1
|
Jain V, Sakhuja P, Agarwal AK, Sirdeshmukh R, Siraj F, Gautam P. Lymph Node Metastasis in Gastrointestinal Carcinomas: A View from a Proteomics Perspective. Curr Oncol 2024; 31:4455-4475. [PMID: 39195316 DOI: 10.3390/curroncol31080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Lymph node metastasis (LNM) is one of the major prognostic factors in human gastrointestinal carcinomas (GICs). The lymph node-positive patients have poorer survival than node-negative patients. LNM is directly associated with the recurrence and poor survival of patients with GICs. The early detection of LNM in patients and designing effective therapies to suppress LNM may significantly impact the survival of these patients. The rapid progress made in proteomic technologies could be successfully applied to identify molecular targets for cancers at high-throughput levels. LC-MS/MS analysis enables the identification of proteins involved in LN metastasis, which can be utilized for diagnostic and therapeutic applications. This review summarizes the studies on LN metastasis in GICs using proteomic approaches to date.
Collapse
Affiliation(s)
- Vaishali Jain
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ravi Sirdeshmukh
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Fouzia Siraj
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| | - Poonam Gautam
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| |
Collapse
|
2
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
3
|
Liu Z, Qin T, Yuan X, Yang J, Shi W, Zhang X, Jia Y, Liu S, Wang J, Li K. Anlotinib Downregulates RGC32 Which Provoked by Bevacizumab. Front Oncol 2022; 12:875888. [PMID: 35664796 PMCID: PMC9158131 DOI: 10.3389/fonc.2022.875888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bevacizumab is the representative drug in antiangiogenic therapy for lung cancer. However, it induced resistance in some neoplasm. Anlotinib, a novel multi-target tyrosine kinase inhibitor which has an inhibitory action on both angiogenesis and malignancy, is possible to reverse the resistance. Methods Transwell migration and invasion experiments of bevacizumab with or without anlotinib were conducted to verify the activated/inhibited ability of lung adenocarcinoma cells. We sequenced A549 cells with enhanced migration and invasion abilities after bevacizumab treatment, screened out the differentially expressed gene and further confirmed by western blot and q-PCR assays. We also investigated immunohistochemical staining of tumor tissue in mice and human lung adenocarcinoma. Results Bevacizumab facilitated migration and invasion of lung adenocarcinoma cells. Differentially expressed gene RGC32 was screened out. Bevacizumab upregulated the expression of RGC32, N-cadherin, and MMP2 through ERK-MAPK and PI3K-AKT pathways. Anlotinib downregulated their expression and reversed the effect of bevacizumab on A549 cells. In vivo experiments confirmed that higher-dose bevacizumab facilitated metastasis in tumor-bearing nude mice and upregulated the expression of RGC32, N-cadherin, and MMP2, whereas anlotinib abrogated its effect. Expression of both RGC32 and N-cadherin positively correlated with lymph node metastasis and stage in lung adenocarcinoma was found. Survival analysis revealed that higher expressions of RGC32 and N-cadherin were associated with poor progression-free survival and overall survival. Conclusions Bevacizumab may promote invasion and metastasis of lung adenocarcinoma cells by upregulating RGC32 through ERK-MAPK and PI3K-AKT pathways to promote epithelial-mesenchymal transition, whereas anlotinib reverses the effect. RGC32 and N-cadherin are independent prognostic factors in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhujun Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaohan Yuan
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,National Key Discipline of Pediatrics (Capital Medical University), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Shi
- Research and Development Department, Jiangsu Chia-Tai Tian Qing Pharmaceutical Co., Ltd., Nanjing, China
| | - Xiaoling Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanan Jia
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shaochuan Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Li
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Yin Y, Zhu ZX, Li Z, Chen YS, Zhu WM. Role of mesenteric component in Crohn’s disease: A friend or foe? World J Gastrointest Surg 2021; 13:1536-1549. [PMID: 35070062 PMCID: PMC8727179 DOI: 10.4240/wjgs.v13.i12.1536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/01/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease (CD) is a complex and relapsing gastrointestinal disease with mesenteric alterations. The mesenteric neural, vascular, and endocrine systems actively take part in the gut dysbiosis-adaptive immunity-mesentery-body axis, and this axis has been proven to be bidirectional. The abnormalities of morphology and function of the mesenteric component are associated with intestinal inflammation and disease progress of CD via responses to afferent signals, neuropeptides, lymphatic drainage, adipokines, and functional cytokines. The hypertrophy of mesenteric adipose tissue plays important roles in the pathogenesis of CD by secreting large amounts of adipokines and representing a rich source of proinflammatory or profibrotic cytokines. The vascular alteration, including angiogenesis and lymphangiogenesis, is concomitant in the disease course of CD. Of note, the enlarged and obstructed lymphatic vessels, which have been described in CD patients, are likely related to the early onset submucosa edema and being a cause of CD. The function of mesenteric lymphatics is influenced by endocrine of mesenteric nerves and adipocytes. Meanwhile, the structure of the mesenteric lymphatic vessels in hypertrophic mesenteric adipose tissue is mispatterned and ruptured, which can lead to lymph leakage. Leaky lymph factors can in turn stimulate adipose tissue to proliferate and effectively elicit an immune response. The identification of the role of mesentery and the crosstalk between mesenteric tissues in intestinal inflammation may shed light on understanding the underlying mechanism of CD and help explore new therapeutic targets.
Collapse
Affiliation(s)
- Yi Yin
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Xing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yu-Sheng Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Ming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
5
|
Roy S, Banerjee P, Ekser B, Bayless K, Zawieja D, Alpini G, Glaser SS, Chakraborty S. Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2052-2063. [PMID: 34509441 PMCID: PMC8647434 DOI: 10.1016/j.ajpath.2021.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kayla Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, Indiana; Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon S Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
| |
Collapse
|
6
|
Systemic Sirolimus Therapy for Infants and Children With Pulmonary Vein Stenosis. J Am Coll Cardiol 2021; 77:2807-2818. [PMID: 34082911 DOI: 10.1016/j.jacc.2021.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Anatomic interventions for pulmonary vein stenosis (PVS) in infants and children have been met with limited success. Sirolimus, a mammalian target of rapamycin inhibitor, has demonstrated promise as a primary medical therapy for PVS, but the impact on patient survival is unknown. OBJECTIVES The authors sought to investigate whether mTOR inhibition with sirolimus as a primary medical therapy would improve outcomes in high-risk infants and children with PVS. METHODS In this single-center study, patients with severe PVS were considered for systemic sirolimus therapy (SST) following a strict protocol while receiving standardized surveillance and anatomic therapies. The SST cohort was compared with a contemporary control group. The primary endpoint for this study was survival. The primary safety endpoint was adverse events (AEs) related to SST. RESULTS Between 2015 and 2020, our PVS program diagnosed and treated 67 patients with ≥moderate PVS. Of these, 15 patients were treated with sirolimus, whereas the remaining patients represent the control group. There was 100% survival in the SST group compared with 45% survival in the control group (log-rank p = 0.004). A sensitivity analysis was completed to address survival bias using median time from diagnosis of PVS to SST. A survival advantage persisted (log-rank p = 0.027). Two patients on sirolimus developed treatable AEs. Patients in the SST group underwent frequent transcatheter interventions with 3.7 catheterizations per person-year (25th to 75th percentile: 2.7 to 4.4 person-years). Median follow up time was 2.2 years (25th to 75th percentile: 1.2 to 2.9 years) in the SST group versus 0.9 years (25th to 75th percentile: 0.5 to 2.7 years) in the control group. CONCLUSIONS The authors found a survival benefit associated with SST in infants and children with moderate-to-severe PVS. This survival benefit persisted after adjusting the analysis for survival bias. There were 2 mild AEs associated with SST during the study period; both patients were able to resume therapy without recurrence.
Collapse
|
7
|
Arcucci V, Stacker SA, Achen MG. Control of Gene Expression by Exosome-Derived Non-Coding RNAs in Cancer Angiogenesis and Lymphangiogenesis. Biomolecules 2021; 11:249. [PMID: 33572413 PMCID: PMC7916238 DOI: 10.3390/biom11020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract: Tumour angiogenesis and lymphangiogenesis are hallmarks of cancer and have been associated with tumour progression, tumour metastasis and poor patient prognosis. Many factors regulate angiogenesis and lymphangiogenesis in cancer including non-coding RNAs which are a category of RNAs that do not encode proteins and have important regulatory functions at transcriptional and post-transcriptional levels. Non-coding RNAs can be encapsulated in extracellular vesicles called exosomes which are secreted by tumour cells or other cells in the tumour microenvironment and can then be taken up by the endothelial cells of blood vessels and lymphatic vessels. The "delivery" of these non-coding RNAs to endothelial cells in tumours can facilitate tumour angiogenesis and lymphangiogenesis. Here we review recent findings about exosomal non-coding RNAs, specifically microRNAs and long non-coding RNAs, which regulate tumour angiogenesis and lymphangiogenesis in cancer. We then focus on the potential use of these molecules as cancer biomarkers and opportunities for exploiting ncRNAs for the treatment of cancer.
Collapse
Affiliation(s)
- Valeria Arcucci
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville VIC 3050, Australia
| | - Marc G. Achen
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy VIC 3065, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy VIC 3065, Australia
| |
Collapse
|
8
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
9
|
|
10
|
Chang CW, Seibel AJ, Song JW. Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation 2019; 26:e12547. [PMID: 30946511 DOI: 10.1111/micc.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Immense progress in microscale engineering technologies has significantly expanded the capabilities of in vitro cell culture systems for reconstituting physiological microenvironments that are mediated by biomolecular gradients, fluid transport, and mechanical forces. Here, we examine the innovative approaches based on microfabricated vessels for studying lymphatic biology. To help understand the necessary design requirements for microfluidic models, we first summarize lymphatic vessel structure and function. Next, we provide an overview of the molecular and biomechanical mediators of lymphatic vessel function. Then we discuss the past achievements and new opportunities for microfluidic culture models to a broad range of applications pertaining to lymphatic vessel physiology. We emphasize the unique attributes of microfluidic systems that enable the recapitulation of multiple physicochemical cues in vitro for studying lymphatic pathophysiology. Current challenges and future outlooks of microscale technology for studying lymphatics are also discussed. Collectively, we make the assertion that further progress in the development of microscale models will continue to enrich our mechanistic understanding of lymphatic biology and physiology to help realize the promise of the lymphatic vasculature as a therapeutic target for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Kang X, Lin Z, Xu M, Pan J, Wang ZW. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif 2019; 52:e12605. [PMID: 30945363 PMCID: PMC6536421 DOI: 10.1111/cpr.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.
Collapse
Affiliation(s)
- Xiaodiao Kang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minhui Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Ji L, Wu M, Li Z. Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway. Molecules 2018; 23:molecules23082047. [PMID: 30111763 PMCID: PMC6222666 DOI: 10.3390/molecules23082047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the effect of Ru (Rut) on angiogenesis, and the underlying regulation mechanism of signal transduction. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, adhesion inhibition experiment, migration inhibition experiment, and chick embryo chorioallantoic membrane (CAM) assays were performed on models of angiogenesis. The potential targets of rutaecarpine (Ru) were reverse screened with Discovery Studio 2017. The interaction between the compound and target were detected by surface plasmon resonance (SPR), enzyme-activity experiment, and Western blot assay. The obtained results confirmed that Ru exhibited modest inhibitory activity against human umbilical vein endothelial cells (HUVECs) (IC50 =16.54 ± 2.4 μM) and remarkable inhibitive effect against the migration and adhesion of HUVECs, as well as significant anti-angiogenesis activities in the CAM assay. The possible targets of vascular endothelial growth factor receptor 2 (VEGFR2) were identified by computer-aided simulation. Results showed a good binding relationship between the ligand and target through molecular docking, and this relationship was confirmed by SPR analysis. Furthermore, enzyme-activity experiment and western blot assay showed that Ru remarkably inhibited the activity of VEGFR2 and blocked the VEGFR2-mediated Akt/ (mTOR)/p70s6k signaling pathway in vitro. Ru can be a potential drug candidate for cancer prevention and cancer therapy.
Collapse
Affiliation(s)
- Lijun Ji
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Mingfei Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
13
|
Sáinz-Jaspeado M, Claesson-Welsh L. Cytokines regulating lymphangiogenesis. Curr Opin Immunol 2018; 53:58-63. [PMID: 29680577 DOI: 10.1016/j.coi.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Lymphatic vessels are established by differentiation of lymphendothelial progenitors during embryogenesis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing ones is rare in the healthy adult but takes place during pathological conditions such as inflammation, tissue repair and tumor growth. Conditions of dysfunctional lymphatics exist after surgical interventions or in certain genetic diseases. A key lymphangiogenic stimulator is vascular endothelial growth factor-C (VEGFC) acting on VEGF receptor-3 (VEGFR3) expressed on lymphendothelial cells. Other cytokines may act directly to regulate lymphangiogenesis positively or negatively, or indirectly by inducing expression of VEGFC. This review describes different known lymphangiogenic cytokines, their mechanism of action and role in lymphangiogenesis in health and disease.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden.
| |
Collapse
|
14
|
Kumar A, Sunita P, Jha S, Pattanayak SP. Daphnetin inhibits TNF-α and VEGF-induced angiogenesis through inhibition of the IKKs/IκBα/NF-κB, Src/FAK/ERK1/2 and Akt signalling pathways. Clin Exp Pharmacol Physiol 2017; 43:939-50. [PMID: 27297262 DOI: 10.1111/1440-1681.12608] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/21/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
Abstract
Coumarins, identified as plant secondary metabolites possess diverse biological activities including anti-angiogenic properties. Daphnetin (DAP), a plant derived dihydroxylated derivative of coumarin has shown significant pharmacological properties such as anticancer, anti-arthritic and anti-inflammatory. The present study was performed to investigate the anti-angiogenic potential of DAP, focusing on the mechanism of action. The in vivo anti-angiogenic potential of DAP was evaluated by vascular endothelial growth factor (VEGF)-induced rat aortic ring (RAR) assay and chick chorioallantoic membrane (CAM) assay. For in vitro evaluation, wounding migration, transwell invasion, tube formation and apoptosis assays were performed on VEGF (8 ng/mL)-induced human umbilical vein endothelial cells (HUVECs). The cellular mechanism of DAP was examined on TNFα (10 ng/mL) and VEGF-induced HUVECs by extracting the mRNA and protein levels using RT-qPCR and western blotting. Our data demonstrated that DAP inhibited the in vivo angiogenesis in the RAR and CAM assay. DAP also inhibited the different steps of angiogenesis, such as migration, invasion, and tube formation in HUVECs. DAP inhibited nuclear factor-κB signalling together including TNF-α induced IκBα degradation; phosphorylation of IκB kinase (IKKα/β) and translocation of the NF-κB-p65 protein. Furthermore, western blotting revealed that DAP significantly down-regulated the VEGF-induced signalling such as c-Src, FAK, ERK1/2 and the related phosphorylation of protein kinase B (Akt) and VEGFR2 expressions. DAP reduced the elevated mRNA expression of iNOS, MMP2 and also, induced apoptosis in VEGF-stimulated HUVECs by the caspase-3 dependent pathway. Taken together, this study reveals that DAP may have novel prospective as a new multi-targeted medication for the anti-angiogenesis and cancer therapy.
Collapse
Affiliation(s)
- Abhishek Kumar
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, India
| | - Priyashree Sunita
- Government Pharmacy Institute, Department of Health, Family Welfare and Medical Education, Government of Jharkhand, Bariatu, Ranchi, India
| | - Shivesh Jha
- Division of Pharmacognosy and Phytochemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology University, Mesra, Ranchi, India
| | - Shakti Prasad Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, India
| |
Collapse
|
15
|
Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells. Inflamm Res 2016; 64:1023-32. [PMID: 26499405 DOI: 10.1007/s00011-015-0888-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Niclosamide is known to have anti-cancer and anti-inflammatory activities; however, its therapeutic mechanism has not been defined. In this study, to explain the therapeutic mechanism of niclosamide, we examined the effect of niclosamide on endothelial cell activation,leukocyte integration, proliferation, migration and angiogenesis in vitro. METHODS Endothelia-leukocyte adhesion assays were used to assess primary cultures of human umbilical vein endothelial cells’ (HUVECs) activation following TNF-α treatment. Each step of angiogenesis was evaluatedin vitro, including endothelial cell proliferation, migration and tube formation. Proliferation was examined using EdU assays, while wound migration assays and transwell assays were used to evaluate cell migration; cord like structure formation assays on Matrigel were used to assess tube formation. In vivo matrigel plug assay was used to assess angiogenesis. The protein expression was measured using western blot. RESULTS Niclosamide reduced the adhesion of human monocyte cells to HUVECs. Niclosamide also reduced protein expression of VCAM-1 and ICAM1 in HUVECs.Niclosamide significantly inhibited HUVEC proliferation,migration and cord-like structure formation. Niclosamide also suppresses VEGF-induced angiogenesis in vivo.Niclosamide attenuated IKK-mediated activation of NF-κB pathway in TNFα-induced endothelial cells. Niclosamide also suppresses VEGF-induced endothelial VEGFR2 activation and downstream P-AKT, P-mTOR and P-p70S6K. CONCLUSIONS Niclosamide exerted a potent effect on HUVECs activation, suggesting that it might function via an endothelia-based mechanism in the treatment of various diseases, including rheumatoid arthritis and cancer.
Collapse
|
16
|
Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett 2015; 361:155-63. [PMID: 25700776 DOI: 10.1016/j.canlet.2015.02.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Cancerous tissue is a complex mix of tumor cells, stromal cells and extracellular matrix (ECM), all of which make up a disordered and aggressive niche in comparison with organized and homeostatic normal tissue. It is well accepted that the tumor microenvironment plays an indispensable role in cancer development, and thus can be recognized as an additional cancer hallmark alongside those that are well established. In breast cancer, cancer associated fibroblasts (CAFs) are the predominant cellular components and play a centric role in the tumor microenvironment since they not only promote cancer initiation, growth, invasion, metastasis and therapeutic resistance but are also involved in microenvironmental events including angiogenesis/lymphangiogenesis, ECM remodeling, cancer-associated inflammation and metabolism reprogramming, all of which are known to have pre-malignancy potency. At the molecular level, there is a sophisticated network underlying the interactions between CAFs and epithelial cells as well as other stromal components. Accordingly, targeting CAFs provides a novel strategy in cancer therapy. Herein, we summarize the current understanding of the role of CAFs in breast cancer.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Abstract
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Collapse
|
18
|
α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Mol Cancer 2013; 12:147. [PMID: 24261856 PMCID: PMC4221991 DOI: 10.1186/1476-4598-12-147] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/19/2013] [Indexed: 11/25/2022] Open
Abstract
Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.
Collapse
|
19
|
Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA. Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol Cancer 2013; 12:82. [PMID: 23895055 PMCID: PMC3733984 DOI: 10.1186/1476-4598-12-82] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022] Open
Abstract
Background Anti-angiogenesis targeting VEGFR2 has been considered as an important strategy for cancer therapy. Tylophorine is known to possess anti-inflammatory and antitumor activity, but its roles in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is still unknown. Therefore, we examined its anti-angiogenic effects and mechanisms in vitro and in vivo. Methods We used tylophorine and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro and Ehrlich ascites carcinoma (EAC) tumor in vivo. Results Tylophorine significantly inhibited a series of VEGF-induced angiogenesis processes including proliferation, migration, and tube formation of endothelial cells. Besides, it directly inhibited VEGFR2 tyrosine kinase activity and its downstream signaling pathways including Akt, Erk and ROS in endothelial cells. Using HUVECs we demonstrated that tylophorine inhibited VEGF-stimulated inflammatory responses including IL-6, IL-8, TNF-α, IFN-γ, MMP-2 and NO secretion. Tylophorine significantly inhibited neovascularization in sponge implant angiogenesis assay and also inhibited tumor angiogenesis and tumor growth in vivo. Molecular docking simulation indicated that tylophorine could form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion Tylophorine exerts anti-angiogenesis effects via VEGFR2 signaling pathway thus, may be a viable drug candidate in anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Sarita Saraswati
- Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
20
|
The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25:1539-45. [PMID: 23571269 DOI: 10.1016/j.cellsig.2013.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
Abstract
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.
Collapse
|
21
|
Calpain 1 and -2 play opposite roles in cord formation of lymphatic endothelial cells via eNOS regulation. Hum Cell 2013; 25:36-44. [PMID: 22315009 DOI: 10.1007/s13577-012-0042-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/16/2012] [Indexed: 01/05/2023]
Abstract
Calpains are a family of calcium-dependent proteases. Two isoforms, calpain 1 and 2, have been implicated in angiogenesis and endothelial cell adhesion and migration. Calpains regulate the function of eNOS;however, the relation of calpains and eNOS to lymphangiogenesisis still unclear. In the present study, we evaluated the role of calpain and eNOS in the formation of cords by lymphatic endothelial cells on Matrigel. Human lymphatic microvascular dermal-derived endothelial cells were transfected with siRNA against calpain 1 or 2. Calpain 2 knockdown, but not calpain 1 knockdown, significantly reduced cord formation, adhesion, and migration on Matrigel. These decreases correlated with a reduction in eNOS, and phosphorylated eNOS and Hsp90 levels, as assayed by immunoprecipitation and western blotting. In contrast, the knockdown of calpain 1, but not calpain 2,increased cell adhesion, enhanced migration, and stabilized late-stage cord formation by increasing cord length compared to the control. These differences correlated with an increase in the level of phosphorylated eNOS. The results indicated that the functions of calpains and eNOS are important for cord formation by lymphatic endothelial cells. For the first time, we have found different functions of calpain 1 and 2. Calpain 1 is involved in the degradation of eNOS and Hsp90 and the phosphorylation of eNOS,while calpain 2 regulates eNOS phosphorylation during cord formation by lymphatic endothelial cells on Matrigel.
Collapse
|
22
|
Saraswati S, Agrawal SS. Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer Lett 2013; 332:83-93. [PMID: 23348691 DOI: 10.1016/j.canlet.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/27/2022]
Abstract
In this study, we investigated the mechanism of brucine in tumor angiogenesis. We found that brucine inhibits VEGF-induced cell proliferation, chemotactic motility, and the formation of capillary-like structures in HUVECs in a dose-dependent manner. Brucine suppresses VEGF- induced p-VEGFR2 kinase activity and inhibits neovascularization in vivo. Brucine inhibits the downstream protein kinases of VEGFR2, including Src, FAK, ERK, AKT and mTOR. And further downregulates levels of VEGF, NO, IL-6, IL-8, TNF-α and IFN-γ in HUVECs. Taken together, our study suggests that brucine potently suppresses angiogenesis by targeting VEGFR2 activation and may be a viable drug candidate in anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Sarita Saraswati
- Genome Research Laboratory, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar Sec-3, MB Road, New Delhi 110 017, India.
| | | |
Collapse
|
23
|
Jiang X, Skibba M, Zhang C, Tan Y, Xin Y, Qu Y. The roles of fibroblast growth factors in the testicular development and tumor. J Diabetes Res 2013; 2013:489095. [PMID: 24159602 PMCID: PMC3789391 DOI: 10.1155/2013/489095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) are classically known as hormonal factors and recent studies have revealed that FGFs have a key role in regulating growth and development of several reproductive organs, including the testis. The testis is mainly consisted of germ cells, Sertoli cells and Leydig cells to develop and maintain the male phenotype and reproduction. This review summarizes the structure and fuctions of testis, the roles of FGFs on testicular development and potential involvement in testicular tumor and its regulatory mechanism. Among 23 members of FGFs, the FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, and FGF-21 were involved and describe in details. Understanding the roles and mechanism of FGFs is the foundation to modeling testicular development and treatments in testicular disease. Therefore, in the last part, the potential therapy with FGFs for the testis of cancer and diabetes was also discussed.
Collapse
Affiliation(s)
- Xin Jiang
- The First Hospital of Jilin University, Changchun 130021, China
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Melissa Skibba
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Chi Zhang
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China
| | - Yi Tan
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China
| | - Ying Xin
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun 130021, China
- *Ying Xin: and
| | - Yaqin Qu
- The First Hospital of Jilin University, Changchun 130021, China
- *Yaqin Qu:
| |
Collapse
|
24
|
Ichise T, Yoshida N, Ichise H. FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFβ signalling via Smad2. J Cell Sci 2013; 127:845-57. [DOI: 10.1242/jcs.137836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial cell (LEC) fate decision program during development has been revealed. However, the mechanism underlying the maintenance of differentiated LEC identity remains largely unknown. Here, we show that fibroblast growth factor 2 (FGF2) plays a fundamental role in maintaining a differentiated LEC trait. In addition to demonstrating the appearance of alpha-smooth muscle actin (αSMA) expressing LECs in mouse lymphedematous skin in vivo, we found that mouse-immortalized LECs lose their characteristics and undergo endothelial-to-mesenchymal transition (EndMT) when cultured in FGF2-depleted medium. FGF2 depletion acted synergistically with transforming growth factor (TGF) β to induce EndMT. We also found that H-Ras-overexpressing LECs were resistant to EndMT. Ras activation not only upregulated FGF2-induced Erk MAPK activation, but also suppressed TGFβ-induced activation of Smad2 by modulating Smad2 phosphorylation via Erk MAPKs. These results suggest that FGF2 may regulate LEC-specific gene expression and suppress TGFβ signalling in LECs via Smad2 in a Ras/Erk MAP kinase-dependent manner. Taken together, our findings provide a new insight into the FGF2/Ras/Erk MAPK-dependent mechanism that maintains and modulates the LEC trait.
Collapse
|
25
|
Pratheeshkumar P, Son YO, Budhraja A, Wang X, Ding S, Wang L, Hitron A, Lee JC, Kim D, Divya SP, Chen G, Zhang Z, Luo J, Shi X. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One 2012; 7:e52279. [PMID: 23300633 PMCID: PMC3534088 DOI: 10.1371/journal.pone.0052279] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Songze Ding
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lei Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Andrew Hitron
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donghern Kim
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sasidharan Padmaja Divya
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
26
|
Blocking Fibroblast Growth Factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis. PLoS One 2012; 7:e39540. [PMID: 22761819 PMCID: PMC3382584 DOI: 10.1371/journal.pone.0039540] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/22/2012] [Indexed: 11/22/2022] Open
Abstract
Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread.
Collapse
|
27
|
Coso S, Zeng Y, Opeskin K, Williams ED. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis. PLoS One 2012; 7:e39558. [PMID: 22745786 PMCID: PMC3382126 DOI: 10.1371/journal.pone.0039558] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023] Open
Abstract
Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.
Collapse
Affiliation(s)
- Sanja Coso
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Yiping Zeng
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Kenneth Opeskin
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomical Pathology, St Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Elizabeth D. Williams
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
28
|
Coso S, Harrison I, Harrison CB, Vinh A, Sobey CG, Drummond GR, Williams ED, Selemidis S. NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts. Antioxid Redox Signal 2012; 16:1229-47. [PMID: 22229841 DOI: 10.1089/ars.2011.4489] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and peroxynitrite are generated ubiquitously by all mammalian cells and have been understood for many decades as inflicting cell damage and as causing cancer by oxidation and nitration of macromolecules, including DNA, RNA, proteins, and lipids. RECENT ADVANCES A current concept suggests that ROS can also promote cell signaling pathways triggered by growth factors and transcription factors that ultimately regulate cell proliferation, differentiation, and apoptosis, all of which are important hallmarks of tumor cell proliferation and angiogenesis. Moreover, an emerging concept indicates that ROS regulate the functions of immune cells that infiltrate the tumor environment and stimulate angiogenesis, such as macrophages and specific regulatory T cells. CRITICAL ISSUES In this article, we highlight that the NADPH oxidase family of ROS-generating enzymes are the key sources of ROS and, thus, play an important role in redox signaling within tumor, endothelial, and immune cells thereby promoting tumor angiogenesis. FUTURE DIRECTIONS Knowledge of these intricate ROS signaling pathways and identification of the culprit NADPH oxidases is likely to reveal novel therapeutic opportunities to prevent angiogenesis that occurs during cancer and which is responsible for the revascularization after current antiangiogenic treatment.
Collapse
Affiliation(s)
- Sanja Coso
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Guan RN, Zhou XD. Role of Akt-mediated VEGF signaling pathway in lymphangiogenesis in gastric cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:541-545. [DOI: 10.11569/wcjd.v20.i7.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor lymphangiogenesis plays a vital role in lymphatic metastasis of solid tumors and is an important index for evaluation of prognosis. However, due to the lack of understanding of lymphatic endothelium-specific factors and the limitation of detection techniques, the specific mechanisms of lymphatic metastasis and molecule pathways involved in tumor lymphangiogenesis are not well understood. Akt signal pathway is an important transduction pathway that is closely related with the occurrence, proliferation, anti-apoptosis and metastasis of tumors. It has been found that Akt signaling has a close relationship with VEGF signal pathway and mediates lymphatic metastasis or tumor lymphangiogenesis. This article will summarize the role of Akt-mediated VEGF signaling pathway in lymphangiogenesis in gastric cancer.
Collapse
|
30
|
Lin C, Wu M, Dong J. Quercetin-4'-O-β-D-glucopyranoside (QODG) inhibits angiogenesis by suppressing VEGFR2-mediated signaling in zebrafish and endothelial cells. PLoS One 2012; 7:e31708. [PMID: 22348123 PMCID: PMC3278463 DOI: 10.1371/journal.pone.0031708] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays an important role in many physiological and pathological processes. Identification of small molecules that block angiogenesis and are safe and affordable has been a challenge in drug development. Hypericum attenuatum Choisy is a Chinese herb medicine commonly used for treating hemorrhagic diseases. The present study investigates the anti-angiogenic effects of quercetin-4'-O-β-D-glucopyranoside (QODG), a flavonoid isolated from Hypericum attenuatum Choisy, in vivo and in vitro, and clarifies the underlying mechanism of the activity. METHODOLOGY/PRINCIPAL FINDINGS Tg(fli1:EGFP) transgenic zebrafish embryos were treated with different concentrations of quercetin-4'-O-β-D-glucopyranoside (QODG) (20, 60, 180 µM) from 6 hours post fertilisation (hpf) to 72 hpf, and adult zebrafish were allowed to recover in different concentrations of QODG (20, 60, 180 µM) for 7 days post amputation (dpa) prior morphological observation and angiogenesis phenotypes assessment. Human umbilical vein endothelial cells (HUVECs) were treated with or without VEGF and different concentrations of QODG (5, 20, 60, 180 µM), then tested for cell viability, cell migration, tube formation and apoptosis. The role of VEGFR2-mediated signaling pathway in QODG-inhibited angiogenesis was evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting. CONCLUSION/SIGNIFICANCE Quercetin-4'-O-β-D-glucopyranoside (QODG) was shown to inhibit angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish in vivo via suppressing VEGF-induced phosphorylation of VEGFR2. Our results further indicate that QODG inhibits angiogenesis via inhibition of VEGFR2-mediated signaling with the involvement of some key kinases such as c-Src, FAK, ERK, AKT, mTOR and S6K and induction of apoptosis. Together, this study reveals, for the first time, that QODG acts as a potent VEGFR2 kinase inhibitor, and exerts the anti-angiogenic activity at least in part through VEGFR2-mediated signaling pathway.
Collapse
Affiliation(s)
- Chen Lin
- Pharmacy School, Wenzhou Medical College, Wenzhou, Zhejiang Province, People's Republic of China
| | - Menghua Wu
- Pharmacy School, Wenzhou Medical College, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical College, Wenzhou, Zhejiang Province, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011:329098. [PMID: 21904669 PMCID: PMC3166778 DOI: 10.4061/2011/329098] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Angela Bononi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rahier JF, De Beauce S, Dubuquoy L, Erdual E, Colombel JF, Jouret-Mourin A, Geboes K, Desreumaux P. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther 2011; 34:533-43. [PMID: 21736598 DOI: 10.1111/j.1365-2036.2011.04759.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Involvement of the lymphatic system in inflammatory bowel disease (IBD) has been suggested. AIMS To examine the density and distribution of lymphatic vessels (LV) within inflamed and non-inflamed wall sections of IBD patients compared with controls, and to evaluate expression of major lymphangiogenic factors. METHODS Ileal and colon specimens of 22 patients with Crohn's disease (CD), 16 patients with ulcerative colitis (UC) and 11 controls were studied. Quantification of LV was performed using immunohistochemistry with podoplanin and D2-40 antibodies on seven randomly selected fields. Mucosal expression of podoplanin and lymphangiogenic factor mRNA was measured using PCR. RESULTS In CD patients, lymphatic density was significantly increased in non-inflamed and inflamed ileal (P < 0.01 and P < 0.001) and colonic (P < 0.01 and P < 0.001) mucosa compared to controls. Podoplanin mRNA levels were similar in non-inflamed mucosal areas and controls, whereas a four- and sixfold increase was seen in inflamed ileal and colonic areas (P < 0.05). In UC, lymphatic density increased fourfold in non-inflamed (P < 0.001) and fivefold in inflamed colonic mucosa (P < 0.001) compared with controls. An increase in podoplanin mRNA levels was seen in both non-inflamed and inflamed areas (P < 0.01) compared with controls. In CD and UC, lymphatics were found throughout the inflamed mucosa, including the upper half of the lamina propria. Expression of lymphangiogenic factors was similar in patients and controls. CONCLUSIONS Increased density of lymphatic vessels is a constant feature of IBD and is present in non-inflamed areas. It is transmural in CD and confined to the mucosa in UC. Its origin remains unclear.
Collapse
Affiliation(s)
- J-F Rahier
- Department of Gastroenterology, Cliniques Universitaires UCL Mont-Godinne, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011; 12:30-42. [PMID: 21190521 DOI: 10.2174/138920311795659407] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 01/30/2023]
Abstract
Tumor cell migration and invasion play fundamental roles in cancer metastasis. The mammalian target of rapamycin (mTOR), a highly conserved and ubiquitously expressed serine/threonine (Ser/Thr) kinase, is a central regulator of cell growth, proliferation, differentiation and survival. Recent studies have shown that mTOR also plays a critical role in the regulation of tumor cell motility, invasion and cancer metastasis. Current knowledge indicates that mTOR functions as two distinct complexes, mTORC1 and mTORC2. mTORC1 phosphorylates p70 S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), and regulates cell growth, proliferation, survival and motility. mTORC2 phosphorylates Akt, protein kinase C α (PKCα) and the focal adhesion proteins, and controls the activities of the small GTPases (RhoA, Cdc42 and Rac1), and regulates cell survival and the actin cytoskeleton. Here we briefly review recent knowledge of mTOR complexes and the role of mTOR signaling in tumor cell migration and invasion. We also discuss recent efforts about the mechanism by which rapamycin, a specific inhibitor of mTOR, inhibits cell migration, invasion and cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
35
|
Linares PM, Gisbert JP. Role of growth factors in the development of lymphangiogenesis driven by inflammatory bowel disease: a review. Inflamm Bowel Dis 2011; 17:1814-21. [PMID: 21744436 DOI: 10.1002/ibd.21554] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
Studies on angiogenesis and lymphangiogenesis have gained special relevance in research into factors potentially influencing the pathogenesis and course of inflammatory bowel disease (IBD). The results of the few existing studies on the distribution and density of lymphatic vessels and blood vessels in the context of IBD are controversial. Studies using the specific lymphatic marker podoplanin have revealed a significantly large number of lymphatic vessels in the colonic mucosa of patients with ulcerative colitis and Crohn's disease (compared to patients with normal mucosa), whereas other authors have found no significant differences. However, the role of vascular endothelial growth factor (VEGF) tyrosine-kinase receptor 3 (VEGFR-3) in the onset of IBD has not been analyzed. In recent years new biochemical, molecular, and immunohistochemical studies indicate that several families of growth factors, such as the VEGF family and their receptors, fibroblast growth factor-2, platelet-derived growth factor-BB, hepatocyte growth factor, the angiopoietin system, and integrins may play an important role in the onset of IBD. To date, no comparative studies have analyzed these growth factors and specific lymphatic markers. We examine how growth factors are involved in the development of pathological lymphangiogenesis in patients with IBD and determine whether they play a crucial role in disease exacerbation.
Collapse
Affiliation(s)
- Pablo M Linares
- Servicio de Aparato Digestivo, Hospital Universitario La Princesa and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | | |
Collapse
|
36
|
Abstract
Tumor cell migration is a key step in the formation of cancer metastasis. The mammalian target of rapamycin (mTOR), a highly conserved and ubiquitously expressed serinethreonine kinase, has been intensely studied for over a decade as a central regulator of cell growth, proliferation, differentiation, and survival. Recent data have shown that mTOR also plays a critical role in the regulation of tumor cell motility and cancer metastasis. Here, we briefly review recent advances regarding mTOR signaling in tumor cell motility. We also discuss recent findings about the mechanism by which rapamycin, a specific inhibitor of mTOR, inhibits cell motility in vitro and metastasis in vivo.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
37
|
Datta K, Muders M, Zhang H, Tindall DJ. Mechanism of lymph node metastasis in prostate cancer. Future Oncol 2010; 6:823-36. [PMID: 20465393 DOI: 10.2217/fon.10.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Detection of lymph node metastases indicates poor prognosis for prostate cancer patients. Therefore, elucidation of the mechanism(s) of lymph node metastasis is important to understand the progression of prostate cancer and also to develop therapeutic interventions. In this article, the known mechanisms for lymph node metastasis are discussed and the involvement of lymphatic vessels in prostate cancer lymph node metastasis is comprehensively summarized. In addition, contradictory findings regarding the importance of lymphangiogenesis in facilitating lymph node metastasis in prostate cancer are pointed out and reconcilation is attempted.
Collapse
Affiliation(s)
- Kaustubh Datta
- Department of Biochemistry & Molecular Biology, Gugg 17-93, Mayo Clinic Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Netrin-4, a laminin-related secreted protein is an axon guidance cue recently shown essential outside of the nervous system, regulating mammary and lung morphogenesis as well as blood vascular development. Here, we show that Netrin-4, at physiologic doses, induces proliferation, migration, adhesion, tube formation and survival of human lymphatic endothelial cells in vitro comparable to well-characterized lymphangiogenic factors fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), and vascular endothelial growth factor-C (VEGF-C). Netrin-4 stimulates phosphorylation of intracellular signaling components Akt, Erk and S6, and their specific inhibition antagonizes Netrin-4-induced proliferation. Although Netrin receptors Unc5B and neogenin, are expressed by human lymphatic endothelial cells, suppression of either or both does not suppress Netrin-4-promoted in vitro effects. In vivo, Netrin-4 induces growth of lymphatic and blood vessels in the skin of transgenic mice and in breast tumors. Its overexpression in human and mouse mammary carcinoma cancer cells leads to enhanced metastasis. Finally, Netrin-4 stimulates in vitro and in vivo lymphatic permeability by activating small GTPases and Src family kinases/FAK, and down-regulating tight junction proteins. Together, these data provide evidence that Netrin-4 is a lymphangiogenic factor contributing to tumor dissemination and represents a potential target to inhibit metastasis formation.
Collapse
|
39
|
|
40
|
Senda K, Koizumi K, Prangsaengtong O, Minami T, Suzuki S, Takasaki I, Tabuchi Y, Sakurai H, Doki Y, Misaki T, Saiki I. Inducible capillary formation in lymphatic endothelial cells by blocking lipid phosphate phosphatase-3 activity. Lymphat Res Biol 2009; 7:69-74. [PMID: 19473074 DOI: 10.1089/lrb.2009.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lymphangiogenesis plays critical roles under normal and/or pathological conditions; however, the molecular contributors to this event were unknown until recently. In the present study, we first employed gene chip analysis and confirmed that lipid phosphate phosphatase-3 (LPP3) expression was increased until capillary formation in the conditionally immortalized rat lymphatic endothelial cell line. Signaling responses occur when several lipids induce acute biological functions; further, lipid phosphate phosphatases (LPPs) control their functions via dephosphorylation; however, there is no report on the association between LPP3 and lymphangiogenesis. siRNA-targeted LPP3 significantly increased capillary formation of human lymphatic endothelial cells; in contrast, it decreased cell adhesion to the basement membrane matrix. Furthermore, the inducible effect of the LPP inhibitor on capillary formation was observed. For the first time, we report that LPP3 abolishes accelerated abnormal lymphangiogenesis. Blocking LPP3 activities may aid in the development of novel therapy for lymph vessel defects.
Collapse
Affiliation(s)
- Kazutaka Senda
- Department of Surgery (I), Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9:639-51. [PMID: 19508171 DOI: 10.2174/156800909789057006] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | |
Collapse
|
42
|
Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 2009; 69:5893-900. [PMID: 19567671 DOI: 10.1158/0008-5472.can-09-0755] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of angiogenesis in tumor growth and metastasis is well established. Identification of a small molecule that blocks tumor angiogenesis and is safe and affordable has been a challenge in drug development. In this study, we showed that acetyl-11-keto-beta-boswellic acid (AKBA), an active component from an Ayurvedic medicinal plant (Boswellia serrata), could strongly inhibit tumor angiogenesis. AKBA suppressed tumor growth in the human prostate tumor xenograft mice treated daily (10 mg/kg AKBA) after solid tumors reached approximately 100 mm(3) (n = 5). The inhibitory effect of AKBA on tumor growth was well correlated with suppression of angiogenesis. When examined for the molecular mechanism, we found that AKBA significantly inhibited blood vessel formation in the Matrigel plug assay in mice and effectively suppressed vascular endothelial growth factor (VEGF)-induced microvessel sprouting in rat aortic ring assay ex vivo. Furthermore, AKBA inhibited VEGF-induced cell proliferation, chemotactic motility, and the formation of capillary-like structures from primary cultured human umbilical vascular endothelial cells in a dose-dependent manner. Western blot analysis and in vitro kinase assay revealed that AKBA suppressed VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) kinase (KDR/Flk-1) with IC(50) of 1.68 micromol/L. Specifically, AKBA suppressed the downstream protein kinases of VEGFR2, including Src family kinase, focal adhesion kinase, extracellular signal-related kinase, AKT, mammalian target of rapamycin, and ribosomal protein S6 kinase. Our findings suggest that AKBA potently inhibits human prostate tumor growth through inhibition of angiogenesis induced by VEGFR2 signaling pathways.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Humans
- In Vitro Techniques
- Male
- Medicine, Ayurvedic
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Physiologic/drug effects
- Prostatic Neoplasms/blood supply
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/prevention & control
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Triterpenes/pharmacology
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Xiufeng Pang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xue Q, Nagy JA, Manseau EJ, Phung TL, Dvorak HF, Benjamin LE. Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase. Arterioscler Thromb Vasc Biol 2009; 29:1172-8. [PMID: 19443844 DOI: 10.1161/atvbaha.109.185918] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We evaluated the stages of VEGF-A(164) driven angiogenesis that are inhibited by therapeutic doses of rapamycin and the potential role of S6K1 in that response. METHODS AND RESULTS We assessed the effects of rapamycin on the several stages of angiogensis and lymphangiogenesis induced with an adenovirus expressing VEGF-A(164) (Ad-VEGF-A(164)) in the ears of adult nude mice. Rapamycin (0.5 mg/kg/d) effectively inhibited mTOR and downstream S6K1 signaling and partially inhibited Akt signaling, likely through effects on TORC2. The earliest stages of angiogenesis, including mother vessel formation and increased vascular permeability, were strikingly inhibited by rapamycin, as was subsequent formation of daughter glomeruloid microvasular proliferations. However, later stage formation of vascular malformations and lymphangiogenesis were unaffected. Retrovirally delivered isoforms and shRNAs demonstrated that S6K1 signaling plays an important role in early VEGF-A(164)-angiogenesis. CONCLUSIONS Rapamycin potently inhibited early and mid stages of VEGF-A(164)-driven angiogenesis, but not late-stage angiogenesis or lymphangiogenesis. Rapamycin decreased phosphorylation of both Akt and S6, suggesting that both the TORC1 and TORC2 pathways are impacted. Inhibition of S6K1 signaling downstream of mTOR is a major component of the antiangiogenesis action of rapamycin.
Collapse
Affiliation(s)
- Qi Xue
- Center for Vascular Biology and the Department of Pathology at the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
44
|
Da MX, Wu Z, Tian HW. Tumor lymphangiogenesis and lymphangiogenic growth factors. Arch Med Res 2008; 39:365-72. [PMID: 18375246 DOI: 10.1016/j.arcmed.2007.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 12/19/2022]
Abstract
Recent studies have revealed that malignant tumors can actively induce the formation of new lymphatic vessels and metastasize through the lymphatic system. Tumor-induced lymphangiogenesis driven by tumors expressed lymphangiogenic growth factors such as VEGF family, fibroblast growth factor 2 (FGF-2), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and platelet-derived growth factors (PDGFs) is correlated with lymph node metastasis in experimental cancer models and in several types of human cancers. Tumor- induced lymphangiogenesis has now been firmly established as a novel mechanism for cancer progression and lymph node metastasis. Recent studies indicate that blockade of the lymphangiogenic growth factors pathway inhibits tumor spread to lymph nodes and likely beyond. The potential effects of most of these newly identified lymphatic growth factors on tumor-induced lymphangiogenesis and lymph node metastasis remain to be further investigated. A number of questions remain to be answered concerning the potential efficacy of targeting at tumor-induced lymphangiogenesis for inhibiting tumor spread to lymph nodes.
Collapse
Affiliation(s)
- Ming-Xu Da
- Department of General Surgery, Gansu Provincial Hospital, PR China.
| | | | | |
Collapse
|