1
|
Horvath RM, Sadowski I. CBP/p300 lysine acetyltransferases inhibit HIV-1 expression in latently infected T cells. iScience 2024; 27:111244. [PMID: 39640574 PMCID: PMC11617383 DOI: 10.1016/j.isci.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation. In contrast, inhibition of CBP/p300 impaired reversal of latency by the HDACi SAHA, indicating that CBP/p300 must contribute to acetylation on the HIV-1 LTR associated with HDACi-mediated latency reversal. CBP/p300 inhibition caused loss of H3K27ac and H3K4me3 from the LTR, but did not affect association of the inhibitor protein BRD4. Furthermore, inhibition of the additional lysine acetyltransferases PCAF/GCN5 or KAT6A/KAT6B also caused reversal of latency, suggesting that protein acetylation has an inhibitory effect on HIV-1 expression. Collectively, these observations indicate that transcription from the HIV-1 LTR is controlled both positively and negatively by protein acetylation, likely including both histone and non-histone regulatory targets.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Horvath RM, Brumme ZL, Sadowski I. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies. Antimicrob Agents Chemother 2024; 68:e0107223. [PMID: 38319085 PMCID: PMC10923280 DOI: 10.1128/aac.01072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Tang Y, Behrens RT, St Gelais C, Wu S, Vivekanandan S, Razin E, Fang P, Wu L, Sherer N, Musier-Forsyth K. Human lysyl-tRNA synthetase phosphorylation promotes HIV-1 proviral DNA transcription. Nucleic Acids Res 2023; 51:12111-12123. [PMID: 37933844 PMCID: PMC10711549 DOI: 10.1093/nar/gkad941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Yingke Tang
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Siqi Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Saravanan Vivekanandan
- Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore and The Hebrew University of Jerusalem (NUS–HUJ), Singapore
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Horvath RM, Brumme ZL, Sadowski I. CDK8 inhibitors antagonize HIV-1 reactivation and promote provirus latency in T cells. J Virol 2023; 97:e0092323. [PMID: 37671866 PMCID: PMC10537590 DOI: 10.1128/jvi.00923-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/15/2023] [Indexed: 09/07/2023] Open
Abstract
Latent HIV-1 provirus represents the barrier toward a cure for infection and is dependent upon the host RNA Polymerase (Pol) II machinery for reemergence. Here, we find that inhibitors of the RNA Pol II mediator kinases CDK8/19, Senexin A and BRD6989, inhibit induction of HIV-1 expression in response to latency-reversing agents and T cell signaling agonists. These inhibitors were found to impair recruitment of RNA Pol II to the HIV-1 LTR. Furthermore, HIV-1 expression in response to several latency reversal agents was impaired upon disruption of CDK8 by shRNA or gene knockout. However, the effects of CDK8 depletion did not entirely mimic CDK8/19 kinase inhibition suggesting that the mediator kinases are not functionally redundant. Additionally, treatment of CD4+ peripheral blood mononuclear cells isolated from people living with HIV-1 and who are receiving antiretroviral therapy with Senexin A inhibited induction of viral replication in response to T cell stimulation by PMA and ionomycin. These observations indicate that the mediator kinases, CDK8 and CDK19, play a significant role for regulation of HIV-1 transcription and that small molecule inhibitors of these enzymes may contribute to therapies designed to promote deep latency involving the durable suppression of provirus expression. IMPORTANCE A cure for HIV-1 infection will require novel therapies that can force elimination of cells that contain copies of the virus genome inserted into the cell chromosome, but which is shut off, or silenced. These are known as latently-infected cells, which represent the main reason why current treatment for HIV/AIDS cannot cure the infection because the virus in these cells is unaffected by current drugs. Our results indicate that chemical inhibitors of Cdk8 also inhibit the expression of latent HIV provirus. Cdk8 is an important enzyme that regulates the expression of genes in response to signals to which cells need to respond and which is produced by a gene that is frequently mutated in cancers. Our observations indicate that Cdk8 inhibitors may be employed in novel therapies to prevent expression from latent provirus, which might eventually enable infected individuals to cease treatment with antiretroviral drugs.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State. J Virol 2023; 97:e0137622. [PMID: 36533949 PMCID: PMC9888270 DOI: 10.1128/jvi.01376-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stochastic fluctuations in gene expression emanating from the HIV-1 long terminal repeat (LTR), amplified by the Tat positive feedback circuit, determine the choice between viral infection fates: active transcription (ON) or transcriptional silence (OFF). The emergence of several transcription factor binding site (TFBS) variant strains in HIV-1 subtype C (HIV-1C), especially those containing the duplication of the NF-κB motif, mandates the evaluation of the effect of enhanced transcriptional strength on gene expression noise and its influence on viral fate selection switch. Using a panel of subgenomic LTR-variant strains containing different copy numbers of the NF-κB motif (ranging from 0 to 4), we used flow cytometry, mRNA quantification, and pharmacological perturbations to demonstrate an inverse correlation between promoter strength and gene expression noise in Jurkat T cells and primary CD4+ T cells. The inverse correlation is consistent in clonal cell populations at constant intracellular concentrations of Tat and when NF-κB levels were regulated pharmacologically. Further, we show that strong LTRs containing at least two copies of the NF-κB motif in the enhancer establish a more stable latent state and demonstrate more rapid latency reversal than weak LTRs containing fewer motifs. We also demonstrate a cooperative binding of NF-κB to the motif cluster in HIV-1C LTRs containing two, three, or four NF-κB motifs (Hill coefficient [H] = 2.61, 3.56, and 3.75, respectively). The present work alludes to a possible evolution of the HIV-1C LTR toward gaining transcriptional strength associated with attenuated gene expression noise with implications for viral latency. IMPORTANCE Over the past two consecutive decades, HIV-1 subtype C (HIV-1C) has been undergoing directional evolution toward augmenting the transcriptional strength of the long terminal repeat (LTR) by adding more copies of the existing transcription factor binding site (TFBS) by sequence duplication. Additionally, the duplicated elements are genetically diverse, suggesting broader-range signal receptivity by variant LTRs. The HIV-1 promoter is inherently noisy, and the stochastic fluctuations in gene expression of variant LTRs may influence the active transcription (ON)/transcriptional silence (OFF) latency decisions. The evolving NF-κB motif variations of HIV-1C offer a powerful opportunity to examine how the transcriptional strength of the LTR might influence gene expression noise. Our work here shows that the augmented transcriptional strength of the HIV-1C LTR leads to concomitantly reduced gene expression noise, consequently leading to stabler latency maintenance and rapid latency reversal. The present work offers a novel lead toward appreciating the molecular mechanisms governing HIV-1 latency.
Collapse
|
6
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
7
|
Horvath RM, Brumme ZL, Sadowski I. Inhibition of the TRIM24 bromodomain reactivates latent HIV-1. Sci Rep 2023; 13:556. [PMID: 36631514 PMCID: PMC9832417 DOI: 10.1038/s41598-023-27765-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Expression of the HIV-1 genome by RNA Polymerase II is regulated at multiple steps, as are most cellular genes, including recruitment of general transcription factors and control of transcriptional elongation from the core promoter. We recently discovered that tripartite motif protein TRIM24 is recruited to the HIV-1 Long Terminal Repeat (LTR) by interaction with TFII-I and causes transcriptional elongation by stimulating association of PTEF-b/ CDK9. Because TRIM24 is required for stimulation of transcription from the HIV-1 LTR, we were surprised to find that IACS-9571, a specific inhibitor of the TRIM24 C-terminal bromodomain, induces HIV-1 provirus expression in otherwise untreated cells. IACS-9571 reactivates HIV-1 in T cell lines bearing multiple different provirus models of HIV-1 latency. Additionally, treatment with this TRIM24 bromodomain inhibitor encourages productive HIV-1 expression in newly infected cells and inhibits formation of immediate latent transcriptionally repressed provirus. IACS-9571 synergizes with PMA, ionomycin, TNF-α and PEP005 to activate HIV-1 expression. Furthermore, co-treatment of CD4 + T cells from individuals with HIV-1 on antiretroviral therapy (ART) with PEP005 and IACS-9571 caused robust provirus expression. Notably, IACS-9571 did not cause global activation of T cells; rather, it inhibited induction of IL2 and CD69 expression in human PBMCs and Jurkat T cells treated with PEP005 or PMA. These observations indicate the TRIM24 bromodomain inhibitor IACS-9571 represents a novel HIV-1 latency reversing agent (LRA), and unlike other compounds with this activity, causes partial suppression of T cell activation while inducing expression of latent provirus.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, UBC, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, UBC, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Bhange D, Prasad N, Singh S, Prajapati HK, Maurya SP, Gopalan BP, Nadig S, Chaturbhuj D, Jayaseelan B, Dinesha TR, Ahamed SF, Singh N, Brahmaiah A, Mehta K, Gohil Y, Balakrishnan P, Das BK, Dias M, Gangakhedkar R, Mehendale S, Paranjape RS, Saravanan S, Shet A, Solomon SS, Thakar M, Ranga U. The Evolution of Regulatory Elements in the Emerging Promoter-Variant Strains of HIV-1 Subtype C. Front Microbiol 2021; 12:779472. [PMID: 34899661 PMCID: PMC8660095 DOI: 10.3389/fmicb.2021.779472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
In a multicentric, observational, investigator-blinded, and longitudinal clinical study of 764 ART-naïve subjects, we identified nine different promoter variant strains of HIV-1 subtype C (HIV-1C) emerging in the Indian population, with some of these variants being reported for the first time. Unlike several previous studies, our work here focuses on the evolving viral regulatory elements, not the coding sequences. The emerging viral strains contain additional copies of the existing transcription factor binding sites (TFBS), including TCF-1α/LEF-1, RBEIII, AP-1, and NF-κB, created by sequence duplication. The additional TFBS are genetically diverse and may blur the distinction between the modulatory region of the promoter and the viral enhancer. In a follow-up analysis, we found trends, but no significant associations between any specific variant promoter and prognostic markers, probably because the emerging viral strains might not have established mono infections yet. Illumina sequencing of four clinical samples containing a coinfection indicated the domination of one strain over the other and establishing a stable ratio with the second strain at the follow-up time points. Since a single promoter regulates viral gene expression and constitutes the master regulatory circuit with Tat, the acquisition of additional and variant copies of the TFBS may significantly impact viral latency and latent reservoir characteristics. Further studies are urgently warranted to understand how the diverse TFBS profiles of the viral promoter may modulate the characteristics of the latent reservoir, especially following the initiation of antiretroviral therapy.
Collapse
Affiliation(s)
- Disha Bhange
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Nityanand Prasad
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Swati Singh
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Harshit Kumar Prajapati
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Shesh Prakash Maurya
- HIV Immunology Laboratory, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Bindu Parachalil Gopalan
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Sowmya Nadig
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Devidas Chaturbhuj
- Department of Serology and Immunology, National AIDS Research Institute (NARI), Pune, India
| | - Boobalan Jayaseelan
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Thongadi Ramesh Dinesha
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Syed Fazil Ahamed
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Navneet Singh
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Anangi Brahmaiah
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Kavita Mehta
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Yuvrajsinh Gohil
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Bimal Kumar Das
- HIV Immunology Laboratory, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mary Dias
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Raman Gangakhedkar
- Department of Clinical Sciences, National AIDS Research Institute (NARI), Pune, India
| | - Sanjay Mehendale
- Department of Research, P. G. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Ramesh S Paranjape
- Department of Clinical Sciences, National AIDS Research Institute (NARI), Pune, India
| | - Shanmugam Saravanan
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Anita Shet
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Sunil Suhas Solomon
- YRGCARE Suniti Solomon Outpatient Clinic, Y. R. Gaitonde Center for AIDS Research and Education (YRG CARE), Chennai, India.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Madhuri Thakar
- Department of Serology and Immunology, National AIDS Research Institute (NARI), Pune, India
| | - Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| |
Collapse
|
9
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
10
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|
12
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
SEN SATARUPA, DESHMANE SATISHL, KAMINSKI RAFAL, AMINI SHOHREH, DATTA PRASUNK. Non-Metabolic Role of PKM2 in Regulation of the HIV-1 LTR. J Cell Physiol 2017; 232:517-525. [PMID: 27249540 PMCID: PMC5714288 DOI: 10.1002/jcp.25445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPβ, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- SATARUPA SEN
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - SATISH L. DESHMANE
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - RAFAL KAMINSKI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - PRASUN K. DATTA
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Cetkovská K, Šustová H, Kosztyu P, Uldrijan S. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity. PLoS One 2015; 10:e0144753. [PMID: 26656605 PMCID: PMC4676684 DOI: 10.1371/journal.pone.0144753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter–derived vectors in cancers with Mdm2 gene amplification.
Collapse
Affiliation(s)
- Kateřina Cetkovská
- International Clinical Research Center—Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Šustová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlína Kosztyu
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stjepan Uldrijan
- International Clinical Research Center—Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
15
|
van der Sluis RM, Derking R, Breidel S, Speijer D, Berkhout B, Jeeninga RE. Interplay between viral Tat protein and c-Jun transcription factor in controlling LTR promoter activity in different human immunodeficiency virus type I subtypes. J Gen Virol 2014; 95:968-979. [PMID: 24447950 DOI: 10.1099/vir.0.059642-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line. Here, subtype-specific latency and replication properties were studied in primary PHA-activated T lymphocytes. No major differences in latency and replication capacity were measured among the HIV-1 subtypes. Subtype B and AE LTRs were studied in more detail with regard to a putative AP-1 binding site using luciferase reporter constructs. c-Jun, a member of the AP-1 transcription factor family, can activate both subtype B and AE LTRs, but the latter showed a stronger response, reflecting a closer match with the consensus AP-1 binding site. c-Jun overexpression enhanced Tat-mediated transcription of the viral LTR, but in the absence of Tat inhibited basal promoter activity. Thus, c-Jun can exert a positive or negative effect via the AP-1 binding site in the HIV-1 LTR promoter, depending on the presence or absence of Tat.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Derking
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Seyguerney Breidel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bruce JW, Reddington R, Mathieu E, Bracken M, Young JAT, Ahlquist P. ZASC1 stimulates HIV-1 transcription elongation by recruiting P-TEFb and TAT to the LTR promoter. PLoS Pathog 2013; 9:e1003712. [PMID: 24204263 PMCID: PMC3812036 DOI: 10.1371/journal.ppat.1003712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 01/11/2023] Open
Abstract
Transcription from the HIV-1 LTR promoter efficiently initiates but rapidly terminates because of a non-processive form of RNA polymerase II. This premature termination is overcome by assembly of an HIV-1 TAT/P-TEFb complex at the transactivation response region (TAR), a structured RNA element encoded by the first 59 nt of HIV-1 mRNA. Here we have identified a conserved DNA-binding element for the cellular transcription factor, ZASC1, in the HIV-1 core promoter immediately upstream of TAR. We show that ZASC1 interacts with TAT and P-TEFb, co-operating with TAT to regulate HIV-1 gene expression, and promoting HIV-1 transcriptional elongation. The importance of ZASC1 to HIV-1 transcription elongation was confirmed through mutagenesis of the ZASC1 binding sites in the LTR promoter, shRNAs targeting ZASC1 and expression of dominant negative ZASC1. Chromatin immunoprecipitation analysis revealed that ZASC1 recruits Tat and P-TEFb to the HIV-1 core promoter in a TAR-independent manner. Thus, we have identified ZASC1 as novel regulator of HIV-1 gene expression that functions through the DNA-dependent, RNA-independent recruitment of TAT/P-TEFb to the HIV-1 promoter.
Collapse
Affiliation(s)
- James W. Bruce
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rachel Reddington
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elizabeth Mathieu
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Megan Bracken
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John A. T. Young
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Paul Ahlquist
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tacheny A, Michel S, Dieu M, Payen L, Arnould T, Renard P. Unbiased proteomic analysis of proteins interacting with the HIV-1 5'LTR sequence: role of the transcription factor Meis. Nucleic Acids Res 2012; 40:e168. [PMID: 22904091 PMCID: PMC3505963 DOI: 10.1093/nar/gks733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To depict the largest picture of a core promoter interactome, we developed a one-step DNA-affinity capture method coupled with an improved mass spectrometry analysis process focused on the identification of low abundance proteins. As a proof of concept, this method was developed through the analysis of 230 bp contained in the 5′long terminal repeat (LTR) of the human immunodeficiency virus 1 (HIV-1). Beside many expected interactions, many new transcriptional regulators were identified, either transcription factors (TFs) or co-regulators, which interact directly or indirectly with the HIV-1 5′LTR. Among them, the homeodomain-containing TF myeloid ectopic viral integration site was confirmed to functionally interact with a specific binding site in the HIV-1 5′LTR and to act as a transcriptional repressor, probably through recruitment of the repressive Sin3A complex. This powerful and validated DNA-affinity approach could also be used as an efficient screening tool to identify a large set of proteins that physically interact, directly or indirectly, with a DNA sequence of interest. Combined with an in silico analysis of the DNA sequence of interest, this approach provides a powerful approach to select the interacting candidates to validate functionally by classical approaches.
Collapse
Affiliation(s)
- A Tacheny
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Caveolin-1 suppresses human immunodeficiency virus-1 replication by inhibiting acetylation of NF-κB. Virology 2012; 432:110-9. [PMID: 22748181 DOI: 10.1016/j.virol.2012.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/24/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022]
Abstract
Caveolin-1 is an integral membrane protein primarily responsible for the formation of membrane structures known as caveolae. Caveolae are specialized lipid rafts involved in protein trafficking, cholesterol homeostasis, and a number of signaling functions. It has been demonstrated that caveolin-1 suppresses HIV-1 protein expression. We found that co-transfecting cells with HIV-1 and caveolin-1 constructs, results in a marked decrease in the level of HIV-1 transcription relative to cells transfected with HIV-1 DNA alone. Correspondingly, reduction of endogenous caveolin-1 expression by siRNA-mediated silencing resulted in an enhancement of HIV-1 replication. Further, we observed a loss of caveolin-mediated suppression of HIV-1 transcription in promoter studies with reporters containing mutations in the NF-κB binding site. Our analysis of the posttranslational modification status of the p65 subunit of NF-κB demonstrates hypoacetylation of p65 in the presence of caveolin-1. Since hypoacetylated p65 has been shown to inhibit transcription, we conclude that caveolin-1 inhibits HIV-1 transcription through a NF-κB-dependent mechanism.
Collapse
|
19
|
Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2011; 492:32-41. [PMID: 22037610 DOI: 10.1016/j.gene.2011.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022]
Abstract
Exactly twenty years ago TFII-I was discovered as a biochemical entity that was able to bind to and function via a core promoter element called the Initiator (Inr). Since then several different properties of this signal-induced multifunctional factor were discovered. Here I update these ever expanding functions of TFII-I--focusing primarily on the last ten years since the first review appeared in this journal.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Pathology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
20
|
Dahabieh MS, Ooms M, Malcolm T, Simon V, Sadowski I. Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter. Virology 2011; 418:57-66. [PMID: 21813151 DOI: 10.1016/j.virol.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/02/2011] [Accepted: 07/07/2011] [Indexed: 01/03/2023]
Abstract
Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutations in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. Canada.
| | | | | | | | | |
Collapse
|
21
|
Sterol regulatory element-binding protein 2 couples HIV-1 transcription to cholesterol homeostasis and T cell activation. J Virol 2011; 85:7699-709. [PMID: 21613400 DOI: 10.1128/jvi.00337-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol plays an essential role in the life cycle of several enveloped viruses. Many of these viruses manipulate host cholesterol metabolism to facilitate their replication. HIV-1 infection of CD4(+) T cells activates the sterol regulatory element-binding protein 2 (SREBP2) transcriptional program, which includes genes involved in cholesterol homeostasis. However, the role of SREBP2-dependent transcription in HIV-1 biology has not been fully examined. Here, we identify TFII-I, a gene critical for HIV-1 transcription in activated T cells, as a novel SREBP2 target gene. We found TFII-I expression increased after HIV-1 infection or activation of human primary CD4(+) T cells. We show that inhibition of SREBP2 activity reduced TFII-I induction in response to these stimuli. More importantly, small interfering RNA (siRNA)-mediated gene silencing of either SREBP2 or TFII-I significantly reduced HIV-1 production in CD4(+) T cells. We also found that TFII-I potentiates Tat-dependent viral gene expression, consistent with a role at the level of HIV-1 transcription. Collectively, our results demonstrate for the first time that HIV-1 transcription in T cells is linked to cholesterol homeostasis through control of TFII-I expression by SREBP2.
Collapse
|
22
|
Sacristán C, Schattgen SA, Berg LJ, Bunnell SC, Roy AL, Rosenstein Y. Characterization of a novel interaction between transcription factor TFII-I and the inducible tyrosine kinase in T cells. Eur J Immunol 2009; 39:2584-95. [PMID: 19701889 DOI: 10.1002/eji.200839031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
TCR signaling leads to the activation of kinases such as inducible tyrosine kinase (Itk), a key regulatory protein in T-lymphocyte activation and function. The homolog of Itk in B cells is Bruton's tyrosine kinase, previously shown to bind and phosphorylate the transcription factor TFII-I. TFII-I plays major roles in transcription and signaling. Our purpose herein was twofold: first, to identify some of the molecular determinants involved in TFII-I activation downstream of receptor crosslinking in T cells and second, to uncover the existence of Itk-TFII-I signaling in T lymphocytes. We report for the first time that TFII-I is tyrosine phosphorylated upon TCR, TCR/CD43, and TCR/CD28 co-receptor engagement in human and/or murine T cells. We show that Itk physically interacts with TFII-I and potentiates TFII-I-driven c-fos transcription. We demonstrate that TFII-I is phosphorylated upon co-expression of WT, but not kinase-dead, or kinase-dead/R29C mutant Itk, suggesting these residues are important for TFII-I phosphorylation, presumably via an Itk-dependent mechanism. Structural analysis of TFII-I-Itk interactions revealed that the first 90 residues of TFII-I are dispensable for Itk binding. Mutations within Itk's kinase, pleckstrin-homology, and proline-rich regions did not abolish TFII-I-Itk binding. Our results provide an initial step in understanding the biological role of Itk-TFII-I signaling in T-cell function.
Collapse
Affiliation(s)
- Catarina Sacristán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| | | | | | | | | | | |
Collapse
|
23
|
Malcolm T, Kam J, Pour PS, Sadowski I. Specific interaction of TFII-I with an upstream element on the HIV-1 LTR regulates induction of latent provirus. FEBS Lett 2008; 582:3903-8. [PMID: 18976654 DOI: 10.1016/j.febslet.2008.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/19/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022]
Abstract
RBF-2 is a factor comprised of a USF1/2 heterodimer, whose association with a highly conserved upstream element (RBEIII) on the HIV-1 LTR requires a co-factor TFII-I. We have identified specific nucleotides, immediately 3' of RBEIII that are required for stable association of TFII-I with this region of the LTR. Mutations that inhibit interaction of TFII-I with DNA also prevent stimulation of USF binding to RBEIII, and render the integrated LTR unresponsive to T cell signaling. These results demonstrate an essential role of TFII-I bound at an upstream LTR element for viral replication.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, LSI, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
24
|
Estable MC. In search of a function for the most frequent naturally-occurring length polymorphism (MFNLP) of the HIV-1 LTR: retaining functional coupling, of Nef and RBF-2, at RBEIII? Int J Biol Sci 2007; 3:318-27. [PMID: 17589566 PMCID: PMC1893116 DOI: 10.7150/ijbs.3.318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/07/2007] [Indexed: 11/05/2022] Open
Abstract
Although the prototypical HIV-1 LTR sequences were determined 22 years ago from the initial isolate, elucidating which transcription factors are critical to replication in vivo, has been difficult. One approach has been to examine HIV-1 LTRs that have gone through the gamut of in vivo mutation and selection, in search of absolutely conserved sequences. In this vein, RBEIII sequences are virtually 100% conserved in naturally occurring HIV-1 LTRs. This is because when they are mutated, the MFNLP recreates an RBEIII site. Here, I enumerate some retroviral mutation mechanisms, which could generate the MFNLP. I then review the literature corresponding to the MFNLP, highlighting the discovery in 1999, that RBEIII and MFNLP sequences, bind USF and TFII-I cooperatively, within the context of earlier and later work that suggests a role in HIV-1 activation, through T-cell receptor engagement and the MAPK cascade. One exception to the nearly absolute conservation of RBEIII, has been a group of long term non progressors (LTNP). These patients harbor deletions to the Nef gene. However, the Nef gene overlaps with the LTR, and the LTNP deletions abrogate RBEIII, in the absence of an MFNLP. I suggest that the MFNLP retains functional coupling between the MAPK-mediated effects of Nef and the HIV-1 LTR, through RBEIII. I propose that difficult-to-revert-mutations, to either Nef or RBEIII, result in the convergent LTNP Nef/LTR deletions recently observed. The potential exploitation of this highly conserved protein-binding site, for chimeric transcription factor repression (CTFR) of HIV-1, functionally striving to emulate the LTNP deletions, is further discussed.
Collapse
|
25
|
Malcolm T, Chen J, Chang C, Sadowski I. Induction of chromosomally integrated HIV-1 LTR requires RBF-2 (USF/TFII-I) and Ras/MAPK signaling. Virus Genes 2007; 35:215-23. [PMID: 17546494 DOI: 10.1007/s11262-007-0109-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The HIV-1 LTR is regulated by multiple signaling pathways responsive to T cell activation. In this study, we have examined the contribution of the MAPK, calcineurin-NFAT and TNFalpha-NF-kappaB pathways on induction of chromosomally integrated HIV-1 LTR reporter genes. We find that induction by T-cell receptor (CD3) cross-linking and PMA is completely dependent upon a binding site for RBF-2 (USF1/2-TFII-I), known as RBEIII at -120. The MAPK pathway is essential for induction of the wild type LTR by these treatments, as the MEK inhibitors PD98059 and U0126 block induction by both PMA treatment and CD3 cross-linking. Stimulation of cells with ionomycin on its own has no effect on the integrated LTR, indicating that calcineurin-NFAT is incapable of causing induction in the absence of additional signals, but stimulation with both PMA and ionomycin produces a synergistic response. In contrast, stimulation of NF-kappaB by treatment with TNFalpha causes induction of both the wild type and RBEIII mutant LTRs, an effect that is independent of MAPK signaling. USF1, USF2 and TFII-I from unstimulated cells are capable of binding RBEIII in vitro, and furthermore can be observed on the LTR in vivo by chromatin imunoprecipitation from untreated cells. DNA binding activity of USF1/2 is marginally stimulated by PMA/ ionomycin treatment, and all three factors appear to remain associated with the LTR throughout the course of induction. These results implicate major roles for the MAPK pathway and RBF-2 (USF1/2-TFII-I) in coordinating events necessary for transition of latent integrated HIV-1 to active transcription in response to T cell signaling.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, LSI, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
26
|
Joshi PB, Hirst M, Malcolm T, Parent J, Mitchell D, Lund K, Sadowski I. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques 2007; 42:635-44. [PMID: 17515203 DOI: 10.2144/000112434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The repressed transactivator (RTA) yeast two-hybrid system was developed to enable genetic identification of interactions with transcriptional activator proteins. We have devised modifications of this system that enable its use in screening for inhibitors of protein interactions from small molecule compound libraries. We show that inhibition of protein interactions can be measured by monitoring growth in selective medium containing 3-aminotriazole (3-AT) and using this assay have identified inhibitors of four independent protein interactions in screens with a 23,000 small molecule compound library. Compounds found to inhibit one of the tested interactions between FKBP12 and the transforming growth factor β receptor (TGFβ-R) were validated in vivo and found to inhibit calcineurin-dependent signaling in T cells. One of these compounds was also found to cause elevated basal expression of a TGFβ-R/SMAD-dependent reporter gene. These results demonstrate the capability of the RTA small molecule screening assay for discovery of potentially novel therapeutic compounds.
Collapse
|