1
|
He X, Yang Y, Soberón M, Bravo A, Zhang L, Zhang J, Wang Z. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 Are Two Core Regions Involved in Oligomerization and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1321-1329. [PMID: 38175929 DOI: 10.1021/acs.jafc.3c08070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bacillus thuringiensis Cry9 proteins show high insecticidal activity against different lepidopteran pests. Cry9 could be a valuable alternative to Cry1 proteins because it showed a synergistic effect with no cross-resistance. However, the pore-formation region of the Cry9 proteins is still unclear. In this study, nine mutations of certain Cry9Aa helices α3 and α4 residues resulted in a complete loss of insecticidal activity against the rice pest Chilo suppressalis; however, the protein stability and receptor binding ability of these mutants were not affected. Among these mutants, Cry9Aa-D121R, Cry9Aa-D125R, Cry9Aa-D163R, Cry9Aa-E165R, and Cry9Aa-D167R are unable to form oligomers in vitro, while the oligomers formed by Cry9Aa-R156D, Cry9Aa-R158D, and Cry9Aa-R160D are unstable and failed to insert into the membrane. These data confirmed that helices α3 and α4 of Cry9Aa are involved in oligomerization, membrane insertion, and toxicity. The knowledge of Cry9 pore-forming action may promote its application as an alternative to Cry1 insecticidal proteins.
Collapse
Affiliation(s)
- Xiang He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Lihong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jie Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Chelliah R, Wei S, Park BJ, Rubab M, Banan-Mwine Dalirii E, Barathikannan K, Jin YG, Oh DH. Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. Microb Pathog 2019; 129:284-297. [DOI: 10.1016/j.micpath.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/17/2022]
|
3
|
Wang Z, Fang L, Zhou Z, Pacheco S, Gómez I, Song F, Soberón M, Zhang J, Bravo A. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer ( Chilo suppressalis). J Biol Chem 2018; 293:11447-11458. [PMID: 29858245 DOI: 10.1074/jbc.ra118.003490] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/28/2018] [Indexed: 11/06/2022] Open
Abstract
The bacterium Bacillus thuringiensis produces several insecticidal proteins, such as the crystal proteins (Cry) and the vegetative insecticidal proteins (Vip). In this work, we report that a specific interaction between two B. thuringiensis toxins creates insecticidal synergism and unravel the molecular basis of this interaction. When applied together, the three-domain Cry toxin Cry9Aa and the Vip Vip3Aa exhibited high insecticidal activity against an important insect pest, the Asiatic rice borer (Chilo suppressalis). We found that these two proteins bind specifically to brush border membrane vesicles of C. suppressalis and that they do not share binding sites because no binding competition was observed between them. Binding assays revealed that the Cry9Aa and Vip3Aa proteins interacted with high affinity. We mapped their specific interacting regions by analyzing binding of Cry9Aa to overlapping fragments of Vip3Aa and by analyzing binding of Vip3Aa to individual domains of Cry9Aa. Binding to peptide arrays helped narrow the binding sites to domain II loop-3 of Cry9Aa and to 428TKKMKTL434 in Vip3Aa. Site-directed mutagenesis confirmed that these binding regions participate in binding that directly correlates with the synergism between the two proteins. In summary, we show that the B. thuringiensis Cry9Aa and Vip3Aa toxins display potent synergy based on a specific interaction between them. Our results further our understanding of the complex synergistic activities among B. thuringiensis toxins and are highly relevant to the development of toxin combinations for effective insect control and for delaying development of insect resistance.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Number 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Longfa Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Number 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zishan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Number 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Sabino Pacheco
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Isabel Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Number 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Number 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico.
| |
Collapse
|