1
|
Shi J, Fan Y, Jiang X, Li X, Li S, Feng Y, Xue S. Efficient synthesis of L-malic acid by malic enzyme biocatalysis with CO 2 fixation. BIORESOURCE TECHNOLOGY 2024; 403:130843. [PMID: 38777233 DOI: 10.1016/j.biortech.2024.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.
Collapse
Affiliation(s)
- Jianping Shi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Yan Fan
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| | - Xinshan Jiang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Xianglong Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Shang Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Yanbin Feng
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Song Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| |
Collapse
|
2
|
Cao Y, Huang R, Li T, Pan D, Shao S, Wu X. Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115590. [PMID: 37839187 DOI: 10.1016/j.ecoenv.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 ± 3.40% of NO3--N, 61.24 ± 3.51% of COD, 18.74 ± 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 ± 1.32%, 79.53 ± 0.88%, 51.07 ± 3.99%, and 33.59 ± 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non-enzymatic effects of biofilm were evaluated. The results showed that 70.00%- 94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ruiheng Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Tenghao Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
3
|
Aguirre ME, Ramírez CL, Di Iorio Y. Stable and Reusable Fe 3 O 4 /ZIF-8 Composite for Encapsulation of FDH Enzyme under Mild Conditions Applicable to CO 2 Reduction. Chemistry 2023; 29:e202301113. [PMID: 37294852 DOI: 10.1002/chem.202301113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/11/2023]
Abstract
The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.
Collapse
Affiliation(s)
- Matías E Aguirre
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicas de Mar del Plata, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Cristina L Ramírez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Yesica Di Iorio
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicas de Mar del Plata, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Feng T, Wang Z, Li H, Li Q, Guo Y, Zhao J, Liu J. Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli. J Biosci Bioeng 2023; 135:433-439. [DOI: 10.1016/j.jbiosc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
|
5
|
Wen X, Lin H, Ning Y, Liu G, Ren Y, Li C, Zhang C, Lin J, Song X, Lin J. D-Allulose (D-Psicose) Biotransformation From Allitol by a Newly Found NAD(P)-Dependent Alcohol Dehydrogenase From Gluconobacter frateurii NBRC 3264 and the Enzyme Characterization. Front Microbiol 2022; 13:870168. [PMID: 35547110 PMCID: PMC9083112 DOI: 10.3389/fmicb.2022.870168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
The NAD(P)-dependent alcohol dehydrogenase (ADH) gene was cloned from Gluconobacter frateurii NBRC 3264 and expressed in Escherichia coli BL21 star (DE3). The expressed enzyme was purified and the characteristics were investigated. The results showed that this ADH can convert allitol into D-allulose (D-psicose), which is the first reported enzyme with this catalytic ability. The optimum temperature and pH of this enzyme were 50°C and pH 7.0, respectively, and the enzyme showed a maximal activity in the presence of Co2+. At 1 mM Co2+ and allitol concentrations of 50, 150, and 250 mM, the D-allulose yields of 97, 56, and 38%, respectively, were obtained after reaction for 4 h under optimal conditions, which were much higher than that obtained by using the epimerase method of about 30%.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Yuhang Ning
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guangwen Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yilin Ren
- Qingdao Longding Biotech Limited Company, Qingdao, China
| | - Can Li
- School of Biological Engineering, Qilu University of Technology, Jinan, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|