1
|
Thangavelu N, Jeyabalan J, Veluchamy A, Belur PD. Production of tannase from a newly isolated yeast, Geotrichum cucujoidarum using agro-residues. Prep Biochem Biotechnol 2024; 54:564-572. [PMID: 37698943 DOI: 10.1080/10826068.2023.2256011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
With an aim of producing commercially important tannase enzyme using cheap and readily available agro-residues, leaves of Indian Gooseberry (Phyllanthus emblica) and Jamun (Syzygium cumini), peels of Lemon (Citrus limon), and Pomegranate (Punica granatum) were screened. Newly isolated Geotrichum cucujoidarum was utilized for the study. Preliminary studies indicated that tannase titer obtained is not proportional to the tannin content of the agro-residues and solid state fermentation superior compared to submerged fermentation. Jamun mixed with lemon peel in equal proportion supplemented with minerals under solid-state fermentation gave a tannase titer of 15.46 U/g dry solids. Through successful implantation of Plackett-Burman design, yeast extract concentration, inoculum volume, and amount of substrate were found to be the most significant factors. Further optimization of these three factors through Response Surface Methodology resulted in the 1.7-fold increase in tannase titer. Validation experiments using 3.97 g of Jamun leaves + lemon peel powder mixed with a nutrient solution having (w/v) yeast extract - 1.1%, dextrose - 3%, Urea - 1.125%, potassium chloride - 0.1%, magnesium sulfate heptahydrate - 0.1% with the initial pH of 5, inoculated with 2.48 ml of inoculum gave a tannase titer of 26.43 U/g dry solids after 6 days of solid-state fermentation.
Collapse
Affiliation(s)
- Nishanthini Thangavelu
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Jothika Jeyabalan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Ajithkumar Veluchamy
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Prasanna D Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| |
Collapse
|
2
|
Chaitanyakumar A, Somu P, Srinivasan R. Expression and Immobilization of Tannase for Tannery Effluent Treatment from Lactobacillus plantarum and Staphylococcus lugdunensis: A Comparative Study. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04861-2. [PMID: 38421571 DOI: 10.1007/s12010-024-04861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
Agro-industrial discharges have higher concentrations of tannins and have been a significant cause of pollution to water bodies and soil surrounding the agro-industries. So in this study, toxic tannic acid is into commercially valuable gallic acid from the tannery effluent using immobilized microbial tannase. Tannase genes were isolated from Lactobacillus plantarum JCM 1149 (tanLpl) and Staphylococcus lugdunensis MTCC 3614 (tanA). Further, these isolated tannese genes were cloned and expressed in BL 21 host using pET 28a as an expression vector, and immobilized in sodium alginate beads. Vegetable tannery effluent was treated by tannase-immobilized beads at 25 °C and 37 °C, where liberated gallic acid was analyzed using TLC and NMR to confirm the tannin reduction. Further, both immobilized tannases exhibited excellent reusability up to 15 cycles of regeneration without significant reduction in their activity. Moreover, we also showed that immobilized tannases tanLpl and tanA activity remained unaffected compared to the free enzyme in the presence of metal ions. Further, tanA activity remained unaffected over a wide range of pH, and tanLpl showed high thermal stability. Thus, immobilized tannase tanLpl and tanA provide a possible solution for tannery effluent treatment depending upon industry requirements and reaction composition/effluent composition, one can choose a better-immobilized tannase among the two as per the need-based requirement.
Collapse
Affiliation(s)
- Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Ibrahimpatnam, 501510, Telangana, India.
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, 632 014, Tamil Nadu, Vellore, India.
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, 303007, India.
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, 632 014, Tamil Nadu, Vellore, India
| |
Collapse
|
3
|
Ahmed AI, Abou-Taleb KAA, Abd-Elhalim BT. Characterization and application of tannase and gallic acid produced by co-fungi of Aspergillus niger and Trichoderma viride utilizing agro-residues substrates. Sci Rep 2023; 13:16755. [PMID: 37798429 PMCID: PMC10556068 DOI: 10.1038/s41598-023-43955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Bioconversion using fungi, as natural factory of many applicable bioactive compounds, as enzymes utilizing agro-residue substrates as a solid, abundant, low-cost growth and enzyme production media. This study characterized and applied a tannase enzyme (308 U/mg) from Aspergillus niger A8 + Trichoderma viride co-cultures utilizing pomegranate peels. The partially purified enzyme showed maximal relative activity at 37-65 °C for 10 min and kinetics of thermal inactivation energy at a high point at 60 °C for 0.040/min. The half-life was 37 °C for 58.6 min, temperature coefficient Q10 of tannase was maximal for 1.38 between 40 and 50 °C, and the activation energy was 17.42 kJ/mol. The enzyme activity peaked in the pH range of 4-8, and the maximum relative activity (100.6%) for tannase was achieved at pH 6. The Km and Vmax values for purified enzymes using tannic acid were 7.3 mg/mL and 3333.33 U/mL, respectively. The enzyme reduced the total tannin content in all tannin-rich substrates after 12h. The gallic acid (GA) had total phenols of 77.75 ppm and antioxidant activity of 82.91%. It was observed that the GA as antimicrobial influencer exhibited the largest inhibitory zone diameter (IZD) of 31 ± 1.0 mm against Pseudomonas aeruginosa ATCC27853. The GA minimum inhibitory concentration value was ranged from 7770.0-121.41 µg/mL. The obtained GA showed a bactericidal effect against all bacterial strains except Shigella sonnei DSM5570 and Salmonella typhi DSM17058, which showed bacteriostatic behavior.
Collapse
Affiliation(s)
- Alshaymaa I Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Khadiga A A Abou-Taleb
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo, 11241, Egypt.
| |
Collapse
|
4
|
Cavalcanti RMF, Martinez MLL, Oliveira WP, Guimarães LHS. Stabilization and application of spray-dried tannase from Aspergillus fumigatus CAS21 in the presence of different carriers. 3 Biotech 2020; 10:177. [PMID: 32226706 PMCID: PMC7096345 DOI: 10.1007/s13205-020-2164-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/07/2020] [Indexed: 01/21/2023] Open
Abstract
The Aspergillus fumigatus CAS21 tannase was spray dried with β-cyclodextrin, Capsul® starch, soybean meal, lactose, and maltodextrin as adjuvants. The moisture content and water activity of the products ranged from 5.6 to 11.5% and from 0.249 to 0.448, respectively. The maximal tannase activity was achieved at 40-60 ºC and pH 5.0-6.0 for the powders containing β-cyclodextrin and Capsul® starch, which was stable at 40 ºC and 40-60 ºC for 120 min, respectively. For all the dried products, tannase retained its activity of over 80% for 120 min at pH 5.0 and 6.0. Salts and solvents influenced the activity of the spray-dried tannase. The activity of the spray-dried tannase was maintained when preserved for 1 year at 4 ºC and 28 ºC. Spray-dried tannase reduced the content of tannins and polyphenolic compounds of leather effluent and sorghum flour and catalyzed the transesterification reaction. The spray drying process stabilized the tannase activity, highlighting the potential of dried products for biotechnological applications.
Collapse
Affiliation(s)
| | - Marcelo Luís Lombardi Martinez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Wanderley Pereira Oliveira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Luís Henrique Souza Guimarães
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – USP, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP 14040-901 Brazil
| |
Collapse
|
5
|
Spier F, Gutterres M. BIODEGRADATION OF ACACIA AND CHESTNUT TANNINS BY NATIVE ISOLATES OF THE GENUS Penicillium AND Aspergillus. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Purification, Characterization and Application of Tannase Enzyme Isolated from Marine Aspergillus nomius GWA5. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Selvaraj S, Vytla RM. Solid state fermentation of Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor for tannase production. Prep Biochem Biotechnol 2018; 48:799-807. [PMID: 30303763 DOI: 10.1080/10826068.2018.1509086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Production of tannase was performed in packed bed reactor filled with an inert support polyurethane foam (PUF) using Bacillus gottheilii M2S2. The influence of process parameters such as fermentation time (24-72 h), tannic acid concentration (0.5-2.5% w/v), inoculum size (7-12% v/v), and aeration rate (0-0.2 L/min) on tannase production with PUF were analyzed using one variable at a time (OVAT) approach. The outcome of OVAT was optimized by central composite design. Based on the statistical investigation, the proposed mathematical model recommends 1% (w/v) of tannic acid, 10% (v/v) of inoculum size and 0.13 L/min of aeration rate for maximum production (76.57 ± 1.25 U/L). The crude enzyme was purified using ammonium sulfate salt precipitation method followed by dialysis. The biochemical properties of partially purified tannase were analyzed and found the optimum pH (4.0), temperature (40 °C) for activity, and Km (1.077 mM) and Vmax (1.11 µM/min) with methyl gallate as a substrate. Based on the SDS-PAGE analysis, tannase exhibited two bands with molecular weights of 57.5 and 42.3 kDa. Briefly, the partially purified tannase showed 4.2 fold increase (63 ± 1.60 U/L) in comparison to the submerged fermentation and the production of tannase was validated by using NMR spectrometer.
Collapse
Affiliation(s)
- Subbalaxmi Selvaraj
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| | - Ramachandra Murty Vytla
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
8
|
Biotransformation of industrial tannins by filamentous fungi. Appl Microbiol Biotechnol 2018; 102:10361-10375. [PMID: 30293196 DOI: 10.1007/s00253-018-9408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Tannins are secondary metabolites that are widely distributed in the plant kingdom. They act as growth inhibitors for many microorganisms: they are released upon microbial attack, helping to fight infection in plant tissues. Extraction of tannins from plants is an active industrial sector with several applications, including oenology, animal feeding, mining, the chemical industry, and, in particular, the tanning industry. However, tannins are also considered very recalcitrant pollutants in wastewater of diverse origin. The ability to grow on plant substrates rich in tannins and on industrial tannin preparations is usually considered typical of some species of fungi. These organisms are able to tolerate the toxicity of tannins thanks to the production of enzymes that transform or degrade these substrates, mainly through hydrolysis and oxidation. Filamentous fungi capable of degrading tannins could have a strong environmental impact as bioremediation agents, in particular in the treatment of tanning wastewaters.
Collapse
|
9
|
Cavalcanti RMF, Jorge JA, Guimarães LHS. Characterization of Aspergillus fumigatus CAS-21 tannase with potential for propyl gallate synthesis and treatment of tannery effluent from leather industry. 3 Biotech 2018; 8:270. [PMID: 29868308 PMCID: PMC5970104 DOI: 10.1007/s13205-018-1294-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022] Open
Abstract
One of the tannase isoforms produced by the fungus Aspergillus fumigatus CAS-21 under submerged fermentation (SbmF) was purified 4.9-fold with a 10.2% recovery. The glycoprotein (39.1% carbohydrate content) showed an estimated molecular mass of 60 kDa. Optimum temperature and pH for its activity were 30-40 °C and 5.0, respectively. It showed a half-life (t50) of 60 min at 45 and 50 °C, and it was stable at pH 5.0 and 6.0 for 3 h. The tannase activity was insensitive to most salts used, but it reduced in the presence of Fe2(SO4)3 and FeCl3. On contrary, in presence of SDS, Triton-X100, and urea the enzyme activity increased. The Km value indicated high affinity for propyl gallate (3.61 mmol L-1) when compared with tannic acid (6.38 mmol L-1) and methyl gallate (6.28 mmol L-1), but the best Kcat (362.24 s-1) and Kcat/Km (56.78 s-1 mmol-1 L) were obtained for tannic acid. The purified tannase reduced 89 and 25% of tannin content of the leather tannery effluent generated by manual and mechanical processing, respectively, after 2-h treatment. The total phenolic content was also reduced. Additionally, the enzyme produced propyl gallate, indicating its ability to do the transesterification reaction. Thus, A. fumigatus CAS-21 tannase presents interesting properties, especially the ability to degrade tannery effluent, highlighting its potential in biotechnological applications.
Collapse
Affiliation(s)
- Rayza Morganna Farias Cavalcanti
- Instituto de Química de Araraquara- UNESP, Avenida Professor Mário Degni s/nº, Quitandinha, Araraquara, São Paulo 14800-900 Brazil
| | - João Atílio Jorge
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901 Brazil
| | - Luis Henrique Souza Guimarães
- Instituto de Química de Araraquara- UNESP, Avenida Professor Mário Degni s/nº, Quitandinha, Araraquara, São Paulo 14800-900 Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901 Brazil
| |
Collapse
|
10
|
de Sena AR, Campos Leite TC, Evaristo da Silva Nascimento TC, Silva ACD, Souza CS, Vaz AFDM, Moreira KA, de Assis SA. Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1452201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amanda Reges de Sena
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | - Tonny Cley Campos Leite
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | | | - Anna Carolina da Silva
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Catiane S. Souza
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Keila Aparecida Moreira
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Sandra Aparecida de Assis
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
11
|
Chaitanyakumar A, Anbalagan M. Expression, purification and immobilization of tannase from Staphylococcus lugdunensis MTCC 3614. AMB Express 2016; 6:89. [PMID: 27704471 PMCID: PMC5050181 DOI: 10.1186/s13568-016-0261-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Enzymes find their applications in various industries, due to their error free conversion of substrate into product. Tannase is an enzyme used by various industries for degradation of tannin. Biochemical characterization of a specific enzyme from one organism to other is one of the ways to search for enzymes with better traits for industrial applications. Here, tannase encoding gene from Staphylococcus lugdunensis was cloned and suitability of the enzyme in various conditions was analysed to find its application in various industry. The recombinant protein was expressed with 6× His tag and purified using nickel affinity beads. The enzyme was purified up to homogeneity, with approximate molecular weight of 66 kDa. Purified tannase exhibited specific activity of about 716 U/mg. Optimum enzyme activity was found to be 40 °C at pH 7.0. Biochemical characterization revealed; metal ions such as Zn2+, Fe2+, Fe3+ and Mn2+ inhibited tannase activity, and SDS at lower concentration, increased tannase activity. Non polar organic solvents increased the tannase activity and polar solvents inhibited the tannase activity. Tannase immobilization studies show protection of the enzyme under wide range of pH and temperature. Also in this study we report a method for recovery and repeated use of the tannase.
Collapse
Affiliation(s)
| | - M. Anbalagan
- School of Bio-Sciences and Technology, VIT University, Vellore, 632014 India
| |
Collapse
|