1
|
McHugh SW, Donoghue MJ, Landis MJ. A Phylogenetic Model of Established and Enabled Biome Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610561. [PMID: 39282335 PMCID: PMC11398350 DOI: 10.1101/2024.08.30.610561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Where each species actually lives is distinct from where it could potentially survive and persist. This suggests that it may be important to distinguish established from enabled biome affinities when considering how ancestral species moved and evolved among major habitat types. We introduce a new phylogenetic method, called RFBS, to model how anagenetic and cladogenetic events cause established and enabled biome affinities (or, more generally, other discrete realized versus fundamental niche states) to shift over evolutionary timescale. We provide practical guidelines for how to assign established and enabled biome affinity states to extant taxa, using the flowering plant clade Viburnum as a case study. Through a battery of simulation experiments, we show that RFBS performs well, even when we have realistically imperfect knowledge of enabled biome affinities for most analyzed species. We also show that RFBS reliably discerns established from enabled affinities, with similar accuracy to standard competing models that ignore the existence of enabled biome affinities. Lastly, we apply RFBS to Viburnum to infer ancestral biomes throughout the tree and to highlight instances where repeated shifts between established affinities for warm and cold temperate forest biomes were enabled by a stable and slowly-evolving enabled affinity for both temperate biomes.
Collapse
Affiliation(s)
- Sean W. McHugh
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, Environmental Science Center, New Haven, Connecticut, 06511, USA
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| |
Collapse
|
2
|
Feng X, Peterson AT, Aguirre-López LJ, Burger JR, Chen X, Papeş M. Rethinking ecological niches and geographic distributions in face of pervasive human influence in the Anthropocene. Biol Rev Camb Philos Soc 2024; 99:1481-1503. [PMID: 38597328 DOI: 10.1111/brv.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses to B, A, and M via ecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision-making, but commonly in the context of 'natural' settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human-natural landscape is recognized as the new norm. Therefore, B, A, and M (BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human-influenced BAM (Hi-BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY, 40502, USA
| | - Xin Chen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
3
|
Angeles-Gonzalez LE, Torrejón-Magallanes J, Escamilla-Aké A, Osorio-Olvera L, Avendaño O, Díaz F, Rosas C. Can upwelling regions be potential thermal refugia for marine fishes during climate warming? J Therm Biol 2024; 123:103893. [PMID: 38924931 DOI: 10.1016/j.jtherbio.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Species are expected to migrate to higher latitudes as warming intensifies due to anthropogenic climate change since physiological mechanisms have been adapted to maximize fitness under specific temperatures. However, literature suggests that upwellings could act as thermal refugia under climate warming protecting marine ecosystem diversity. This research aimed to predict the effects of climate warming on commercial and non-commercial fish species reported in official Mexican documents (>200 species) based on their thermal niche to observe if upwellings can act as potential thermal refugia. Present (2000-2014) and Representative Concentration Pathway (6.0 and 8.5) scenarios (2040-2050 and 2090-2100) have been considered for this work. Current and future suitability patterns, species distribution, richness, and turnover were calculated using the minimum volume ellipsoids as algorithm. The results in this study highlight that beyond migration to higher latitudes, upwelling regions could protect marine fishes, although the mechanism differed between the innate characteristics of upwellings. Most modeled species (primarily tropical fishes) found refuge in the tropical upwelling in Northern Yucatan. However, the highest warming scenario overwhelmed this region. In contrast, the Baja California region lies within the Eastern Boundary Upwelling Systems. While the area experiences an increase in suitability, the northern regions have a higher upwelling intensity acting as environmental barriers for many tropical species. Conversely, in the southern regions where upwelling is weaker, species tend to congregate and persist even during elevated warming, according to the turnover analysis. These findings suggest that tropicalization in higher latitudes may not be as straightforward as previously assumed. Nevertheless, climate change affects numerous ecosystem features, such as trophic relationships, phenology, and other environmental variables not considered here. In addition, uncertainty still exists about the assumption of increasing intensity of upwelling systems.
Collapse
Affiliation(s)
- Luis Enrique Angeles-Gonzalez
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE), Carretera Ensenada-Tijuana #3918, 22860, Ensenada, Baja California, Mexico; Cousteau Group, San Juan Lurigancho, Lima, Peru, 15096
| | - Josymar Torrejón-Magallanes
- Cousteau Group, San Juan Lurigancho, Lima, Peru, 15096; Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n Chucuito, Callao, Peru
| | - Angel Escamilla-Aké
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México. 9735 Sisal, Yucatán, Mexico; Centro para el Desarrollo Educativo, Científico, Tecnológico y Ambiental (CEDECTYA A.C.), Calle 21, 97500, Dzidzantún, Yucatán, Mexico
| | - Luis Osorio-Olvera
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04500, Coyoacán, Ciudad de México, Mexico
| | - Otilio Avendaño
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México. 9735 Sisal, Yucatán, Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE), Carretera Ensenada-Tijuana #3918, 22860, Ensenada, Baja California, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México. 9735 Sisal, Yucatán, Mexico.
| |
Collapse
|
4
|
Edwards‐Calma K, Jiménez L, Zenil‐Ferguson R, Heyduk K, Thomas MK, Tribble CM. Conservation applications of niche modeling: Native and naturalized ferns may compete for limited Hawaiian dryland habitat. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11598. [PMID: 38912653 PMCID: PMC11192160 DOI: 10.1002/aps3.11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024]
Abstract
Premise Competition from naturalized species and habitat loss are common threats to native biodiversity and may act synergistically to increase competition for decreasing habitat availability. We use Hawaiian dryland ferns as a model for the interactions between land-use change and competition from naturalized species in determining habitat availability. Methods We used fine-resolution climatic variables and carefully curated occurrence data from herbaria and community science repositories to estimate the distributions of Hawaiian dryland ferns. We quantified the degree to which naturalized ferns tend to occupy areas suitable for native species and mapped the remaining available habitat given land-use change. Results Of all native species, Doryopteris angelica had the lowest percentage of occurrences of naturalized species in its suitable area while D. decora had the highest. However, all Doryopteris spp. had a higher percentage overlap, while Pellaea ternifolia had a lower percentage overlap, than expected by chance. Doryopteris decora and D. decipiens had the lowest proportions (<20%) of suitable area covering native habitat. Discussion Areas characterized by shared environmental preferences of native and naturalized ferns may decrease due to human development and fallowed agricultural lands. Our study demonstrates the value of place-based application of a recently developed correlative ecological niche modeling approach for conservation risk assessment in a rapidly changing and urbanized island ecosystem.
Collapse
Affiliation(s)
| | - Laura Jiménez
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻi 96822USA
- Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile
| | | | - Karolina Heyduk
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻi 96822USA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrs06269ConnecticutUSA
| | - Miles K. Thomas
- Herbarium Pacificum, Bernice Pauahi Bishop MuseumHonoluluHawaiʻi 96813USA
| | - Carrie M. Tribble
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻi 96822USA
| |
Collapse
|
5
|
Cooper JC. Ecological niche divergence or ecological niche partitioning in a widespread Neotropical bird lineage. PeerJ 2024; 12:e17345. [PMID: 38708346 PMCID: PMC11067898 DOI: 10.7717/peerj.17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Ecological niche divergence is generally considered to be a facet of evolution that may accompany geographic isolation and diversification in allopatry, contributing to species' evolutionary distinctiveness through time. The null expectation for any two diverging species in geographic isolation is that of niche conservatism, wherein populations do not rapidly shift to or adapt to novel environments. Here, I test ecological niche divergence for a widespread, pan-American lineage, the avian genus of martins (Progne). The genus Progne includes migrant and resident species, as well as geographically restricted taxa and widespread, intercontinentally distributed taxa, thus providing an ideal group in which to study the nature of niche divergence within a broad geographic mosaic. I obtained distributional information for the genus from publicly available databases and created ecological niche models for each species to create pairwise comparisons of environmental space. I combined these data with the most up-to-date phylogeny of Progne currently available to examine the patterns of niche evolution within the genus. I found limited evidence for niche divergence across the breeding distributions of Progne, and much stronger support for niche conservatism with patterns of niche partitioning. The ancestral Progne had a relatively broad ecological niche, like extant basal Progne lineages, and several geographically localized descendant species occupy only portions of this larger ancestral niche. I recovered strong evidence of breeding niche divergence for four of 36 taxon pairs but only one of these divergent pairs involved two widespread species (Southern Martin P. elegans vs. Gray-breasted Martin P. chalybea). Potential niche expansion from the ancestral species was observed in the most wide-ranging present-day species, namely the North American Purple Martin P. subis and P. chalybea. I analyzed populations of P. subis separately, as a microcosm of Progne evolution, and again found only limited evidence of niche divergence. This study adds to the mounting evidence for niche conservatism as a dominant feature of diversifying lineages, and sheds light on the ways in which apparently divergent niches may arise through allopatry while not involving any true niche shifts through evolutionary time. Even taxa that appear unique in terms of habitat or behavior may not be diversifying with respect to their ecological niches, but merely partitioning ancestral niches among descendant taxa.
Collapse
Affiliation(s)
- Jacob C. Cooper
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States of America
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
- Negaunee Integrative Research Center, Field Museum, Chicago, IL, United States of America
| |
Collapse
|
6
|
Fadda LA, Osorio-Olvera L, Ibarra-Juárez LA, Soberón J, Lira-Noriega A. Predicting the dispersal and invasion dynamics of ambrosia beetles through demographic reconstruction and process-explicit modeling. Sci Rep 2024; 14:7561. [PMID: 38555364 PMCID: PMC10981740 DOI: 10.1038/s41598-024-57590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.
Collapse
Affiliation(s)
- Lucas A Fadda
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México.
- Laboratorio Nacional Conahcyt de Biología del Cambio Climático, CONAHCyT, Ciudad de México, México.
| | - Luis A Ibarra-Juárez
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México
| | - Jorge Soberón
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Andrés Lira-Noriega
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México.
| |
Collapse
|
7
|
Wefferling KM, Castro M, Castro S, Holmlund H, Loureiro J, Rothfels CJ, Schuettpelz E. Polyploid goldback and silverback ferns (Pentagramma) occupy a wider, colder, and wetter bioclimatic niche than diploid counterparts. AMERICAN JOURNAL OF BOTANY 2024; 111:e16305. [PMID: 38517199 DOI: 10.1002/ajb2.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
PREMISE The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.
Collapse
Affiliation(s)
- Keir M Wefferling
- Department of Biology, Gary A. Fewless Herbarium, Cofrin Center for Biodiversity, University of Wisconsin-Green Bay, Green Bay, 54311, Wisconsin, USA
| | - Mariana Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Helen Holmlund
- Natural Science Division, Pepperdine University, Malibu, 90263, California, USA
| | - João Loureiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Carl J Rothfels
- Department of Biology, Ecology Center, and Intermountain Herbarium, Utah State University, Logan, 84322, Utah, USA
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 20560, DC, USA
| |
Collapse
|
8
|
Giakoumis M, Pinilla-Buitrago GE, Musher LJ, Wares JP, Baird SJE, Hickerson MJ. Evidence of introgression, ecological divergence and adaptation in Asterias sea stars. Mol Ecol 2023; 32:5541-5557. [PMID: 37691604 DOI: 10.1111/mec.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.
Collapse
Affiliation(s)
- Melina Giakoumis
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| | - Gonzalo E Pinilla-Buitrago
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
| | - Lukas J Musher
- The Academy of Natural Sciences of Drexel University, Pennsylvania, Philadelphia, USA
| | - John P Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, Georgia, Athens, USA
| | - Stuart J E Baird
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Michael J Hickerson
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| |
Collapse
|
9
|
Romero-Alvarez D, Escobar LE, Auguste AJ, Del Valle SY, Manore CA. Transmission risk of Oropouche fever across the Americas. Infect Dis Poverty 2023; 12:47. [PMID: 37149619 PMCID: PMC10163756 DOI: 10.1186/s40249-023-01091-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Vector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. METHODS To better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. RESULTS Models based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. CONCLUSIONS Hotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection.
Collapse
Affiliation(s)
- Daniel Romero-Alvarez
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66044, USA.
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA.
- OneHealth Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador.
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Albert J Auguste
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Entomology, Fralin Life Science Institute, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sara Y Del Valle
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carrie A Manore
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
10
|
Strubbe D, Jiménez L, Barbosa AM, Davis AJS, Lens L, Rahbek C. Mechanistic models project bird invasions with accuracy. Nat Commun 2023; 14:2520. [PMID: 37130835 PMCID: PMC10154326 DOI: 10.1038/s41467-023-38329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species' fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species.
Collapse
Affiliation(s)
- Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Laura Jiménez
- School of Life Sciences, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Honolulu, HI, 96822, USA
- Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Santiago, Chile
| | - A Márcia Barbosa
- CICGE-Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| | - Amy J S Davis
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
11
|
de Silva S, Wu T, Nyhus P, Weaver A, Thieme A, Johnson J, Wadey J, Mossbrucker A, Vu T, Neang T, Chen BS, Songer M, Leimgruber P. Land-use change is associated with multi-century loss of elephant ecosystems in Asia. Sci Rep 2023; 13:5996. [PMID: 37105960 PMCID: PMC10140153 DOI: 10.1038/s41598-023-30650-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding historic patterns of land use and land cover change across large temporal and spatial scales is critical for developing effective biodiversity conservation management and policy. We quantify the extent and fragmentation of suitable habitat across the continental range of Asian elephants (Elephas maximus) based on present-day occurrence data and land-use variables between 850 and 2015 A.D. We found that following centuries of relative stability, over 64% (3.36 million km2) of suitable elephant habitat across Asia was lost since the year 1700, coincident with colonial-era land-use practices in South Asia and subsequent agricultural intensification in Southeast Asia. Average patch size dropped 83% from approximately 99,000-16,000 km2 and the area occupied by the largest patch decreased 83% from ~ 4 million km2 (45% of area) to 54,000 km2 (~ 7.5% of area). Whereas 100% of the area within 100 km of the current elephant range could have been considered suitable habitat in the year 1700, over half was unsuitable by 2015, driving potential conflict with people. These losses reflect long-term decline of non-forested ecosystems, exceeding estimates of deforestation within this century. Societies must consider ecological histories in addition to proximate threats to develop more just and sustainable land-use and conservation strategies.
Collapse
Affiliation(s)
- Shermin de Silva
- Trunks and Leaves Inc., 82 Wendell Avenue, STE 100, Pittsfield, MA, 01201, USA.
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA.
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA, USA.
| | - Tiffany Wu
- Environmental Studies Program, Colby College, Waterville, ME, USA
| | - Philip Nyhus
- Environmental Studies Program, Colby College, Waterville, ME, USA
| | - Ashley Weaver
- Environmental Studies Program, Colby College, Waterville, ME, USA
| | - Alison Thieme
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
- United States Department of Agriculture Agricultural Research Service, Beltsville, MD, USA
| | - Josiah Johnson
- Environmental Studies Program, Colby College, Waterville, ME, USA
| | - Jamie Wadey
- School of Environmental and Geographical Science, University of Nottingham Malaysia, Kuala Lumpur, Malaysia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | | | - Thinh Vu
- Department of Wildlife Management, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Thy Neang
- Wild Earth Allies, Phnom Penh, Cambodia
| | | | - Melissa Songer
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Peter Leimgruber
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| |
Collapse
|
12
|
Valle NG, Simões MVP. New Distributional Records and Characterization of the Climatic Niche of Lepturges ( Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? INSECTS 2022; 13:1069. [PMID: 36421972 PMCID: PMC9694854 DOI: 10.3390/insects13111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
A growing number of cases of the spread and establishment of non-native species outside their previously known ranges has been reported in recent years. Here we report new distributional records of Lepturges (Lepturges) limpidus Bates, 1872 (Cerambycidae) from Argentina and investigate whether these records could represent established populations. We constructed ellipsoid envelope models to characterize climatic niches of L. limpidus, identified areas of climatic suitability, investigated the status of new records as climatic outliers, and evaluated its dependency on its known hostplant as a limiting factor for the beetle distribution. Results indicate widespread climatic suitability in the Neotropical Region, and new records are not outliers with regard to the climatic profile of L. limpidus. Association with its known hostplant is non-dependent, indicating that the species might utilize different hosts plants. New records likely represent established populations, but targeted surveys should be carried out to detect new arrivals and enable the installation of mitigation and control measures.
Collapse
Affiliation(s)
- Néstor G. Valle
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5470, Corrientes W3400 BCH, Argentina
| | - Marianna V. P. Simões
- Senckenberg Deutsches Entomologisches Institut, Eberswalder Straße 90, 15374 Müncheberg, Germany
| |
Collapse
|
13
|
Khanal S, Timilsina R, Behroozian M, Peterson AT, Poudel M, Alwar MSS, Wijewickrama T, Osorio-Olvera L. Potential impact of climate change on the distribution and conservation status of Pterocarpus marsupium, a Near Threatened South Asian medicinal tree species. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Robles-Fernández ÁL, Santiago-Alarcon D, Lira-Noriega A. Wildlife susceptibility to infectious diseases at global scales. Proc Natl Acad Sci U S A 2022; 119:e2122851119. [PMID: 35994656 PMCID: PMC9436312 DOI: 10.1073/pnas.2122851119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Disease transmission prediction across wildlife is crucial for risk assessment of emerging infectious diseases. Susceptibility of host species to pathogens is influenced by the geographic, environmental, and phylogenetic context of the specific system under study. We used machine learning to analyze how such variables influence pathogen incidence for multihost pathogen assemblages, including one of direct transmission (coronaviruses and bats) and two vector-borne systems (West Nile Virus [WNV] and birds, and malaria and birds). Here we show that this methodology is able to provide reliable global spatial susceptibility predictions for the studied host-pathogen systems, even when using a small amount of incidence information (i.e., [Formula: see text] of information in a database). We found that avian malaria was mostly affected by environmental factors and by an interaction between phylogeny and geography, and WNV susceptibility was mostly influenced by phylogeny and by the interaction between geographic and environmental distances, whereas coronavirus susceptibility was mostly affected by geography. This approach will help to direct surveillance and field efforts providing cost-effective decisions on where to invest limited resources.
Collapse
Affiliation(s)
- Ángel L. Robles-Fernández
- Facultad de Física, Universidad Veracruzana, 91000 Xalapa, México
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | | | - Andrés Lira-Noriega
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., 91073 Xalapa, México
| |
Collapse
|
15
|
Escoriza D, Ben Hassine J. Niche diversification of Mediterranean and southwestern Asian tortoises. PeerJ 2022; 10:e13702. [PMID: 35846890 PMCID: PMC9281595 DOI: 10.7717/peerj.13702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Tortoises of the genus Testudo are widely distributed throughout the Mediterranean region and southwestern Asia. However, the evolutionary mechanisms of diversification in this genus are still poorly understood. Methods In this study, we assessed the evolutionary patterns in the climate niches of five species and 11 subspecies of the genus Testudo using ecological niche models and evaluated the niche overlap based on species phylogenetic distances. Results The ecological models indicated that most species differ in their climate niches, but show overlap, with gradual transitions at range boundaries. As expected, the ecological divergence among subspecies was lower than that among species. Evaluation of the phylogenetic signal indicated that climate niches have been weakly conserved, but sister species also show high evolutionary divergence.
Collapse
|
16
|
Matthiopoulos J. Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jason Matthiopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine. University of Glasgow. Glasgow. G12 8QQ Scotland
| |
Collapse
|
17
|
Jiménez L, Soberón J. Estimating the fundamental niche: Accounting for the uneven availability of existing climates in the calibration area. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Ochoa-Zavala M, Osorio-Olvera L, Cerón-Souza I, Rivera-Ocasio E, Jiménez-Lobato V, Núñez-Farfán J. Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2021.795365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The niche-centroid hypothesis states that populations that are distributed near the centroid of the species' ecological niche will have higher fitness-related attributes, such as population abundance and genetic diversity than populations near the edges of the niche. Empirical evidence based on abundance and, more recently, genetic diversity data support this hypothesis. However, there are few studies that test this hypothesis in coastal species, such as mangroves. Here, we focused on the black mangrove Avicennia germinans. We combined ecological, heterozygosity, and allelic richness information from 1,419 individuals distributed in 40 populations with three main goals: (1) test the relationship between distance to the niche centroid and genetic diversity, (2) determine the set of environmental variables that best explain heterozygosity and allelic richness, and (3) predict the spatial variation in genetic diversity throughout most of the species' natural geographic range. We found a strong correlation between the distance to the niche centroid and both observed heterozygosity (Ho; ρ2 = 0.67 P < 0.05) and expected heterozygosity (He; ρ2 = 0.65, P < 0.05). The niche variables that best explained geographic variation in genetic diversity were soil type and precipitation seasonality. This suggests that these environmental variables influence mangrove growth and establishment, indirectly impacting standing genetic variation. We also predicted the spatial heterozygosity of A. germinans across its natural geographic range in the Americas using regression model coefficients. They showed significant power in predicting the observed data (R2 = 0.65 for Ho; R2 = 0.60 for He), even when we considered independent data sets (R2= 0.28 for Ho; R2 = 0.25 for He). Using this approach, several genetic diversity estimates can be implemented and may take advantage of population genomics to improve genetic diversity predictions. We conclude that the level of genetic diversity in A. germinans is in agreement with expectations of the niche-centroid hypothesis, namely that the highest heterozygosity and allelic richness (the basic genetic units for adaptation) are higher at locations of high environmental suitability. This shows that this approach is a potentially powerful tool in the conservation and management of this species, including for modelling changes in the face of climate change.
Collapse
|
19
|
Prates I, Singhal S, Marchán-Rivadeneira MR, Grundler MR, Moritz C, Donnellan SC, Rabosky DL. Genetic and Ecogeographic Controls on Species Cohesion in Australia’s Most Diverse Lizard Radiation. Am Nat 2022; 199:E57-E75. [DOI: 10.1086/717411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sonal Singhal
- Department of Biology, California State University–Dominguez Hills, Carson, California 90747
| | | | - Maggie R. Grundler
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Camberra, Australian Capital Territory, Australia
| | | | - Daniel L. Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
20
|
Lu M, Winner K, Jetz W. A unifying framework for quantifying and comparing n‐dimensional hypervolumes. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muyang Lu
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| | - Kevin Winner
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| | - Walter Jetz
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| |
Collapse
|
21
|
Cordier JM, Rojas-Soto O, Semhan R, Abdala CS, Nori J. Out of sight, out of mind: Phylogenetic and taxonomic gaps imply great underestimations of the species’ vulnerability to global climate change. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Escobar LE. Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Front Vet Sci 2020; 7:519059. [PMID: 33195507 PMCID: PMC7641643 DOI: 10.3389/fvets.2020.519059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Most infectious diseases in animals are not distributed randomly. Instead, diseases in livestock and wildlife are predictable in terms of the geography, time, and species affected. Ecological niche modeling approaches have been crucial to the advancement of our understanding of diversity and diseases distributions. This contribution is an introductory overview to the field of distributional ecology, with emphasis on its application for spatial epidemiology. A new, revised modeling framework is proposed for more detailed and replicable models that account for both the biology of the disease to be modeled and the uncertainty of the data available. Considering that most disease systems need at least two organisms interacting (i.e., host and pathogen), biotic interactions lie at the core of the pathogen's ecological niche. As a result, neglecting interacting organisms in pathogen dynamics (e.g., maintenance, reproduction, and transmission) may limit efforts to forecast disease distributions in veterinary epidemiology. Although limitations of ecological niche modeling are noted, it is clear that the application and value of ecological niche modeling to epidemiology will increase in the future. Potential research lines include the examination of the effects of biotic variables on model performance, assessments of protocols for model calibration in disease systems, and new tools and metrics for robust model evaluation. Epidemiologists aiming to employ ecological niche modeling theory and methods to reconstruct and forecast epidemics should familiarize themselves with ecological literature and must consider multidisciplinary collaborations including veterinarians to develop biologically sound, statistically robust analyses. This review attempts to increase the use of tools from ecology in disease mapping.
Collapse
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
23
|
Osorio‐Olvera L, Lira‐Noriega A, Soberón J, Peterson AT, Falconi M, Contreras‐Díaz RG, Martínez‐Meyer E, Barve V, Barve N. ntbox
: An
r
package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13452] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luis Osorio‐Olvera
- Departamento de Matemáticas Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
- Biodiversity Institute University of Kansas Lawrence KS USA
| | - Andrés Lira‐Noriega
- CONACyT Research Fellow, Red de Estudios Moleculares Avanzados‐Instituto de Ecología Veracruz México
| | - Jorge Soberón
- Biodiversity Institute University of Kansas Lawrence KS USA
| | | | - Manuel Falconi
- Departamento de Matemáticas Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
| | - Rusby G. Contreras‐Díaz
- Departamento de Matemáticas Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, Circuito de Posgrados Ciudad Universitaria Ciudad de México México
| | - Enrique Martínez‐Meyer
- Instituto de Biología Universidad Nacional Autónoma de México México City México
- Centro del Cambio Global y la Sustentabilidad en el Sureste A.C. Villahermosa Mexico
| | - Vijay Barve
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Narayani Barve
- Florida Museum of Natural History University of Florida Gainesville FL USA
| |
Collapse
|
24
|
Osorio-Olvera L, Yañez-Arenas C, Martínez-Meyer E, Peterson AT. Relationships between population densities and niche-centroid distances in North American birds. Ecol Lett 2020; 23:555-564. [PMID: 31944513 DOI: 10.1111/ele.13453] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023]
Abstract
Correlational ecological niche models have seen intensive use and exploration as a means of estimating the limits of actual and potential geographic distributions of species, yet their application to explaining geographic abundance patterns has been debated. We developed a detailed test of this latter possibility based on the North American Breeding Bird Survey. Correlations between abundances and niche-centroid distances were mostly negative, as per expectations of niche theory and the abundant niche-centre relationship. The negative relationships were not distributed randomly among species: terrestrial, non-migratory, small-bodied, small-niche-breadth and restricted-range species had the strongest negative associations. Distances to niche centroids as estimated from correlational analyses of presence-only data thus offer a unique means by which to infer geographic abundance patterns, which otherwise are enormously difficult to characterise.
Collapse
Affiliation(s)
- Luis Osorio-Olvera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, Mexico
| | - Carlos Yañez-Arenas
- Laboratorio de Ecología Geográfica, Unidad de Biología de la Conservación, Parque Científico Tecnológico de Yucatán, Universidad Nacional Autónoma de México. Mérida, 97302, Merida, Mexico
| | - Enrique Martínez-Meyer
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Centro del Cambio Global y la Sustentabilidad, A.C, Villahermosa, Mexico, 86080, Mexico
| | | |
Collapse
|
25
|
Environmental ranges estimated from species distribution models are not good predictors of lizard and frog physiological tolerances. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10022-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|