1
|
Jedli H, Bouzgarrou SM, Hassani R, Sabi E, Slimi K. Adsorption of CO 2, CH 4 and H 2 onto zeolite 13 X: Kinetic and equilibrium studies. Heliyon 2024; 10:e40672. [PMID: 39698080 PMCID: PMC11652862 DOI: 10.1016/j.heliyon.2024.e40672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Adsorption equilibrium and kinetics of CO2, H2 and CH4 on zeolite 13 X were carried out using the volumetric method. The zeolite 13 X was characterized via XRD, SEM and N2 adsorption-desorption. Adsorption isotherms of various gas were investigated over a full range of temperatures at 298, 308 and 313 K. Langmuir's equilibrium model and the heat of adsorption was used to correlate the adsorption isotherms over a wide range of pressure. A classical micropore diffusion approach was applied to investigate the kinetic adsorption. At 298 K, the selectivity of CO2/H2 and CO2/CH4 of the zeolite 13 X was 16.52 and 62.61, respectively. However, zeolite 13 X is one of the most suitable adsorbents for CO2 and CH4 storage, since it has a very high adsorption capacity for both gases. The influence of gas pressure on diffusivity for various absorber-adsorbent systems has been examined. The adsorption experiments with gas mixtures such as H2, CO2 and CH4 on 13 X zeolite show that this adsorbent has potential application in the gas separation and purification process.
Collapse
Affiliation(s)
- Hedi Jedli
- University of Monastir, National Engineering School of Monastir, Laboratory of Studies of Thermal Systems and Energy, LR99ES31, 5019, Monastir, Tunisia
| | - Souhail Mohammed Bouzgarrou
- Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, Jazan, Saudi Arabia
- Higher Institute of Applied Sciences and Technologie of Sousse, Sousse University, Tunisia
| | - Rym Hassani
- Chemistry Department, Center for Environmental and Nature Research, Jazan University, P.O Box 114, Jazan, Saudi Arabia
| | - Ehab Sabi
- Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, Jazan, Saudi Arabia
| | - Khalifa Slimi
- University of Monastir, National Engineering School of Monastir, Laboratory of Studies of Thermal Systems and Energy, LR99ES31, 5019, Monastir, Tunisia
| |
Collapse
|
2
|
Baamran K, Rownaghi AA. Direct Conversion of CO 2 to Olefins over a Cr 2O 3/ZSM-5@CaO Cooperative and Bifunctional Material Under Isothermal Conditions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:17783-17792. [PMID: 39668963 PMCID: PMC11632774 DOI: 10.1021/acssuschemeng.4c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Direct conversion of point-source CO2 into fine chemicals over cooperative and bifunctional materials (BFMs) - composed of adsorbents and catalysts - has emerged as a promising approach to improve the energy efficiency of the carbon capture and conversion processes. In this study, a bifunctional material consisting of Cr2O3/ZSM-5 catalyst and CaO adsorbent was developed and tested in the CO2-oxidative dehydrogenation of propane (CO2-ODHP) for reactive capture of CO2 in a fixed bed reactor. First, CaO was prepared using two distinct methods: solid-state and citrate sol-gel. The citrate sol-gel method resulted in small and finely-distributed CaO particles, allowing more accessible sites for CO2 adsorption. Consequently, a high CO2 adsorption capacity of ∼14 mmol/g was achieved with fast adsorption kinetics compared to CaO prepared by the solid-state method. The CaO adsorbent was then combined with the Cr2O3/ZSM-5 catalyst for BFM synthesis and tested in the CO2-ODHP process, targeting propylene production. The BFM was extensively characterized to provide insights into the BFM's surface chemistry, morphology, and reaction mechanism in the reactive capture process of CO2-ODHP. The results revealed that under isothermal adsorption-reaction conditions at 600 °C, a propane conversion of 22.5%, a propylene selectivity of 55.3%, and an olefin selectivity of 67.3% were achieved. The excellent propylene selectivity was attributed to the catalyst acidity and redox property of the Cr2O3/ZSM-5 catalyst, which facilitated the reaction pathway of propane dehydrogenation in the process of CO2-ODHP. Overall, this study renders Cr2O3/ZSM-5@CaO as promising BFMs with high CO2 capture capacity and catalytic activity for integrated CO2 capture and conversion in the ODHP reaction.
Collapse
Affiliation(s)
- Khaled Baamran
- United
States Department of Energy, National Energy
Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States
- NETL
Support Contractor, 626
Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Ali A. Rownaghi
- United
States Department of Energy, National Energy
Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States
| |
Collapse
|
3
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
4
|
Wu H, Zhang X, Wu Q, Zhou X, Yue S. Readiness and challenges of carbon capture technologies based on the shipping industry. MARINE POLLUTION BULLETIN 2024; 207:116878. [PMID: 39173475 DOI: 10.1016/j.marpolbul.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
In the context of carbon emission reduction in the shipping industry, CCUS technology can modify ships to reduce carbon emissions, providing a new direction for the green development of the shipping industry. Based on this, this paper investigates the technology related to carbon capture on ships, firstly puts forward the applicable requirements of carbon capture technology; and analyses the adaptability of the existing carbon capture solutions to the shipping industry; and discusses the development prospect of carbon capture on ships through the three challenges of space utilisation, safety, and economy; and finally analyses the related policies. After analysis and discussion, this paper concludes that the alcohol-amine method is the most suitable carbon capture solution for ships, but there are challenges in economics and space utilisation. The future research direction lies in optimising the performance of the absorber, improving the energy efficiency of the system and solving the CO2 storage problem.
Collapse
Affiliation(s)
- Hanlin Wu
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Xuelai Zhang
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China.
| | - Qing Wu
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Xingchen Zhou
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Shijie Yue
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
5
|
Ramasamy N, Raj AJLP, Akula VV, Nagarasampatti Palani K. Leveraging experimental and computational tools for advancing carbon capture adsorbents research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55069-55098. [PMID: 39225926 DOI: 10.1007/s11356-024-34838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.
Collapse
Affiliation(s)
- Niranjan Ramasamy
- Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India
| | - Kavitha Nagarasampatti Palani
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India.
| |
Collapse
|
6
|
Garcés-Polo SI, de Jesús Camargo Vargas G, Estupiñán PR, Hernández-Barreto DF, Giraldo L, Moreno-Piraján JC. CO 2 adsorption on carbonaceous materials obtained from forestry and urban waste materials: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40208-40223. [PMID: 37837597 DOI: 10.1007/s11356-023-30300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The increasing emissions of gaseous pollutants of anthropogenic origin, such as carbon dioxide (CO2), which causes global warming, have raised great interest in developing and improving processes that allow their mitigation. Among them, adsorption on porous materials has been proposed as a sustainable alternative. This work presents a study of CO2 equilibrium adsorption at low temperatures (0, 10, and 20 °C) over a wide range of low pressures, on activated carbon derived from Eucalyptus (ES) and Patula pine (PP) forest waste, and carbonaceous material derived from waste tires (WT). The precursors of these materials were previously prepared, and their physicochemical properties were characterized. ES and PP were thermochemically treated with phosphoric acid, and WT was oxidized with nitric acid. Additionally, these materials were used to obtain monoliths using uniaxial compaction techniques and different binding agents, with better results obtained with montmorillonite. A total of six adsorbent solids had their textural and chemical properties characterized and were tested for CO2 adsorption. The highest specific surface area (1405 m2 g-1), and micropore properties were found for activated carbon derived from Eucalyptus whose highest adsorption capacity ranged from 2.27 mmol g-1 (at 0 °C and 100 kPa) to 1.60 mmol g-1 (at 20 °C and 100 kPa). The activated carbon monoliths presented the lowest CO2 adsorption capacities; however, the studied materials showed high potential for CO2 capture and storage applications at high pressures. The isosteric heats of adsorption were also estimated for all the materials and ranged from 16 to 45 kJ mol-1 at very low coverage explained by the energetic heterogeneity and weak repulsive interactions among adsorbed CO2 molecules.
Collapse
Affiliation(s)
| | | | - Paola Rodríguez Estupiñán
- Facultad de Ciencias, Departamento de Química, Universidad de los Andes, Bogotá, Colombia
- Universidad del Rosario, Bogotá, D. C., Colombia
| | | | - Liliana Giraldo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia
| | | |
Collapse
|
7
|
Serafin J, Dziejarski B. Activated carbons-preparation, characterization and their application in CO 2 capture: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40008-40062. [PMID: 37326723 DOI: 10.1007/s11356-023-28023-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
In this paper, we provide a comprehensive review of the latest research trends in terms of the preparation, and characteristics of activated carbons regarding CO2 adsorption applications, with a special focus on future investigation paths. The reported current research trends are primarily closely related to the synthesis conditions (carbonization and physical or chemical activation process), to develop the microporosity and surface area, which are the most important factors affecting the effectiveness of adsorption. Furthermore, we emphasized the importance of regeneration techniques as a factor determining the actual technological and economic suitability of a given material for CO2 capture application. Consequently, this work provides a summary and potential directions for the development of activated carbons (AC). We attempt to create a thorough theoretical foundation for activated carbons while also focusing on identifying and specific statements of the most relevant ongoing research scope that might be advantageous to progress and pursue in the coming years.
Collapse
Affiliation(s)
- Jarosław Serafin
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí I Franquès, 1-11, 08028, Barcelona, Spain.
| | - Bartosz Dziejarski
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
- Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
8
|
Torkzadeh M, Moosavi M. Multiscale modeling of CO2 capture in dicationic ionic liquids: Evaluating the influence of hydroxyl groups using DFT-IR, COSMO-RS, and MD simulation methods. J Chem Phys 2024; 160:154502. [PMID: 38625081 DOI: 10.1063/5.0195668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
This work employs a combination of density functional theory-infrared (IR), conductor-like screening model for real solvents (COSMO-RS), and molecular dynamic (MD) methods to investigate the impact of hydroxyl functional groups on CO2 capture within dicationic ionic liquids (DILs). The COSMO-RS reveals that hydroxyl groups in DILs reduce the macroscopic solubility of CO2 but improve the selectivity of CO2 over CO, H2, and CH4 gases. Quantum methods in the gas phase and MD simulations in the liquid phase were conducted to delve deeper into the underlying mechanisms. The IR spectrum analysis confirms red shifts in CO2's asymmetric stretching mode and blue shifts in the CR-HR bond of the dication, indicating CO2-DIL interactions and the weakening of the anion-cation interactions caused by the presence of CO2. The results show that the positioning of anions around hydroxyl groups and HR atoms in rings inhibits the proximity of CO2 molecules, causing the hydrogen atoms within methylene groups to accumulate CO2. van der Waals forces were found to dominate the interaction between ions and CO2. The addition of hydroxyl groups strengthens the electrostatic interactions and hydrogen bonds between dications and anions. The stronger interaction energy between ions in [C5(mim)2-(C2)2(OH)2][NTf2]2 limits the displacement of CO2 molecules within this DIL compared to [C5(mim)2-(C4)2][NTf2]2. Compared to [C5(mim)2-(C4)2][NTf2]2, [C5(mim)2-(C2)2(OH)2][NTf2]2 exhibits stronger ion-ion interactions, higher density, and reduced free volume, resulting in a reduction in CO2 capture. These results provide significant insights into the intermolecular interactions and vibrational properties of CO2 in DIL complexes, emphasizing their significance in developing efficient and sustainable strategies for CO2 capture.
Collapse
Affiliation(s)
- Mehrangiz Torkzadeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moosavi
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
9
|
Chaouiki A, Chafiq M, Ko YG. Unveiling the mechanisms behind high CO 2 adsorption by the selection of suitable ionic liquids incorporated into a ZIF-8 metal organic framework: A computational approach. ENVIRONMENTAL RESEARCH 2024; 246:118112. [PMID: 38184060 DOI: 10.1016/j.envres.2024.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
There is growing focus on the crucial task of effectively capturing carbon dioxide (CO2) from the atmosphere to mitigate environmental consequences. Metal-organic frameworks (MOFs) have been used to replace many conventional materials in gas separation, and the incorporation of ionic liquids (ILs) into porous MOFs has shown promise as a new technique for improving CO2 capture and separation. However, the driving force underlying the electronic modulation of MOF nanostructures and the mechanisms behind their high CO2 adsorption remain unclear. This study reports the effect of encapsulating different imidazolium ILs in porous ZIF-8, to clarify the adsorption mechanism of CO2 using density functional theory (DFT)-based approaches. For this purpose, a range of anions, including bis(trifluoromethylsulfonyl)imide [NTf2], methanesulfonate [MeSO3], and acetate [AC], were combined with the 1-ethyl-3-methylimidazolium [EMIM]+ cation. [EMIM]+-based ILs@ZIF-8 composites were computationally investigated to identify suitable materials for CO2 capture. First, the intermolecular and intramolecular interactions between [EMIM]+ and different anions were examined in detail, and their effects on CO2 adsorption were explored. Subsequently, the integration of these ILs into the ZIF-8 solid structure was studied to reveal how their interactions influenced the CO2 adsorption behavior. Our results demonstrate that the incorporation of ILs strongly affects the adsorption capability of CO2, which is highly dependent on the nature of the ILs inside the ZIF-8 framework. DFT simulations further confirmed that the incorporation of ILs into ZIF-8 led to superior CO2 capture compared to isolated ILs and pristine ZIF-8. This improvement was attributed to the mutual interactions between the ILs and ZIF-8, which effectively fine-tuned CO2 adsorption within the composite structure. This understanding may act as a general guide for gaining more insight into the interfacial interactions between ILs and ZIFs structures and how these molecular-level interactions can help predict the selection of ILs for CO2 adsorption and separation, thereby addressing environmental challenges with greater precision and effectiveness.
Collapse
Affiliation(s)
- Abdelkarim Chaouiki
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Maryam Chafiq
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
10
|
Sen A, Narsaria AK, Manae MA, Shetty S, Waghmare UV. Electrostatically tunable interaction of CO 2 with MgO surfaces and chemical switching: first-principles theory. Phys Chem Chem Phys 2024; 26:5333-5343. [PMID: 38268468 DOI: 10.1039/d3cp04588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Electric field-assisted CO2 capture using solid adsorbents based on basic oxides can immensely reduce the required energy consumption compared to the conventional processes of temperature or pressure swing adsorption. In this work, we present first-principles density functional theoretical calculations to investigate the effects of an applied external electric field (AEEF) within the range from -1 to 1 V Å-1 on the CO2 adsorption behavior on various high and low-index facets of MgO. When CO2 is strongly adsorbed on MgO surfaces to form carbonate species, the coupling of electric fields with the resulting intrinsic dipole moment induces a 'switch' from a strongly chemisorbed state to a weakly chemisorbed or physisorbed state at a critical value of AEEF. We demonstrate that such 'switching' enables access to different metastable states with variations in the AEEF. On polar MgO(111) surfaces, we find a distinct feature of the adsorptive dissociation of CO2 towards the formation of CO in contrast to that on the non-polar MgO(100) and MgO(110) surfaces. In some cases, we observe broken inversion symmetry because of the AEEF that results in induced polarity at the interaction site of CO2 on MgO surfaces. Our results provide fundamental insights into the possibility of using AEEFs in novel solid adsorbent systems for CO2 capture and reduction.
Collapse
Affiliation(s)
- Arpita Sen
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Ayush K Narsaria
- Shell India Markets Pvt. Ltd, Mahadeva Kodigehalli, Bengaluru, Karnataka 562149, India.
| | - Meghna A Manae
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Sharan Shetty
- Shell India Markets Pvt. Ltd, Mahadeva Kodigehalli, Bengaluru, Karnataka 562149, India.
| | - Umesh V Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
11
|
Zhou J, Jia B, Xu B, Sun J, Bai S. Amphipathic Solvent-Assisted Synthetic Strategy for Random Lamellae of the Clinoptilolites with Flower-like Morphology and Thinner Nanosheet for Adsorption and Separation of CO 2 and CH 4. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1942. [PMID: 37446458 DOI: 10.3390/nano13131942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 07/15/2023]
Abstract
The random lamellae of the synthetic CP were synthesized with a hydrothermal approach using o-Phenylenediamine (OPD) as a modifier. The decreases in the order degree of the CP synthesized in the presence of the OPD resulted from the loss of long-range order in a certain direction. Subsequently, the ultrasonic treatment and washing were conducive to further facilitate the disordered arrangements of its lamellae. The possible promotion mechanism regarding the nucleation and growth behaviors of the sol-gel particles was proposed. The fractal evolutions of the aluminosilicate species with crystallization time implied that the aluminosilicate species became gradually smooth to rough during the crystallization procedures since the amorphous structures transformed into flower-like morphologies. Their gas adsorption and separation performances indicated that the adsorption capacity of CO2 at 273 K reached up to 2.14 mmol·g-1 at 1 bar, and the selective factor (CO2/CH4) up to 3.4, much higher than that of the CPs synthesized without additive OPD. The breakthrough experiments displayed a longer breakthrough time and enhancement of CO2 uptake, showing better performance for CO2/CH4 separation. The cycling test further highlighted their efficiency for CO2/CH4 separation.
Collapse
Affiliation(s)
- Jiawei Zhou
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100021, China
| | - Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100021, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100021, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100021, China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100021, China
| |
Collapse
|
12
|
Lutyński M, Kielar J, Gajda D, Mikeska M, Najser J. High-Pressure Adsorption of CO 2 and CH 4 on Biochar-A Cost-Effective Sorbent for In Situ Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1266. [PMID: 36770272 PMCID: PMC9920063 DOI: 10.3390/ma16031266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The search for an effective, cost-efficient, and selective sorbent for CO2 capture technologies has been a focus of research in recent years. Many technologies allow efficient separation of CO2 from industrial gases; however, most of them (particularly amine absorption) are very energy-intensive processes not only from the point of view of operation but also solvent production. The aim of this study was to determine CO2 and CH4 sorption capacity of pyrolyzed spruce wood under a wide range of pressures for application as an effective adsorbent for gas separation technology such as Pressure Swing Adsorption (PSA) or Temperature Swing Adsorption (TSA). The idea behind this study was to reduce the carbon footprint related to the transport and manufacturing of sorbent for the separation unit by replacing it with a material that is the direct product of pyrolysis. The results show that pyrolyzed spruce wood has a considerable sorption capacity and selectivity towards CO2 and CH4. Excess sorption capacity reached 1.4 mmol·g-1 for methane and 2.4 mmol·g-1 for carbon dioxide. The calculated absolute sorption capacity was 1.75 mmol·g-1 at 12.6 MPa for methane and 2.7 mmol·g-1 at 4.7 MPa for carbon dioxide. The isotherms follow I type isotherm which is typical for microporous adsorbents.
Collapse
Affiliation(s)
- Marcin Lutyński
- Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Jan Kielar
- Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, 17. Listopadu 15, 70800 Ostrava, Czech Republic
| | - Dawid Gajda
- Institute of Meteorology and Water Management—National Research Institute, Podleśna 61, 01-673 Warszawa, Poland
| | - Marcel Mikeska
- Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, 17. Listopadu 15, 70800 Ostrava, Czech Republic
| | - Jan Najser
- Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, 17. Listopadu 15, 70800 Ostrava, Czech Republic
| |
Collapse
|
13
|
Study on the Performance of Cellulose Triacetate Hollow Fiber Mixed Matrix Membrane Incorporated with Amine-Functionalized NH2-MIL-125(Ti) for CO2 and CH4 Separation. SEPARATIONS 2023. [DOI: 10.3390/separations10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The increase in the global population has caused an increment in energy demand, and therefore, energy production has to be maximized through various means including the burning of natural gas. However, the purification of natural gas has caused CO2 levels to increase. Hollow fiber membranes offer advantages over other carbon capture technologies mainly due to their large surface-to-volume ratio, smaller footprint, and higher energy efficiency. In this work, hollow fiber mixed matrix membranes (HFMMMs) were fabricated by utilizing cellulose triacetate (CTA) as the polymer and amine-functionalized metal-organic framework (NH2-MIL-125(Ti)) as the filler for CO2 and CH4 gas permeation. CTA and NH2-MIL-125(Ti) are known for exhibiting a high affinity towards CO2. In addition, the utilization of these components as membrane materials for CO2 and CH4 gas permeation is hardly found in the literature. In this work, NH2-MIL-125(Ti)/CTA HFMMMs were spun by varying the air gap ranging from 1 cm to 7 cm. The filler dispersion, crystallinity, and functional groups of the fabricated HFMMMs were examined using EDX mapping, SEM, XRD, and FTIR. From the gas permeation testing, it was found that the NH2-MIL-125(Ti)/CTA HFMMM spun at an air gap of 1 cm demonstrated a CO2/CH4 ideal gas selectivity of 6.87 and a CO2 permeability of 26.46 GPU.
Collapse
|
14
|
de Oliveira LH, Pereira MV, Meneguin JG, de Barros MAS, do Nascimento JF, Arroyo PA. Influence of regeneration conditions on cyclic CO2 adsorption on NaA zeolite at high pressures. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zaw Win M, Hye Park J, Htet Naing H, Woo Hong M, Oo W, Bok Yi K. Analysis of Preservative Ability of Chitosan on CO Adsorption of CuCl-Alumina-Based Composites. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
17
|
Song KS, Fritz PW, Coskun A. Porous organic polymers for CO 2 capture, separation and conversion. Chem Soc Rev 2022; 51:9831-9852. [PMID: 36374129 PMCID: PMC9703447 DOI: 10.1039/d2cs00727d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 08/15/2023]
Abstract
Porous organic polymers (POPs) have long been considered as prime candidates for carbon dioxide (CO2) capture, separation, and conversion. Especially their permanent porosity, structural tunability, stability and relatively low cost are key factors in such considerations. Whereas heteratom-rich microporous networks as well as their amine impregnation/functionalization have been actively exploited to boost the CO2 affinity of POPs, recently, the focus has shifted to engineering the pore environment, resulting in a new generation of highly microporous POPs rich in heteroatoms and featuring abundant catalytic sites for the capture and conversion of CO2 into value-added products. In this review, we aim to provide key insights into structure-property relationships governing the separation, capture and conversion of CO2 using POPs and highlight recent advances in the field.
Collapse
Affiliation(s)
- Kyung Seob Song
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
18
|
|
19
|
Li M, Irtem E, Iglesias van Montfort HP, Abdinejad M, Burdyny T. Energy comparison of sequential and integrated CO 2 capture and electrochemical conversion. Nat Commun 2022; 13:5398. [PMID: 36104350 PMCID: PMC9474516 DOI: 10.1038/s41467-022-33145-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides exciting new opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, understanding the potential energy advantages of an integrated process is not straightforward due to the interconnected processes which require knowledge of both capture and electrochemical conversion processes. Here, we identify the upper limits of the integrated process from an energy perspective by comparing the working principles and performance of integrated and sequential approaches. Our high-level energy analyses unveil that an integrated electrolyser must show similar performance to the gas-fed electrolyser to ensure an energy benefit of up to 44% versus the sequential route. However, such energy benefits diminish if future gas-fed electrolysers resolve the CO2 utilisation issue and if an integrated electrolyser shows lower conversion efficiencies than the gas-fed system.
Collapse
Affiliation(s)
- Mengran Li
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Erdem Irtem
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Hugo-Pieter Iglesias van Montfort
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Maryam Abdinejad
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
20
|
DeWitt SJA, Lively RP. MIL-101(Cr) Polymeric Fiber Adsorbents for Sub-Ambient Post-Combustion CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryan P. Lively
- Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
21
|
Ward A, Pini R. Efficient Bayesian Optimization of Industrial-Scale Pressure-Vacuum Swing Adsorption Processes for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Ward
- Department of Chemical Engineering, Imperial College London, South KensingtonSW7 2BX, United Kingdom
| | - Ronny Pini
- Department of Chemical Engineering, Imperial College London, South KensingtonSW7 2BX, United Kingdom
| |
Collapse
|
22
|
Abstract
The rise of carbon dioxide (CO2) levels in the atmosphere emphasises the need for improving the current carbon capture and storage (CCS) technology. A conventional absorption method that utilises amine-based solvent is known to cause corrosion to process equipment. The solvent is easily degraded and has high energy requirement for regeneration. Amino acids are suitable candidates to replace traditional alkanolamines attributed to their identical amino functional group. In addition, amino acid salt is a green material due to its extremely low toxicity, low volatility, less corrosive, and high efficiency to capture CO2. Previous studies have shown promising results in CO2 capture using amino acids salts solutions and amino acid ionic liquids. Currently, amino acid solvents are also utilised to enhance the adsorption capacity of solid sorbents. This systematic review is the first to summarise the currently available amino acid-based adsorbents for CO2 capture using PRISMA method. Physical and chemical properties of the adsorbents that contribute to effective CO2 capture are thoroughly discussed. A total of four categories of amino acid-based adsorbents are evaluated for their CO2 adsorption capacities. The regeneration studies are briefly discussed and several limitations associated with amino acid-based adsorbents for CO2 capture are presented before the conclusion.
Collapse
|
23
|
Ong JL, Loy ACM, Teng SY, How BS. Future Paradigm of 3D Printed Ni-Based Metal Organic Framework Catalysts for Dry Methane Reforming: Techno-economic and Environmental Analyses. ACS OMEGA 2022; 7:15369-15384. [PMID: 35571820 PMCID: PMC9096962 DOI: 10.1021/acsomega.1c06873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Dry reforming of biogas is referred as an attractive path for sustainable H2 production over decades. Meanwhile, in the Malaysian context, the abundance of palm oil mill effluent (POME) produced annually is deemed as a potential renewable source for renewable energy generation. Conventionally, nickel (Ni) is the most common catalyst used in the industrial-scale dry reforming of methane (DRM) to yield H2, but it is subject to the drawbacks of sintering and deactivation after a long reaction time at high temperatures (>500 °C). Therefore, this work aims to provide an insight on the feasibility of the application of modified Ni-based catalysts in DRM, specifically in the economic and environmental aspects. From the benchmarking study of various Ni-based catalysts (e.g., bimetallic (Ni-Ce/Al2O3), alumina support (Ni/Al2O3), protonated titanate nanotube (Ni-HTNT), and unsupported), the Ni-MOF catalyst, notably, had proven its prominence in both economic and environmental aspects on the same basis of 10 tonnes of H2 production. The MOF-based catalyst not only possessed a better economic performance (net present value 61.86%, 140%, and 563.08% higher than that of Ni-Ce/Al2O3, Ni/Al2O3, and Ni-HTNT) but also had relatively lower carbon emissions (13.18%, 20.09%, and 75.72% lower than that of Ni/Al2O3, Ni-HTNT, and unsupported Ni). This work also accounted for 3D printing technology for the mass production of Ni-MOF catalysts, where the net present value was 2 to 3% higher than that of the conventional production method. Additionally, sensitivity analysis showed that the H2 price has the greatest impact on the feasibility of DRM as compared to other cost factors.
Collapse
Affiliation(s)
- Jia Ling Ong
- Biomass
Waste-to-Wealth Special Interest Group, Research Centre for Sustainable
Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Adrian Chun Minh Loy
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Sin Yong Teng
- Institute
for Molecules and Materials, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Bing Shen How
- Biomass
Waste-to-Wealth Special Interest Group, Research Centre for Sustainable
Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
24
|
Lu X, Liu L, Liu H, Tian G, Peng G, Zhuo L, Wang Z. Zeolite-X synthesized from halloysite nanotubes and its application in CO2 capture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Gordina NE, Borisova TN, Klyagina KS, Astrakhantseva IA, Ilyin AA, Rumyantsev RN. Investigation of NH3 Desorption Kinetics on the LTA and SOD Zeolite Membranes. MEMBRANES 2022; 12:membranes12020147. [PMID: 35207069 PMCID: PMC8875342 DOI: 10.3390/membranes12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
The acidity characteristics of zeolite are highly significant, and understanding the acidic properties is essential for developing new types of zeolite catalysts. Zeolite membranes were synthesized using metakaolin, sodium hydroxide, and alumina with a molar ratio of 6Al2Si2O7:12NaOH:2Al2O3 as the starting ingredients. X-ray diffraction, scanning electron microscopy, and infrared spectroscopy were used for this study. N2 adsorption measurements determined the surface areas of the SOD zeolite membrane (115 m2/g) and the LTA membrane (150 m2/g). The units of absorbed water vapor were 40 and 60 wt% for the SOD membrane and the LTA membrane, respectively. The strength and number of acid sites of the synthesized LTA and SOD zeolite membranes were determined by temperature-programmed desorption of ammonia. As a result, the value of the total acidity of the LTA zeolite membrane is in the range of 0.08 × 1019 units/m2 while that of the sodalite membrane is an order of magnitude lower and is 0.006 × 1019 units/m2. The apparent activation energy values for desorption of ammonia from LTA and SOD zeolite membranes were calculated using data on the kinetics of desorption of ammonia at different heating rates. It was found that at temperatures below 250 °C, the degree of conversion of the activation energy values is no more than 35 kJ/mol, which corresponds to the desorption of physically bound ammonia. An increase in the activation values up to 70 kJ/mol (for SOD) and up to 80 kJ/mol (for LTA) is associated with the desorption of chemically bound ammonia from the samples.
Collapse
|
26
|
Young AF, Villardi HGD, Araujo LS, Raptopoulos LSC, Dutra MS. Detailed Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- André F. Young
- Department of Chemical and Petroleum Engineering, Federal Fluminense University, Rua Passo da Pátria, 156, Niterói 24210-240, Brazil
| | | | - Leonardo S. Araujo
- Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149F, Rio de Janeiro 21941-972, Brazil
| | - Luciano S. C. Raptopoulos
- Control and Automation Engineering Coordination, Celso Suckow da Fonseca Federal Centre of Technological Education, Estrada de Adrianópolis, 1317, Nova Iguaçu 26041-271, Brazil
| | - Max S. Dutra
- Department of Mechanical Engineering, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149G, Rio de Janeiro 21941-972, Brazil
| |
Collapse
|
27
|
Farmahini AH, Krishnamurthy S, Friedrich D, Brandani S, Sarkisov L. Performance-Based Screening of Porous Materials for Carbon Capture. Chem Rev 2021; 121:10666-10741. [PMID: 34374527 PMCID: PMC8431366 DOI: 10.1021/acs.chemrev.0c01266] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Computational screening methods have changed the way new materials and processes are discovered and designed. For adsorption-based gas separations and carbon capture, recent efforts have been directed toward the development of multiscale and performance-based screening workflows where we can go from the atomistic structure of an adsorbent to its equilibrium and transport properties at different scales, and eventually to its separation performance at the process level. The objective of this work is to review the current status of this new approach, discuss its potential and impact on the field of materials screening, and highlight the challenges that limit its application. We compile and introduce all the elements required for the development, implementation, and operation of multiscale workflows, hence providing a useful practical guide and a comprehensive source of reference to the scientific communities who work in this area. Our review includes information about available materials databases, state-of-the-art molecular simulation and process modeling tools, and a complete catalogue of data and parameters that are required at each stage of the multiscale screening. We thoroughly discuss the challenges associated with data availability, consistency of the models, and reproducibility of the data and, finally, propose new directions for the future of the field.
Collapse
Affiliation(s)
- Amir H. Farmahini
- Department
of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - Daniel Friedrich
- School
of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| | - Stefano Brandani
- School
of Engineering, Institute of Materials and Processes, The University of Edinburgh, Sanderson Building, Edinburgh EH9 3FB, United Kingdom
| | - Lev Sarkisov
- Department
of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- School
of Engineering, Institute of Materials and Processes, The University of Edinburgh, Sanderson Building, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
28
|
Performance and Durability of the Zr-Doped CaO Sorbent under Cyclic Carbonation–Decarbonation at Different Operating Parameters. ENERGIES 2021. [DOI: 10.3390/en14164822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of cyclic carbonation–decarbonation operating parameters on Zr-doped CaO sorbent CO2 uptake capacity evolution is examined. It is revealed that the capacity steady state value increases with the decrease in the carbonation temperature, CO2 concentration in the gas flow upon carbonation and with the increase in the heating rate from the carbonation to the decarbonation stages. The rise in decarbonation temperature leads to a dramatic decrease in the sorbent performance. It is found that if carbonation occurs at 630 °C in the gas flow containing 15 vol.% CO2 and decarbonation is carried out at 742 °C, the sorbent shows the highest values of the initial and steady state CO2 uptake capacity, namely, 10.7 mmol/g and 9.4 mmol/g, respectively.
Collapse
|
29
|
Belousov VV, Fedorov SV. Oxygen-Selective Diffusion-Bubbling Membranes with Core-Shell Structure: Bubble Dynamics and Unsteady Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8370-8381. [PMID: 34236866 DOI: 10.1021/acs.langmuir.1c00709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen is the second-largest-volume industrial gas that is mainly produced using cryogenic air separation. However, the state-of-the-art cryogenic technology thermodynamic efficiency has approached a theoretical limit as near as is practicable. Therefore, there is stimulus to develop an alternative technology for efficient oxygen separation from air. Mixed ionic electronic-conducting (MIEC) ceramic membrane-based oxygen separation technology could become this alternative, but commercialization aspects, including cost, have revealed inadequacies in ceramic membrane materials. Currently, diffusion-bubbling molten oxide membrane-based oxygen separation technology is being developed. It is a potentially disruptive technology that would propose an improvement in oxygen purity and a reduction in capital costs. Bubbles play an important role in ensuring the oxygen mass transfer in diffusion-bubbling membranes. However, there is not sufficient understanding of the bubble dynamics. This understanding is important to be able to control transport properties of these membranes and assess their potential for technological application. The aim of this feature article is to highlight the progress made in developing this understanding and specify the directions for future research.
Collapse
Affiliation(s)
- Valery V Belousov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospekt, Moscow 119334, Russian Federation
| | - Sergey V Fedorov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospekt, Moscow 119334, Russian Federation
| |
Collapse
|
30
|
Wang YT, McHale C, Wang X, Chang CK, Chuang YC, Kaveevivitchai W, Miljanić OŠ, Chen TH. Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO 2 Separations by Pressure Swing Adsorption*. Angew Chem Int Ed Engl 2021; 60:14931-14937. [PMID: 33779028 DOI: 10.1002/anie.202102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/16/2022]
Abstract
A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2 separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2 molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2 at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2 capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate-adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2 and CH4 are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2 separations from flue and natural gases.
Collapse
Affiliation(s)
- Yao-Ting Wang
- School of Pharmacy, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan.,Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| | - Corie McHale
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Chung-Kai Chang
- National Synchrotron Radiation Research Center, No. 101, Hsin Ann Rd., Hsinchu, 30076, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, No. 101, Hsin Ann Rd., Hsinchu, 30076, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Teng-Hao Chen
- School of Pharmacy, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| |
Collapse
|
31
|
Wang Y, McHale C, Wang X, Chang C, Chuang Y, Kaveevivitchai W, Miljanić OŠ, Chen T. Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO
2
Separations by Pressure Swing Adsorption**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yao‐Ting Wang
- School of Pharmacy National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| | - Corie McHale
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Xiqu Wang
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Chung‐Kai Chang
- National Synchrotron Radiation Research Center No. 101, Hsin Ann Rd. Hsinchu 30076 Taiwan
| | - Yu‐Chun Chuang
- National Synchrotron Radiation Research Center No. 101, Hsin Ann Rd. Hsinchu 30076 Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Teng‐Hao Chen
- School of Pharmacy National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| |
Collapse
|
32
|
CO2 Capture from Flue Gas of a Coal-Fired Power Plant Using Three-Bed PSA Process. ENERGIES 2021. [DOI: 10.3390/en14123582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pressure swing adsorption (PSA) process was used to capture carbon dioxide (CO2) from the flue gas of a coal-fired power plant to reduce CO2 emissions. Herein, CO2 was captured from flue gas using the PSA process for at least 85 vol% CO2 purity and with the other exit stream from the process of more than 90 vol% N2 purity. The extended Langmuir–Freundlich isotherm was used for calculating the equilibrium adsorption capacity, and the linear driving force model was used to describe the gas adsorption kinetics. We compared the results of breakthrough curves obtained through experiments and simulations to verify the accuracy of the mass transfer coefficient. The flue gas obtained after desulphurization and water removal (13.5 vol% CO2 and 86.5 vol% N2) from a subcritical 1-kW coal-fired power plant served as the feed for the designed three-bed, nine-step PSA process. To determine optimal operating conditions for the process, the central composite design (CCD) was used. After CCD analysis, optimal operating conditions with a feed pressure of 3.66 atm and a vacuum pressure of 0.05 atm were obtained to produce a bottom product with a CO2 purity of 89.20 vol% and a recovery of 88.20%, and a top product with a N2 purity of 98.49 vol% and a recovery of 93.56%. The mechanical energy consumption was estimated to be 1.17 GJ/t-CO2.
Collapse
|
33
|
Masuda S, Osaka Y, Tsujiguchi T, Kodama A. CO 2 Capture from a Simulated Dry Exhaust Gas by Internally Heated and Cooled Temperature Swing Adsorption. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yugo Osaka
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University
| | - Takuya Tsujiguchi
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University
| | - Akio Kodama
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University
| |
Collapse
|
34
|
Luzzi E, Aprea P, Salzano de Luna M, Caputo D, Filippone G. Mechanically Coherent Zeolite 13X/Chitosan Aerogel Beads for Effective CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20728-20734. [PMID: 33900721 PMCID: PMC8289193 DOI: 10.1021/acsami.1c04064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The constant increase of CO2 concentration in the atmosphere is recognized worldwide to severely impact the environment and human health. Zeolites possess a high adsorption capacity for CO2 removal, but their powdery form prevents their use in many practical applications. When binding agents are used, a partial occlusion of the porosity can severely compromise the adsorption capacity. In this regard, a great challenge is producing compact composite adsorbents while maintaining a high specific surface area to preserve the pristine performance of zeolites. Here, this goal was achieved by preparing beads with a high content of zeolite 13X (up to 90 wt %) using a chitosan aerogel as the binding agent. A facile preparation procedure based on the freeze-drying of hydrogel beads obtained by phase inversion led to a peculiar microstructure in which a very fine polymeric framework firmly embeds the zeolite particles, providing mechanical coherence and strength (compressive strain >40% without bead fragmentation, deformation <20% under 1 kgf-load) and yet preserving the powder porosity. This allowed us to fully exploit the potential of the constituents, reaching a high specific surface area (561 m2 g-1) and excellent CO2 uptake capacity (4.23 mmol g-1) for the sample at 90% zeolite. The beads can also be reused after being fully regenerated by means of a pressure swing protocol at room temperature.
Collapse
|
35
|
Boycheva S, Zgureva D, Lazarova H, Popova M. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X. CHEMOSPHERE 2021; 271:129505. [PMID: 33450419 DOI: 10.1016/j.chemosphere.2020.129505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The combustion of coal in Thermal Power Plants generates fine dust particles (coal fly ash, CFA), which are collected from the flue gas streams and deposited as solid wastes. One of the technologically reliable solutions for utilization of CFA is its alkaline conversion into zeolites. The present study focuses on the influence of calcium content in CFA on the chemical and phase composition, morphology and surface properties of coal fly ash zeolites. Comparative studies of the capacity of zeolites of Na-X and Na-Ca-X types from coal fly ash to capture carbon emissions under static and dynamic conditions have been performed. The present study answers a key question from a practical point of view, how does moisture in flue gases affect the adsorption of carbon dioxide on zeolites. The development of efficient adsorbents from CFA with varying composition will contribute to a number of environmental benefits and to the development of efficient CO2 capture technologies in the context of the circular economy.
Collapse
Affiliation(s)
- Silviya Boycheva
- Department of Thermal and Nuclear Power Engineering, Technical University of Sofia, 8 Kl. Ohridsky Blvd., 1000, Sofia, Bulgaria.
| | - Denitza Zgureva
- College of Energy and Electronics, Technical University of Sofia, 8 Kl. Ohridsky Blvd., 1000, Sofia, Bulgaria
| | - Hristina Lazarova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev str. Bl. 9, 1113, Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev str. Bl. 9, 1113, Sofia, Bulgaria
| |
Collapse
|
36
|
James AM, Reynolds J, Reed DG, Styring P, Dawson R. A Pressure Swing Approach to Selective CO 2 Sequestration Using Functionalized Hypercrosslinked Polymers. MATERIALS 2021; 14:ma14071605. [PMID: 33806093 PMCID: PMC8036798 DOI: 10.3390/ma14071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.
Collapse
Affiliation(s)
- Alex M. James
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Jake Reynolds
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Daniel G. Reed
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Peter Styring
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Robert Dawson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
- Correspondence: ; Tel.: +44-114-222-9357
| |
Collapse
|
37
|
Li G, Knozowska K, Kujawa J, Tonkonogovas A, Stankevičius A, Kujawski W. Fabrication of Polydimethysiloxane (PDMS) Dense Layer on Polyetherimide (PEI) Hollow Fiber Support for the Efficient CO 2/N 2 Separation Membranes. Polymers (Basel) 2021; 13:polym13050756. [PMID: 33670985 PMCID: PMC7957718 DOI: 10.3390/polym13050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
The development of thin layer on hollow-fiber substrate has drawn great attention in the gas-separation process. In this work, polydimethysiloxane (PDMS)/polyetherimide (PEI) hollow-fiber membranes were prepared by using the dip-coating method. The prepared membranes were characterized by Scanning Electron Microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and gas permeance measurements. The concentration of PDMS solution and coating time revealed an important influence on the gas permeance and the thickness of the PDMS layer. It was confirmed from the SEM and EDX results that the PDMS layer’s thickness and the atomic content of silicon in the selective layer increased with the growth in coating time and the concentration of PDMS solution. The composite hollow-fiber membrane prepared from 15 wt% PDMS solution at 10 min coating time showed the best gas-separation performance with CO2 permeance of 51 GPU and CO2/N2 ideal selectivity of 21.
Collapse
Affiliation(s)
- Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Andrius Tonkonogovas
- Lithuanian Energy Institute, 3, Breslaujos Street, LT-44403 Kaunas, Lithuania; (A.T.); (A.S.)
| | - Arūnas Stankevičius
- Lithuanian Energy Institute, 3, Breslaujos Street, LT-44403 Kaunas, Lithuania; (A.T.); (A.S.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
- National Research Nuclear University MEPhI, 31, Kashira Hwy, 115409 Moscow, Russia
- Correspondence: ; Tel.: +48-566-114-517
| |
Collapse
|
38
|
You YY, Liu XJ. Performance comparison among three types of adsorbents in CO2 adsorption and recovery from wet flue gas. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Nathanael AJ, Kannaiyan K, Kunhiraman AK, Ramakrishna S, Kumaravel V. Global opportunities and challenges on net-zero CO 2 emissions towards a sustainable future. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00233c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artistic representation of CO2 emissions from various sources into the atmosphere, and its consequence on the global climatic conditions.
Collapse
Affiliation(s)
- A. Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, India
| | - Kumaran Kannaiyan
- Mechanical Engineering, Guangdong Technion Israel Institute of Technology, China
| | | | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Vignesh Kumaravel
- Department of Environmental Science, School of Science, Institute of Technology Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ireland
| |
Collapse
|
40
|
Legrand U, Apfel UP, Boffito D, Tavares J. The effect of flue gas contaminants on the CO2 electroreduction to formic acid. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Pérez-Botella E, Martínez-Franco R, González-Camuñas N, Cantín Á, Palomino M, Moliner M, Valencia S, Rey F. Unusually Low Heat of Adsorption of CO 2 on AlPO and SAPO Molecular Sieves. Front Chem 2020; 8:588712. [PMID: 33195090 PMCID: PMC7655961 DOI: 10.3389/fchem.2020.588712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
The capture of CO2 from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO2 emissions, which contribute to the greenhouse effect in the atmosphere. One of the developing technologies for this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are selective toward CO2, have a large adsorption capacity at atmospheric pressure and are easily regenerated, resulting in high working capacity. Therefore, adsorbents combining molecular sieving properties and low heats of adsorption of CO2 are of clear interest as they will provide high selectivities and regenerabilities in CO2 separation process. Here we report that some aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) materials with LTA, CHA and AFI structures present lower heats of adsorption of CO2 (13-25 kJ/mol) than their structurally analogous zeolites at comparable framework charges. In some cases, their heats of adsorption are even lower than those of pure silica composition (20-25 kJ/mol). This could mean a great improvement in the regeneration process compared to the most frequently used zeolitic adsorbents for this application while maintaining most of their adsorption capacity, if materials with the right stability and pore size and topology are found.
Collapse
Affiliation(s)
- Eduardo Pérez-Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Nuria González-Camuñas
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ángel Cantín
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Miguel Palomino
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
42
|
Hernández B, Blázquez CG, Aristizábal-Marulanda V, Martı́n M. Production of H 2 and Methanol via Dark Fermentation: A Process Optimization Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Borja Hernández
- Departamento de Ingeniería Quı́mica y Textil, Universidad de Salamanca, Plaza Caı́dos 1-5, 37008 Salamanca, Spain
| | - Cristina García Blázquez
- Departamento de Ingeniería Quı́mica y Textil, Universidad de Salamanca, Plaza Caı́dos 1-5, 37008 Salamanca, Spain
| | - Valentina Aristizábal-Marulanda
- Facultad de Tecnologı́as, Escuela de Tecnologı́a Quı́mica, Grupo de Desarrollo de Procesos Quı́micos, Universidad Tecnológica de Pereira, 660003 Pereira, Colombia
| | - Mariano Martı́n
- Departamento de Ingeniería Quı́mica y Textil, Universidad de Salamanca, Plaza Caı́dos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
43
|
Al‐Naddaf Q, Lawson S, Rownaghi AA, Rezaei F. Analysis of dynamic
CO
2
capture over
13X
zeolite monoliths in the presence of
SO
x
,
NO
x
and humidity. AIChE J 2020. [DOI: 10.1002/aic.16297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qasim Al‐Naddaf
- Department of Chemical and Biochemical EngineeringMissouri University of Science and Technology Rolla Missouri USA
| | - Shane Lawson
- Department of Chemical and Biochemical EngineeringMissouri University of Science and Technology Rolla Missouri USA
| | - Ali A. Rownaghi
- Department of Chemical and Biochemical EngineeringMissouri University of Science and Technology Rolla Missouri USA
| | - Fateme Rezaei
- Department of Chemical and Biochemical EngineeringMissouri University of Science and Technology Rolla Missouri USA
| |
Collapse
|
44
|
Han G, Qian Q, Mizrahi Rodriguez K, Smith ZP. Hydrothermal Synthesis of Sub-20 nm Amine-Functionalized MIL-101(Cr) Nanoparticles with High Surface Area and Enhanced CO2 Uptake. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Sorption of CO 2 and CH 4 on Raw and Calcined Halloysite-Structural and Pore Characterization Study. MATERIALS 2020; 13:ma13040917. [PMID: 32092961 PMCID: PMC7078888 DOI: 10.3390/ma13040917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
The article presents comparative characteristics of the pore structure and sorption properties of raw halloysite (R-HAL) and after calcination (C-HAL) at the temperature of 873 K. Structural parameters were determined by optical scanning and transmission electron microscopy methods as well as by mercury porosimetry (MIP, Hg) and low-pressure nitrogen adsorption (LPNA, N2, 77 K). The surface area parameter (LPNA) of halloysite mesopores before calcination was 54–61 m2/g. Calcining caused the pore surface to develop to 70–73 m2/g. The porosity (MIP) of halloysite after calcination increased from 29% to 46%, while the surface area within macropores increased from 43 m2/g to 54 m2/g. The total pore volume within mesopores and macropores increased almost twice after calcination. The course of CH4 and CO2 sorption on the halloysite was examined and sorption isotherms (0–1.5 MPa, 313 K) were determined by gravimetric method. The values of equilibrium sorption capacities increased at higher pressures. The sorption capacity of CH4 in R-HAL was 0.18 mmol/g, while in C-HAL 0.21 mmol/g. CO2 sorption capacities were 0.54 mmol/g and 0.63 mmol/g, respectively. Halloysite had a very high rate of sorption equilibrium. The values of the effective diffusion coefficient for methane on the tested halloysite were higher than De > 4.2 × 10−7 cm2/s while for carbon dioxide De > 3.1 × 10−7 cm2/s.
Collapse
|
46
|
Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions. ENERGIES 2019. [DOI: 10.3390/en13010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the extraction of hard coal in Polish conditions, methane is emitted, which is referred to as ‘mine gas’. As a result of the desorption of methane, a greenhouse gas is released from coal seams. In order to reduce atmospheric emissions, methane from coal seams is captured by a methane drainage system. On the other hand, methane, which has been separated into underground mining excavations, is discharged into the atmosphere with a stream of ventilation air. For many years, Polish hard coal mines have been capturing methane to ensure the safety of the crew and the continuity of mining operations. As a greenhouse gas, methane has a significant potential, as it is more effective at absorbing and re-emitting radiation than carbon dioxide. The increase in the amount of methane in the atmosphere is a significant factor influencing global warming, however, it is not as strong as the increase in carbon dioxide. Therefore, in Polish mines, the methane–air mixture captured in the methane drainage system is not emitted to the atmosphere, but burned as fuel in systems, including cogeneration systems, to generate electricity, heat and cold. However, in order for such use to be possible, the methane–air mixture must meet appropriate quality and quantity requirements. The article presents an analysis of changes in selected parameters of the captured methane–air mixture from one of the hard coal mines in the Upper Silesian Coal Basin in Poland. The paper analyses the changes in concentration and size of the captured methane stream through the methane capturing system. The gas captured by the methane drainage system, as an energy source, can be used in cogeneration, when the methane concentration is greater than 40%. Considering the variability of CH4 concentration in the captured mixture, it was also indicated which pure methane stream must be added to the gas mixture in order for this gas to be used as a fuel for gas engines. The balance of power of produced electric energy in gas engines is presented. Possible solutions ensuring constant concentration of the captured methane–air mixture are also presented.
Collapse
|
47
|
Smith GL, Eyley JE, Han X, Zhang X, Li J, Jacques NM, Godfrey HGW, Argent SP, McCormick McPherson LJ, Teat SJ, Cheng Y, Frogley MD, Cinque G, Day SJ, Tang CC, Easun TL, Rudić S, Ramirez-Cuesta AJ, Yang S, Schröder M. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites. NATURE MATERIALS 2019; 18:1358-1365. [PMID: 31611671 DOI: 10.1038/s41563-019-0495-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4',4‴-(pyridine-3,5-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g-1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(II) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
Collapse
Affiliation(s)
- Gemma L Smith
- School of Chemistry, University of Manchester, Manchester, UK
| | | | - Xue Han
- School of Chemistry, University of Manchester, Manchester, UK
| | - Xinran Zhang
- School of Chemistry, University of Manchester, Manchester, UK
| | - Jiangnan Li
- School of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Didcot, UK
| | | | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Didcot, UK
| | - Chiu C Tang
- Diamond Light Source, Harwell Science Campus, Didcot, UK
| | | | - Svemir Rudić
- ISIS, STFC Rutherford Appleton Laboratory, Chilton, UK
| | | | - Sihai Yang
- School of Chemistry, University of Manchester, Manchester, UK.
| | - Martin Schröder
- School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
48
|
Zhu X, Hao P, Shi Y, Li S, Cai N. Application of elevated temperature pressure swing adsorption in hydrogen production from syngas. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Surra E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB. Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109351. [PMID: 31419673 DOI: 10.1016/j.jenvman.2019.109351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.
Collapse
Affiliation(s)
- Elena Surra
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel A A C Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - José P B Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
50
|
Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|