic pathways in both cultured EOC cells and EOC tumor tissue in mice. Gene functional and pathway analysis indicated that immune-related responses and the tumor microenvironment pathway were significantly enriched, which may be attributed to disturbed expression of thrombomodulin (THBD) and its regulators. It may be concluded that PS-NP exposure caused a significant acceleration of EOC tumor growth in mice and a dose-dependent decrease in the relative viability of EOC cells by altering the tumor growth microenvironment. This offers new insights into the mechanisms underlying PS-NP effects on EOC.
Collapse
Affiliation(s)
- Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Huang Shan
- Ren ji Hospital, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Yaqian Zhao
- Ren ji Hospital, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| |
Collapse
|
16
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
17
|
Hong Y, Wu S, Wei G. Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166258. [PMID: 37579804 DOI: 10.1016/j.scitotenv.2023.166258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In recent years, microplastics (MPs) and nanoplastics (NPs) have caused ubiquitous environmental pollution and raised widespread concern about their potential toxicity to human health, especially in the reproductive system. Moreover, infertility affects >15 % of couples worldwide, and the birth rate is decreasing. Environmental factors are some of the most important causes of infertility. However, little is known about the effects of MPs and NPs on the testes and ovaries. These particles can enter the body primarily via ingestion, inhalation, and skin contact, target the reproductive system in a size-dependent manner and disturb germ cell and other somatic cell development. Our study systematically reviewed the adverse effects of plastic particles on reproductive function and offers valuable insights into the different stages of germ cells and the potential mechanisms. Moreover, the synergistic reproductive toxicity of these particles and carried contaminants was summarized. Given the limited research scale, a shift toward innovative technologies and the adoption of multiple omics are recommended for advancing related studies. Further study is needed to explore the reproductive toxicity of MPs and NPs based on their size, polymer type, shape, and carried toxins, establish effective protective measures, and develop precision medicine for targeted reproductive damage.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|