1
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Noura M, Tomita S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. NUP98-BPTF promotes oncogenic transformation through PIM1 upregulation. Cancer Med 2024; 13:e7445. [PMID: 38940430 PMCID: PMC11212001 DOI: 10.1002/cam4.7445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.
Collapse
Affiliation(s)
- Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Sakura Tomita
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
3
|
Xu Q, Wang J, Mao Y, Xuan Z, Yang K, Tang X, Zhu X. Combined BRAF and PIM1 inhibitory therapy for papillary thyroid carcinoma based on BRAFV600E regulation of PIM1: Synergistic effect and metabolic mechanisms. Neoplasia 2024; 52:100996. [PMID: 38593698 PMCID: PMC11007432 DOI: 10.1016/j.neo.2024.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, and its incidence has increased rapidly in recent years. The BRAF inhibitor vemurafenib is effective against BRAFV600E-positive PTC; however, acquired resistance to single agent therapy frequently leads to tumor recurrence and metastasis, underscoring the need to develop tailored treatment strategies. We previously showed that the oncogenic kinase PIM1 was associated with the malignant phenotype and prognosis of PTC. In this study, we showed that sustained expression of the PIM1 protein in PTC was affected by the BRAFV600E mutation. Based on this regulatory mechanism, we tested the synergistic effects of inhibitors of BRAF (BRAFi) and PIM1 in BRAFV600E-positive PTC cell lines and xenograft tumors. LC-MS metabolomics analyses suggested that BRAFi/PIMi therapy acted by restricting the amounts of critical amino acids and nucleotides required by cancer cells as well as modulating DNA methylation. This study elucidates the role of BRAFV600E in the regulation of PIM1 in PTC and demonstrates the synergistic effect of a novel combination, BRAFi/PIMi, for the treatment of PTC. This discovery, along with the pathways that may be involved in the powerful efficacy of BRAFi/PIMi strategy from the perspective of cell metabolism, provides insight into the molecular basis of PTC progression and offers new perspectives for BRAF-resistant PTC treatment.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Jiaqi Wang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Yuting Mao
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Ziyang Xuan
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Ke Yang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xi Tang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China.
| |
Collapse
|
4
|
Darwish DG, El-Sherief HAM, Abdel-Aziz SA, Abuo-Rahma GEDA. A decade's overview of 2-aminothiophenes and their fused analogs as promising anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300758. [PMID: 38442316 DOI: 10.1002/ardp.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Over the past decades, cancer has been a challenging domain for medicinal chemists as it is an international health concern. In association, small molecules such as 2-aminothiophenes and their derivatives showed significant antitumor activity through variable modes of action. Therefore, this article aims to review the advances regarding these core scaffolds over the past 10 years, where 2-aminothiophenes and their fused analogs are classified and discussed according to their biological activity and mode of action, in the interest of boosting new design pathways for medicinal chemists to develop targeted antitumor candidates.
Collapse
Affiliation(s)
- Donia G Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Sharma A, Dubey R, Gupta S, Asati V, Kumar V, Kumar D, Mahapatra DK, Jaiswal M, Jain SK, Bharti SK. PIM kinase inhibitors: an updated patent review (2016-present). Expert Opin Ther Pat 2024; 34:365-382. [PMID: 38842051 DOI: 10.1080/13543776.2024.2365411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Meenakshi Jaiswal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
6
|
Chen X, Zhao J, Chen R, Shen L, Lu J, Guo Y, Chi X, Geng S, Zhang Q, Pan Z, He X, Xu L, Shen Z, Yang H, Lei T. Identification and assessment of new PIM2 inhibitors for treating hematologic cancers: A combined approach of energy-based virtual screening and machine learning evaluation. Arch Pharm (Weinheim) 2024; 357:e2300516. [PMID: 38263717 DOI: 10.1002/ardp.202300516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
PIM2, part of the PIM kinase family along with PIM1 and PIM3, is often overexpressed in hematologic cancers, fueling tumor growth. Despite its significance, there are no approved drugs targeting it. In response to this challenge, we devised a thorough virtual screening workflow for discovering novel PIM2 inhibitors. Our process includes molecular docking and diverse scoring methods like molecular mechanics generalized born surface area, XGBOOST, and DeepDock to rank potential inhibitors by binding affinities and interaction potential. Ten compounds were selected and subjected to an adequate evaluation of their biological activity. Compound 2 emerged as the most potent inhibitor with an IC50 of approximately 135.7 nM. It also displayed significant activity against various hematological cancers, including acute myeloid leukemia, mantle cell lymphoma, and anaplastic large cell lymphoma (ALCL). Molecular dynamics simulations elucidated the binding mode of compound 2 with PIM2, offering insights for drug development. These results highlight the reliability and efficacy of our virtual screening workflow, promising new drugs for hematologic cancers, notably ALCL.
Collapse
Affiliation(s)
- Xi Chen
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingyi Zhao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Roufen Chen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinglong Chi
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Shuangshuang Geng
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingnan Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Zhichao Pan
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xinjun He
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zheyuan Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Yang
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tao Lei
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
7
|
Chen L, Mao W, Ren C, Li J, Zhang J. Comprehensive Insights that Targeting PIM for Cancer Therapy: Prospects and Obstacles. J Med Chem 2024; 67:38-64. [PMID: 38164076 DOI: 10.1021/acs.jmedchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proviral integration sitea for Moloney-murine leukemia virus (PIM) kinases are a family of highly conserved serine/tyrosine kinases consisting of three members, PIM-1, PIM-2, and PIM-3. These kinases regulate a wide range of substrates through phosphorylation and affect key cellular processes such as transcription, translation, proliferation, apoptosis, and energy metabolism. Several PIM inhibitors are currently undergoing clinical trials, such as a phase I clinical trial of Uzanserti (5) for the treatment of relapsed diffuse large B-cell lymphoma that has been completed. The current focus encompasses the structural and biological characterization of PIM, ongoing research progress on small-molecule inhibitors undergoing clinical trials, and evaluation analysis of persisting challenges in this field. Additionally, the design and discovery of small-molecule inhibitors targeting PIM in recent years have been explored, with a particular emphasis on medicinal chemistry, aiming to provide valuable insights for the future development of PIM inhibitors.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wuyu Mao
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Improved Targeting of Therapeutics by Nanocarrier-Based Delivery in Cancer Immunotherapy and Their Future Perspectives. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Sharma V, Gupta M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem Biol Drug Des 2022; 100:968-980. [PMID: 35112799 DOI: 10.1111/cbdd.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
Protein kinases are key regulators of cellular signaling and play a critical role in oncogenesis. Inhibitors of protein kinases are pursued by both industry and academia as a promising target for cancer therapy. Within the protein kinases, the ATP site has produced more than 40 FDA-approved drugs. The ATP site is broadly composed of a hinge region, gatekeeper residues, DFG-loop, ribose pocket, and other hydrophobic regions. The hinge region in the ATP site can be used for designing potent inhibitors. In this review, we discuss some representative studies that will highlight the interactions of heterocyclic compounds with hinge regions of different kinases like BRAF kinase, EGRF kinase, MAP kinase, and Mps1 kinase.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.,GreenLight Biosciences, Woburn, MA, United States
| |
Collapse
|
10
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
11
|
Mahata S, Behera SK, Kumar S, Sahoo PK, Sarkar S, Fazil MHUT, Nasare VD. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics. Int J Biol Macromol 2022; 208:356-366. [DOI: 10.1016/j.ijbiomac.2022.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023]
|
12
|
Shafie A, Khan S, Batra S, Anjum F, Mohammad T, Alam S, Yadav DK, Islam A, Hassan MI. Investigating single amino acid substitutions in PIM1 kinase: A structural genomics approach. PLoS One 2021; 16:e0258929. [PMID: 34679086 PMCID: PMC8535467 DOI: 10.1371/journal.pone.0258929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022] Open
Abstract
PIM1, is a serine/threonine proto-oncogene kinase, involved in many biological functions, including cell survival, proliferation, and differentiation, thus play a key role in oncogenesis. It plays a crucial role in the onset and progression of various hematopoietic and non-hematopoietic malignancies, including acute myeloid leukemia and prostate cancer. Mutations in PIM1, especially in its kinase domain, can induce abnormal structural changes and thus alter functionalities that can lead to disease progression and other complexities. Herein, we have performed an extensive analysis of the PIM1 mutations at sequence and structure level while utilizing state-of-the-art computational approaches. Based on the impact on PIM1, numerous pathogenic and destabilizing mutations were identified and subsequently analyzed in detail. Finally, two amino acid substitutions (W109C and F147C) in the kinase domain of PIM1 were selected to explore their impact on the PIM1 structure in a time evolution manner using all-atom molecular dynamics (MD) simulations for 200 ns. MD results indicate significant conformational altercations in the structure of PIM1, especially upon F147C mutation. This study provides a significant insight into the PIM1 dysfunction upon single amino acid substitutions, which can be utilized to get insights into the molecular basis of PIM1-associated disease progression.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Sagar Batra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Yeonsu-gu, Incheon City, South Korea
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Int J Mol Sci 2021; 22:ijms222011126. [PMID: 34681783 PMCID: PMC8541331 DOI: 10.3390/ijms222011126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Carolin Seifert
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Ellen Balz
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Susann Herzog
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Anna Korolev
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sebastian Gaßmann
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Heiko Paland
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Matthias A. Fink
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Markus Grube
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Gabriele Jedlitschky
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Mladen V. Tzvetkov
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Bernhard H. Rauch
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Pharmacology and Toxicology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
- Correspondence: ; Tel.: +49-03834-865646
| |
Collapse
|
14
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
15
|
Unsworth AJ, Bye AP, Sage T, Gaspar RS, Eaton N, Drew C, Stainer A, Kriek N, Volberding PJ, Hutchinson JL, Riley R, Jones S, Mundell SJ, Cui W, Falet H, Gibbins JM. Antiplatelet properties of Pim kinase inhibition are mediated through disruption of thromboxane A2 receptor signaling. Haematologica 2021; 106:1968-1978. [PMID: 32467143 PMCID: PMC8252961 DOI: 10.3324/haematol.2019.223529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Pim kinases are upregulated in several forms of cancer, contributing to cell survival and tumor development, but their role in platelet function and thrombotic disease has not been explored. We report for the first time that Pim-1 kinase is expressed in human and mouse platelets. Genetic deletion or pharmacological inhibition of Pim kinase results in reduced thrombus formation but is not associated with impaired hemostasis. Attenuation of thrombus formation was found to be due to inhibition of the thromboxane A2 receptor as effects on platelet function were non-additive to inhibition caused by the cyclo-oxygenase inhibitor indomethacin or the thromboxane A2 receptor antagonist GR32191. Treatment with Pim kinase inhibitors caused reduced surface expression of the thromboxane A2 receptor and resulted in reduced responses to thromboxane A2 receptor agonists, indicating a role for Pim kinase in the regulation of thromboxane A2 receptor function. Our research identifies a novel, Pim kinase-dependent regulatory mechanism for the thromboxane A2 receptor and represents a new targeting strategy that is independent of cyclo-oxygenase-1 inhibition or direct antagonism of the thromboxane A2 receptor that, while attenuating thrombosis, does not increase bleeding.
Collapse
Affiliation(s)
- Amanda J Unsworth
- University of Reading and Dept. of Life Sciences, Manchester Metropolitan University Manchester, UK
| | - Alexander P Bye
- Institute for Cardiovascular, Metabolic Research, University of Reading, Reading, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Renato S Gaspar
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Nathan Eaton
- Blood Research Institute and Medical College of Wisconsin, Versiti, Milwaukee, WI, USA
| | - Caleb Drew
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Alexander Stainer
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Neline Kriek
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Peter J Volberding
- Blood Research Institute and Medical College of Wisconsin, Versiti, Milwaukee, WI, USA
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Ryan Riley
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sarah Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Weiguo Cui
- Blood Research Institute, Versiti and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hervé Falet
- Blood Research Institute, Versiti and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
16
|
Alsubaie M, Matou-Nasri S, Aljedai A, Alaskar A, Al-Eidi H, Albabtain SA, Aldilaijan KE, Alsayegh M, Alabdulkareem IB. In vitro assessment of the efficiency of the PIM-1 kinase pharmacological inhibitor as a potential treatment for Burkitt's lymphoma. Oncol Lett 2021; 22:622. [PMID: 34267815 PMCID: PMC8258613 DOI: 10.3892/ol.2021.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 11/06/2022] Open
Abstract
Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is high. Overexpression of the proto-oncogene proviral integration of the Moloney murine leukemia virus (PIM-1) kinase is associated with the development of hematological abnormalities, including Burkitt's lymphoma (BL). PIM-1 primarily exerts anti-apoptotic activities through BAD phosphorylation. The aim of the present study was to investigate the in vitro efficiency of a PIM-1 kinase pharmacological inhibitor (PIM1-1) in BL. The impact of PIM1-1 was evaluated in terms of the viability and apoptosis status of the BL B cell lines, Raji and Daudi, compared with K562 leukemia cells, which highly express PIM-1. Cell viability and apoptotic status were assessed with western blotting, and PIM-1 gene expression was assessed with reverse transcription-quantitative PCR. After 48 h of treatment, PIM1-1 inhibited the Daudi, Raji and K562 cell viability with a half-maximal inhibitory concentration corresponding to 10, 20 and 30 µM PIM1-1, respectively. A significant decrease of ERK phosphorylation was detected in PIM1-1-treated Daudi cells, confirming the antiproliferative effect. The addition of 10 µM PIM1-1 significantly decreased the PIM-1 protein and gene expression in Daudi cells. An inhibition of the pro-apoptotic BAD phosphorylation was observed in the Daudi cells treated with 0.1-1 µM PIM1-1 and 10 µM PIM1-1 decreased BAD phosphorylation in the Raji cells. The apoptotic status of both PIM1-1-treated cells lines were confirmed with the detection of cleaved capase-3. However, no change in cell viability and PIM-1 protein expression was observed in the 10 µM PIM1-1-treated K562 cells. In conclusion, the findings indicated that the PIM1-1 pharmacological inhibitor may have therapeutic potential in BL, but with lower efficiency in leukemia.
Collapse
Affiliation(s)
- Mona Alsubaie
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Hematology and Serology Unit, Department of Laboratory Medicine Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh 11942, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdullah Aljedai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Alaskar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Division of Adult Hematology and Hematopoietic Stem Cell Transplantation, Department of Oncology, King Abdullah Medical City, Ministry of National Guard-Health Affairs, Riyadh 14611, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Sarah A Albabtain
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Khawlah E Aldilaijan
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Manal Alsayegh
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Ibrahim B Alabdulkareem
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
17
|
Dhokne P, Sakla AP, Shankaraiah N. Structural insights of oxindole based kinase inhibitors as anticancer agents: Recent advances. Eur J Med Chem 2021; 216:113334. [PMID: 33721669 DOI: 10.1016/j.ejmech.2021.113334] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Small-molecule kinase inhibitors are being continuously explored as new anticancer therapeutics. Kinases are the phosphorylating enzymes which regulate numerous cellular functions such as proliferation, differentiation, migration, metabolism, and angiogenesis by activating several signalling pathways. Kinases have also been frequently found to be deregulated and overexpressed in cancerous tissues. Therefore, modulating the kinase activity by employing small molecules has emerged as a strategic approach for cancer treatment. On the other hand, oxindole motifs have surfaced as privileged scaffolds with significant multi-kinase inhibitory activity. The present review summarises recent advances in the development of oxindole based kinase inhibitors. The role of distinguished structural frameworks of oxindoles, such as 3-alkenyl oxindoles, spirooxindoles, 3-iminooxindoles and similar hydrazone derivatives have been described based on their kinase inhibition potential. Furthermore, the design strategies, mechanism of actions, structure activity relationships (SARs) and their mode of interaction with target protein have been critically highlighted.
Collapse
Affiliation(s)
- Prajwal Dhokne
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
18
|
Sugita M, Onishi I, Irisa M, Yoshida N, Hirata F. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Molecules 2021; 26:E271. [PMID: 33430461 PMCID: PMC7826681 DOI: 10.3390/molecules26020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
There are two molecular processes that are essential for living bodies to maintain their life: the molecular recognition, and the self-organization or self-assembly. Binding of a substrate by an enzyme is an example of the molecular recognition, while the protein folding is a good example of the self-organization process. The two processes are further governed by the other two physicochemical processes: solvation and the structural fluctuation. In the present article, the studies concerning the two molecular processes carried out by Hirata and his coworkers, based on the statistical mechanics of molecular liquids or the RISM/3D-RISM theory, are reviewed.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1, Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Itaru Onishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Norio Yoshida
- Department of Chemistry, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan;
| | - Fumio Hirata
- Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
19
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
20
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
21
|
Ismail MMF, Farrag AM, Abou‐El‐Ela D. Synthesis, anticancer screening, and in silico ADMEprediction of novel 2‐pyridonesas Pim inhibitors. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
| | - Amel M. Farrag
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
| | - Dalal Abou‐El‐Ela
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Ain‐Shams University Cairo Egypt
| |
Collapse
|
22
|
Panchal NK, Sabina EP. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci 2020; 255:117866. [PMID: 32479955 DOI: 10.1016/j.lfs.2020.117866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The PIM Kinases belong to the family of a proto-oncogene that essentially phosphorylates the serine/threonine residues of the target proteins. They are primarily categorized into three types PIM-1, PIM-2, PIM-3 which plays an indispensable regulatory role in signal transduction cascades, by promoting cell survival, proliferation, and drug resistance. These kinases are overexpressed in several solid as well as hematopoietic tumors which supports in vitro and in vivo malignant cell growth along with survival by regulating cell cycle and inhibiting apoptosis. They lack regulatory domain which makes them constitutively active once transcribed. PIM kinases usually appear to be important downstream effectors of oncoproteins which overexpresses and helps in mediating drug resistance to available agents, such as rapamycin. Structural studies of PIM kinases revealed that they have unique hinge regions where two Proline resides and makes ATP binding unique, by offering a target for an increasing number of potent PIM kinase inhibitors. Preclinical studies of those inhibitory compounds in various cancers indicate that these novel agents show promising activity and some of them currently being under examination. In this review, we have outlined PIM kinases molecular mechanism and signaling pathways along with matriculation in various cancer and list of inhibitors often used.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - E P Sabina
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
23
|
Singh N, Padi SKR, Bearss JJ, Pandey R, Okumura K, Beltran H, Song JH, Kraft AS, Olive V. PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth. Mol Oncol 2020; 14:974-990. [PMID: 32146726 PMCID: PMC7191193 DOI: 10.1002/1878-0261.12662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
The proviral integration site for Moloney murine leukemia virus (PIM) serine/threonine kinases have an oncogenic and prosurvival role in hematological and solid cancers. However, the mechanism by which these kinases drive tumor growth has not been completely elucidated. To determine the genes controlled by these protein kinases, we carried out a microarray analysis in T-cell acute lymphoblastic leukemia (T-ALL) comparing early progenitor (ETP-ALL) cell lines whose growth is driven by PIM kinases to more mature T-ALL cells that have low PIM levels. This analysis demonstrated that the long noncoding RNA (lncRNA) H19 was associated with increased PIM levels in ETP-ALL. Overexpression or knockdown of PIM in these T-ALL cell lines controlled the level of H19 and regulated the methylation of the H19 promoter, suggesting a mechanism by which PIM controls H19 transcription. In these T-ALL cells, the expression of PIM1 induced stem cell gene expression (SOX2, OCT-4, and NANOG) through H19. Identical results were found in prostate cancer (PCa) cell lines where PIM kinases drive cancer growth, and both H19 and stem cell gene levels. Small molecule pan-PIM inhibitors (PIM-i) currently in clinical trials reduced H19 expression in both of these tumor types. Importantly, the knockdown of H19 blocked the ability of PIM to induce stem cell genes in T-ALL cells, suggesting a novel signal transduction cascade. In PCa, increases in SOX2 levels have been shown to cause both resistance to the androgen deprivation therapy (ADT) and the induction of neuroendocrine PCa, a highly metastatic form of this disease. Treatment of PCa cells with a small molecule pan-PIM-i reduced stem cell gene transcription and enhanced ADT, while overexpression of H19 suppressed the ability of pan-PIM-i to regulate hormone blockade. Together, these results demonstrate that the PIM kinases control the level of lncRNA H19, which in turn modifies stem cell gene transcription regulating tumor growth.
Collapse
Affiliation(s)
- Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jeremiah J Bearss
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Koichi Okumura
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jin H Song
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Virginie Olive
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Ashida T, Kikuchi T. A new method for estimating the relative binding free energy, derived from a free energy variational principle for the Pim-1-kinase-ligand and FKBP-ligand systems. J Comput Aided Mol Des 2020; 34:647-658. [PMID: 32107701 DOI: 10.1007/s10822-020-00302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
In this study, a new method is proposed for calculating the relative binding free energy between a ligand and a protein, derived from a free energy variational principle (FEVP). To address the shortcomings of the method used in our previous study, we incorporate the dynamical fluctuation of a ligand in the FEVP calculation. The present modified method is applied to the Pim-1-kinase-ligand system and also to the FKBP-ligand system as a comparison with our previous work. Any inhibitor of Pim-1 kinase is expected to function as an anti-cancer drug. Some improvements are observed in the results compared to the previous study. The present work also shows comparable or better results than approaches using a standard technique of binding free energy calculations, such as the LIE and the MM-PB/SA methods. The possibility of applying the present method in the drug discovery process is also discussed.
Collapse
Affiliation(s)
- Takeshi Ashida
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
25
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
26
|
Figueiredo P, Sipponen MH, Lintinen K, Correia A, Kiriazis A, Yli-Kauhaluoma J, Österberg M, George A, Hirvonen J, Kostiainen MA, Santos HA. Preparation and Characterization of Dentin Phosphophoryn-Derived Peptide-Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901427. [PMID: 31062448 PMCID: PMC8042775 DOI: 10.1002/smll.201901427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Indexed: 05/18/2023]
Abstract
The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP-cell interactions. Here, dentin phosphophoryn-derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS-functionalized LNPs (LNPs-DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3-MM2, MDA-MB-231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide-functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs-DSS show equal or even superior cellular internalization than the LNPs-iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mika H Sipponen
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Monika Österberg
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois, Chicago, IL, 60612, USA
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
27
|
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur J Med Chem 2019; 168:87-109. [PMID: 30802730 DOI: 10.1016/j.ejmech.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
PIM kinase family (PIM-1, PIM-2 and PIM-3) is an appealing target for the discovery and development of selective inhibitors, useful in various disease conditions in which these proteins are highly expressed, such as cancer. The significant effort put, in the recent years, towards the development of small molecules exhibiting inhibitory activity against this protein family has ended up with several molecules entering clinical trials. As part of our ongoing exploration for potential drug candidates that exhibit affinity towards this protein family, we have generated a novel chemical series of triazolo[4,3-b]pyridazine based tricycles by applying a scaffold hopping strategy over our previously reported potent pan-PIM inhibitor ETP-47453 (compound 2). The structure-activity relationship studies presented herein demonstrate a rather selective PIM-1/PIM-3 biochemical profile for this novel series of tricycles, although pan-PIM and PIM-1 inhibitors have also been identified. Selected examples show significant inhibition of the phosphorylation of BAD protein in a cell-based assay. Moreover, optimized and highly selective compounds, such as 42, did not show significant hERG inhibition at 20 μM concentration, and proved its antiproliferative activity and utility in combination with particular antitumoral agents in several tumor cell lines.
Collapse
|
28
|
PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett 2018; 444:116-126. [PMID: 30583073 DOI: 10.1016/j.canlet.2018.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
The proto-oncogene PIM1 plays essential roles in proliferation, survival, metastasis and drug resistance in hematopoietic and solid tumors. Although PIM1 has been shown to be associated with lymph node metastasis and poor prognosis in non-small cell lung cancer, its underlying molecular mechanisms in this context are still unclear. Here we show that PIM1 is frequently overexpressed in lung adenocarcinomas, and its expression level is associated with c-MET expression and poor clinical outcome. We further demonstrate that PIM1 may regulate c-MET expression via phosphorylation of eukaryotic translation initiation factor 4B (eIF4B) on S406. Depletion of PIM1 decreased cell proliferation, migration, invasion and colony formation in vitro, as well as reduced tumor growth in vivo. And these effects were partially abrogated by restoring of c-MET expression. Our study implicates a promising therapeutic approach in lung adenocarcinoma patients with PIM1 and c-MET overexpression.
Collapse
|
29
|
De Smedt R, Peirs S, Morscio J, Matthijssens F, Roels J, Reunes L, Lintermans B, Goossens S, Lammens T, Van Roy N, Touzart A, Jenni S, Tsai YC, Lovisa F, Mussolin L, Serafin V, Van Nieuwerburgh F, Deforce D, Uyttebroeck A, Tousseyn T, Burkhardt B, Klapper W, De Moerloose B, Benoit Y, Macintyre E, Bourquin JP, Basso G, Accordi B, Bornhauser B, Meijerink J, Vandenberghe P, Van Vlierberghe P. Pre-clinical evaluation of second generation PIM inhibitors for the treatment of T-cell acute lymphoblastic leukemia and lymphoma. Haematologica 2018; 104:e17-e20. [PMID: 30076176 DOI: 10.3324/haematol.2018.199257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Sofie Peirs
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium.,Diagnostic Sciences, Ghent University, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Beatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium.,Molecular and Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Aurore Touzart
- Department of Hematology, APHP-Hôpital Necker, Paris, France
| | - Silvia Jenni
- Department of Oncology, and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Yi-Chien Tsai
- Department of Oncology, and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Federica Lovisa
- Department of Woman's and Child's Health, Hematology-Oncology Laboratory, Istituto di Ricerca Pediatrica (IRP) and University of Padova, Italy
| | - Lara Mussolin
- Department of Woman's and Child's Health, Hematology-Oncology Laboratory, Istituto di Ricerca Pediatrica (IRP) and University of Padova, Italy
| | - Valentina Serafin
- Department of Woman's and Child's Health, Hematology-Oncology Laboratory, Istituto di Ricerca Pediatrica (IRP) and University of Padova, Italy
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hematology-Oncology, University Hospitals Leuven, Belgium.,Department of Oncology, KU Leuven, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research laboratory, KU Leuven, Belgium
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University of Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, UKSH Campus Kiel, Germany
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | - Yves Benoit
- Cancer Research Institute Ghent (CRIG), Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | | | - Jean-Pierre Bourquin
- Department of Oncology, and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Giuseppe Basso
- Department of Woman's and Child's Health, Hematology-Oncology Laboratory, Istituto di Ricerca Pediatrica (IRP) and University of Padova, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health, Hematology-Oncology Laboratory, Istituto di Ricerca Pediatrica (IRP) and University of Padova, Italy
| | - Beat Bornhauser
- Department of Oncology, and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Jules Meijerink
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter Vandenberghe
- Department of Hematology, University Hospitals Leuven, Belgium.,Center for Human Genetics, KU Leuven, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Belgium .,Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
30
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
31
|
Cortes J, Tamura K, DeAngelo DJ, de Bono J, Lorente D, Minden M, Uy GL, Kantarjian H, Chen LS, Gandhi V, Godin R, Keating K, McEachern K, Vishwanathan K, Pease JE, Dean E. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 2018; 118:1425-1433. [PMID: 29765150 PMCID: PMC5988656 DOI: 10.1038/s41416-018-0082-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Proviral integration Moloney virus (PIM) kinases (PIM1, 2 and 3) are overexpressed in several tumour types and contribute to oncogenesis. AZD1208 is a potent ATP-competitive PIM kinase inhibitor investigated in patients with recurrent or refractory acute myeloid leukaemia (AML) or advanced solid tumours. Methods Two dose-escalation studies were performed to evaluate the safety and tolerability, and to define the maximum tolerated dose (MTD), of AZD1208 in AML and solid tumours. Secondary objectives were to evaluate the pharmacokinetics, pharmacodynamics (PD) and preliminary efficacy of AZD1208. Results Sixty-seven patients received treatment: 32 in the AML study over a 120–900 mg dose range, and 25 in the solid tumour study over a 120–800 mg dose range. Nearly all patients (98.5%) in both studies experienced adverse events, mostly gastrointestinal (92.5%). Dose-limiting toxicities included rash, fatigue and vomiting. AZD1208 was not tolerated at 900 mg, and the protocol-defined MTD was not confirmed. AZD1208 increased CYP3A4 activity after multiple dosing, resulting in increased drug clearance. There were no clinical responses; PD analysis showed biological activity of AZD1208. Conclusions Despite the lack of single-agent clinical efficacy with AZD1208, PIM kinase inhibition may hold potential as an anticancer treatment, perhaps in combination with other agents.
Collapse
Affiliation(s)
- Jorge Cortes
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Kenji Tamura
- Department of Breast Oncology and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Room D-2050, Boston, MA, 02215, USA
| | - Johann de Bono
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - David Lorente
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Mark Minden
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Geoffrey L Uy
- Department of Medicine, Oncology Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Hagop Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Lisa S Chen
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Robert Godin
- AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Karen Keating
- AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | | | | | | | - Emma Dean
- Clinical Trials Unit, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK.
| |
Collapse
|
32
|
Aweya JJ, Wang W, Zhang Y, Yao D, Li S, Wang F. Identification and molecular characterization of the Pim1 serine/threonine kinase homolog in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 74:491-500. [PMID: 29355758 DOI: 10.1016/j.fsi.2018.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The Pim1 serine/threonine kinase is associated with multiple cellular functions including proliferation, survival, differentiation, apoptosis, tumorigenesis, immune regulation and inflammation in vertebrates. However, little is known about the role of Pim1 in invertebrate immunity. In this study, we identified and characterized for the first time, a Pim1 (LvPim1) gene in Litopenaeus vannamei, with a full-length cDNA of 2352 bp and a 1119 bp open reading frame (ORF) encoding a putative protein of 372 amino acids, which contains a typical serine/threonine kinase domain. Sequence and phylogenetic analysis revealed that LvPim1 shared a close evolutionary relationship with Pim1 from vertebrates. Real-time qPCR analysis showed that LvPim1 was widely expressed in all tissues tested; with its transcript level induced in hepatopancreas and hemocytes upon challenge with Vibrio parahaemolyticus, Streptoccocus iniae, lipopolysaccharide (LPS), and white spot syndrome virus (WSSV), thus, suggesting its probable involvement in shrimp immune response. Moreover, knockdown of LvPim1 resulted in increased hemocytes apoptosis; shown by high caspase3/7 activity, coupled with increase in pro-apoptotic LvCaspase3 and LvCytochrome C, and decrease in pro-survival LvBcl2, LvIAP1, and LvIAP2 mRNA expression in hemocytes. Finally, LvPim1 knockdown renders shrimps more susceptible to V. parahaemolyticus infection. Taken together, our present data strongly suggest that LvPim1 is involved in modulating shrimp resistance to pathogen infection, promote hemocytes survival, and therefore plays a role in shrimp immune response.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wei Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
33
|
Sagar V, Caldarola S, Aria V, Monteleone V, Fuoco C, Gargioli C, Cannata S, Loreni F. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget 2018; 7:23837-49. [PMID: 26993775 PMCID: PMC5029667 DOI: 10.18632/oncotarget.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress.
Collapse
Affiliation(s)
- Vinay Sagar
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Valentina Aria
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | | | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Fabrizio Loreni
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
34
|
Xu J, Zhu X, Li Q, Chen C, Guo Z, Tan Z, Zheng C, Ge M. Loss of PIM1 correlates with progression and prognosis of salivary adenoid cystic carcinoma (SACC). Cancer Cell Int 2018; 18:22. [PMID: 29467592 PMCID: PMC5819291 DOI: 10.1186/s12935-018-0518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Increasing evidence indicates that PIM1 is a potential prognostic marker and target for cancer treatment but its precise mechanisms of action remain to be determined in salivary adenoid cystic carcinoma (SACC). This study aims to decipher the prognostic and mechanistic role of PIM1 in progression of SACC cells and tumor tissues. Methods A SACC cell line (ACC-M) was transfected with shRNA plasmids targeting the PIM1 gene. The expression levels of PIM1, RUNX3 and p21 were measured by quantitative real-time PCR and western blot. Subcellular translocalization of RUNX3 and p21 proteins was assessed using immunofluorescence, and cell cycle phase was quantified using flow cytometry. A total of 97 SACC patients were retrospectively analyzed by clinicopathologic characteristics and survival outcomes. Results After down-regulation of PIM1 in ACC-M cells, RUNX3 and p21 proteins were translocated from cytoplasm to nucleus, with a decrease of p21 expression and increase of G0/G1 phase cells. PIM1 and RUNX3 levels show a distinct covariance. PIM1 is associated with T-status, lymph node involvement, nerve invasion, and distant metastasis in SACC tissues. Patients with low PIM1 level had a better outcome than those with higher PIM1 level. Conclusions PIM1 is multifunctional in ACC-M cells and it serves as a neoteric therapeutic target and potential prognostic marker for SACC patients.
Collapse
Affiliation(s)
- Jiajie Xu
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Xin Zhu
- 2Zhejiang Cancer Research Institute, Hangzhou, 310022 China
| | - Qingling Li
- 3Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Chao Chen
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Zhenying Guo
- 4Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Zhuo Tan
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Chuanming Zheng
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Minghua Ge
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| |
Collapse
|
35
|
Guo S, Fan J, Wang B, Xiao M, Li Y, Du J, Peng X. Highly Selective Red-Emitting Fluorescent Probe for Imaging Cancer Cells in Situ by Targeting Pim-1 Kinase. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1499-1507. [PMID: 29219298 DOI: 10.1021/acsami.7b14553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Based on the fact that enzyme-targeting probes are highly sensitive and selective, a novel red-emitting probe (NB-BF) for Pim-1 kinase including three parts, fluorophore (NB), linker, and inhibitor (BF), has been designed for cancer optical imaging. In its free state, NB-BF is folded and the fluorescence quenched by PET between fluorophore and inhibitor both in PBS buffer and in normal cells. Significantly, it emitted strong red fluorescence in Pim-1 overexpressed cancer cells. The specificity of NB-BF for Pim-1 kinase was directly demonstrated by gene silencing analysis. Furthermore, it is the first time to know where Pim-1 kinase mainly distributes at mitochondria with Pearson's correlation factor (Rr) of 0.965 and to provide a fluorescent tool to verify the function of the Pim-1 kinase. More importantly, NB-BF was applied in tissue imaging and preferentially labeled tumors in vivo.
Collapse
Affiliation(s)
- Shigang Guo
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Benhua Wang
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Ming Xiao
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals and ‡School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, 116024, China
| |
Collapse
|
36
|
Hasegawa T, Sugita M, Kikuchi T, Hirata F. A Systematic Analysis of the Binding Affinity between the Pim-1 Kinase and Its Inhibitors Based on the MM/3D-RISM/KH Method. J Chem Inf Model 2017; 57:2789-2798. [PMID: 29019402 DOI: 10.1021/acs.jcim.7b00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A systematic study of the binding affinities of 16 lead compounds targeting the Pim-1 kinase based on the 3D-RISM/KH theory and MD simulations is reported. The results show a correlation coefficient R = 0.69 between the theoretical and experimental values of the binding free energy. This demonstrates that the method is applicable to the problem of compound screening and lead optimization, for which relative values of the free energy among the compounds have significance. We elucidate the contribution of the ligand fragments to the binding free energy. Our results indicate that the interactions between the residues and the triazolo[4,3-b]pyridazine scaffold as well as the phenyl ring of the ligand molecule make significant contributions to stabilization of the complex. Using the 3D-RISM/KH theory, we further analyze the probability distribution of a ligand fragment around the protein-ligand complex in which the substituent around the phenyl ring is removed from the ligand. The results demonstrate that the 3D-RISM/KH theory is capable of predicting the position of substitution on a ligand that has a higher affinity to a target protein.
Collapse
Affiliation(s)
- Takeshi Hasegawa
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masatake Sugita
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Fumio Hirata
- Toyota Physical and Chemical Research Institute , 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
37
|
Figueiredo P, Ferro C, Kemell M, Liu Z, Kiriazis A, Lintinen K, Florindo HF, Yli-Kauhaluoma J, Hirvonen J, Kostiainen MA, Santos HA. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond) 2017; 12:2581-2596. [PMID: 28960138 DOI: 10.2217/nnm-2017-0219] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To carboxylate kraft lignin toward the functionalization of carboxylated lignin nanoparticles (CLNPs) with a block copolymer made of PEG, poly(histidine) and a cell-penetrating peptide and then evaluate the chemotherapeutic potential of the innovative nanoparticles. MATERIALS & METHODS The produced nanoparticles were characterized and evaluated in vitro for stability and biocompatibility and the drug release profiles and antiproliferative effect were also assessed. RESULTS The prepared CLNPs showed spherical shape and good size distribution, good stability in physiological media and low cytotoxicity in all the tested cell lines. A poorly water-soluble cytotoxic agent was successfully loaded into the CLNPs, improving its release profiles in a pH-sensitive manner and showing an enhanced antiproliferative effect in the different cancer cells compared with a normal endothelial cell line. CONCLUSION The resulting CLNPs are promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cláudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
38
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget 2017; 8:58872-58886. [PMID: 28938604 PMCID: PMC5601700 DOI: 10.18632/oncotarget.19438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The PIM family of Ser/Thr kinase proteins has been implicated in tumorigenesis at different levels. PIM proteins are overexpressed in several tumor types and have been associated with chemoresistance. However, their role in hormone-dependent female tissues has not been explored, especially in the uterus, breast and ovary. We generated conditional transgenic mice with confined expression of human PIM1 or PIM2 genes in these tissues. We characterized the tumoral response to these genetic alterations corroborating their role as oncogenes since they induce hyperproliferation in all tissues and tumors in mammary gland and uterus. Furthermore, we observed a high degree of inflammatory infiltration in these tissues of transgenic mice accompanied by NFAT and mTOR activation and IL6 expression. Moreover, PIM1/2 were overexpressed in human breast, uterine and ovarian tumors, correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression provoke tissue alterations and a large IL6-dependent inflammatory response that may act synergistically during the process of tumorigenesis. The possible end-point is an increased percentage of cancer stem cells, which may be partly responsible for the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel-Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María-José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| |
Collapse
|
39
|
Abnous K, Manavi H, Mehri S, Alibolandi M, Kamali H, Ghandadi M, Hadizadeh F. In vitro evaluation of dihydropyridine-3-carbonitriles as potential cytotoxic agents through PIM-1 protein kinase inhibition. Res Pharm Sci 2017. [PMID: 28626477 PMCID: PMC5465828 DOI: 10.4103/1735-5362.207200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PIM-1 protein kinase inhibitor belongs to a novel class of serine/threonine kinases. As PIM-1 is overexpressed in cancer cells and possesses oncogenic functions, its inhibition provides a new option in cancer therapy. In this study, in vitro inhibitory effects of seven analogues of 1, 2-dihydropyridine-3-carbonitrile derivatives Ia-c, IIa-d on the activity of recombinant PIM-1 were evaluated using dimethylthiazol diphenyltetrazolium bromide (MTT) assay. The PIM-1 protein kinase inhibitory potencies and the cytotoxicity effects of tested compounds were respectively as follows: Ic > IIa > Ia > IIb > Ib > IId > IIc and IIb > IIa > Ia > IIc > Ic > Ib > IId, respectively. The compound Ic with methylthio imidazole substituent at C-3 position and benzodioxole substituent at C-6 position of 2-imino-1, 2-dihydropyridine-3- carbonitrile structure showed the strongest PIM-1 inhibitory effect (IC50 = 111.01 nM), while the compound IIc with methythio imidazole substituent at C-3 position and benzodioxole substituent at C-6 position of 2-oxo-1, 2-dihydropyridine-3- carbonitrile structure exhibited the least inhibition activity (IC50 = 433.71 nM). The docking results showed that all tested compounds localized appropriately in the middle of binding cavity after docking procedure, demonstrating suitable interactions between ligands and protein. This study demonstrated that the PIM-1 inhibitory potencies of newly synthesized compounds were in submicromolar concentrations (IC50 < 150 nM) while they exhibited low cytotoxicity on HT-29 cell line (IC50> 130 μM). Altogether, our data indicated that compounds Ic, IIa, Ia could be considered as new potent non-toxic PIM-1 inhibitors which could be used in combination with routine anti-proliferative drugs.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Hesam Manavi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Morteza Ghandadi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
40
|
Wang J, Li G, Li B, Song H, Shang Z, Jiang N, Niu Y. Androgen deprivation therapy has no effect on Pim-1 expression in a mouse model of prostate cancer. Oncol Lett 2017; 13:4364-4370. [PMID: 28599438 PMCID: PMC5453061 DOI: 10.3892/ol.2017.6010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to observe the dynamic changes of proto-oncogene, serine/threonine kinase, Pim-1 at the gene and protein level in a mouse model of prostate cancer following surgical castration. Using LNCaP cells to establish a subcutaneous xenograft model and orthotopic prostate cancer BALB/c nude mouse models, the xenograft models were divided into an androgen-dependent prostate cancer group (ADPC), an androgen deprivation therapy (ADT) group and an androgen independent prostate cancer (AIPC) group. Reverse transcription-polymerase chain reaction (RT-PCR), RT-quantitative PCR, ELISA and immunohistochemistry analyses were performed to compare the expression levels of Pim-1, prostate-specific antigen (PSA) and androgen receptor (AR) in tumor tissue of three subgroups. Agarose gel electrophoresis revealed that the RT-PCR results of the ADPC (0.59±0.01) and AIPC groups (1.14±0.015) were significantly different when compared with the ADT group (0.62±0.026; P<0.05). As for RT-qPCR, the ΔCq of Pim-1 in the ADPC (6.15±0.34) and AIPC (4.56±0.23) groups were significantly different compared with the ADT group (5.11±0.21; P<0.05). Using 2-ΔΔCq as a relative quantification method to analyze the data, the amplification products of Pim-1 increased by 2.05 and 3.01 times in the ADT and AIPC groups, respectively. ELISA demonstrated the following: The serum concentration of PSA was 0 ng/ml in the control group, 0.48±0.025 ng/ml in the ADPC group and 0.87±0.023 ng/ml in the AIPC group, which were significantly different compared with the ADT group (0.17±0.032 ng/ml; P<0.01). Upon immunohistochemical staining, the protein expression levels of Pim-1 and AR, respectively, were 0.017±0.0021 and 0.032±0.009 in the ADPC group, 0.024±0.0019 and 0.040±0.011 in the AIPC group, and 0.018±0.0013 and 0.019±0.006 in the ADT group. The protein levels of Pim-1 and AR in the ADPC and AIPC groups were significantly different compared with the ADT group (P<0.01). In addition, an orthotopic prostate cancer animal model of ADT was successfully established in the current study, and further investigation revealed that ADT did not affect the expression of Pim-1 at the gene or protein levels; thus, it is hypothesized that Pim-1 may be important in the proliferation and differentiation of prostate cancer during ADT.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
- Tianjin Municipal Research Institute for Family Planning, Tianjin 300131, P.R. China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Bo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hualin Song
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
41
|
Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T, Rahikkala A, Correia A, Kohout T, Sarmento B, Yli-Kauhaluoma J, Hirvonen J, Ikkala O, Kostiainen MA, Santos HA. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 2017; 121:97-108. [DOI: 10.1016/j.biomaterials.2016.12.034] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 02/03/2023]
|
42
|
Li JQ, Yang X, Zhou XM. PIM1 gene silencing inhibits proliferation and promotes apoptosis of human esophageal cancer cell line Eca-109. Cancer Biomark 2017; 18:149-154. [DOI: 10.3233/cbm-160038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Wang XX, Liu J, Tang YM, Hong L, Zeng Z, Tan GH. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma. Tumour Biol 2016; 37:16367–16375. [PMID: 28050866 DOI: 10.1007/s13277-016-5379-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNAs that often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the functions and the mechanism of miR-638 in osteosarcoma (OS). The expression of miR-638 in OS and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by CCK8 assay. Different assays, including bioinformatics algorithms, luciferase report assay, and Western blotting, were used to identify the target gene proviral integration site for Moloney murine leukemia virus 1 (PIM1) of miR-638 in OS. The expression of PIM1 in clinical OS tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in OS tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in OS than in NCTs, which may induce the corresponding downregulation of miR-638 in OS. Ectopic expression of miR-638 inhibited OS cell growth in vitro. Subsequently, we identified that PIM1 is the downstream target gene of miR-638 in OS cells, and silencing PIM1 expression phenocopied the inhibitory effect of miR-638 on OS cell proliferation. Furthermore, we observed that PIM1 was overexpressed in OS tissues, and high expression of PIM1 in OS predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor through inhibiting PIM1 expression in OS.
Collapse
Affiliation(s)
- Xiao-Xu Wang
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Jue Liu
- Department of Dobstertics and Gynecology, the Second Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yi-Min Tang
- Department of Nursing, the First Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Hong
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Zhi Zeng
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Guang-Hua Tan
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
44
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci Rep 2016; 6:38079. [PMID: 27901106 PMCID: PMC5128923 DOI: 10.1038/srep38079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
The PIM family of serine/threonine kinases has three highly conserved isoforms (PIM1, PIM2 and PIM3). PIM proteins are regulated through transcription and stability by JAK/STAT pathways and are overexpressed in hematological malignancies and solid tumors. The PIM kinases possess weak oncogenic abilities, but enhance other genes or chemical carcinogens to induce tumors. We generated conditional transgenic mice that overexpress PIM1 or PIM2 in male reproductive organs and analyzed their contribution to tumorigenesis. We found an increase in alterations of sexual organs and hyperplasia in the transgenic mice correlating with inflammation. We also found that PIM1/2 are overexpressed in a subset of human male germ cells and prostate tumors correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression is a common feature of male reproductive organs tumors, which provoke tissue alterations and a large inflammatory response that may act synergistically during the process of tumorigenesis. There is also a correlation with markers of cancer stem cells, which may contribute to the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - María José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| |
Collapse
|
45
|
LIN XIAOCONG, XU YONG, SUN GUOPING, WEN JINLI, LI NING, ZHANG YUMING, YANG ZHIGANG, ZHANG HAITAO, DAI YONG. Molecular dysfunctions in acute myeloid leukemia revealed by integrated analysis of microRNA and transcription factor. Int J Oncol 2016; 48:2367-80. [DOI: 10.3892/ijo.2016.3489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/19/2016] [Indexed: 11/05/2022] Open
|
46
|
Santio NM, Salmela M, Arola H, Eerola SK, Heino J, Rainio EM, Koskinen PJ. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res 2016; 342:113-24. [PMID: 26934497 DOI: 10.1016/j.yexcr.2016.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/30/2023]
Abstract
The ability of cells to migrate and form metastases is one of the fatal hallmarks of cancer that can be conquered only with better understanding of the molecules and regulatory mechanisms involved. The oncogenic PIM kinases have been shown to support cancer cell survival and motility, but the PIM-regulated pathways stimulating cell migration and invasion are less well characterized than those affecting cell survival. Here we have identified the glycogen synthase kinase 3β (GSK3B) and the forkhead box P3 (FOXP3) transcription factor as direct PIM targets, whose tumour-suppressive effects in prostate cancer cells are inhibited by PIM-induced phosphorylation, resulting in increased cell migration. Targeting GSK3B is also essential for the observed PIM-enhanced expression of the prostaglandin-endoperoxide synthase 2 (PTGS2), which is an important regulator of both cell migration and adhesion. Accordingly, selective inhibition of PIM activity not only reduces cell migration, but also affects integrin-mediated cell adhesion. Taken together, these data provide novel mechanistic insights on how and why patients with metastatic prostate cancer may benefit from therapies targeting PIM kinases, and how such approaches may also be applicable to inflammatory conditions.
Collapse
Affiliation(s)
- Niina M Santio
- Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland; Drug Research Doctoral Programme, University of Turku, 20520 Turku, Finland
| | - Maria Salmela
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Heidi Arola
- Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland
| | - Sini K Eerola
- Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Eeva-Marja Rainio
- Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland
| | - Päivi J Koskinen
- Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland.
| |
Collapse
|
47
|
Abstract
BACKGROUND The Provirus integrating site Moloney murine leukemia virus (Pim) family are proteins with serine/threonine kinase activity. Studies have demonstrated overexpression of Pims in cancer. To our knowledge, only a single study has examined Pim-1 in urothelial carcinoma. The aim of this investigation was to evaluate Pim-1, Pim-2, and Pim-3 in urothelial carcinoma and assess for expression that may contribute to disease progression and serve as a site for targeted therapy. METHODS This retrospective study included 137 cases taken from specimens from the University of Utah, Department of Pathology (2008 to 2011). Tissue was stained with antibodies against Pim-1, Pim-2, and Pim-3. Cases were classified into 3 groups, based upon current World Health Organization criteria (invasive high-grade urothelial carcinoma [IHG] [n=84], noninvasive high-grade urothelial carcinoma/carcinoma in situ [n=32], and noninvasive low-grade urothelial carcinoma [NILG] [n=21]). Cases were scored and recorded as positive or negative on the basis of the percentage of cells with cytoplasmic and/or nuclear staining. RESULTS NILG showed higher expression of Pim-1 (relative expression rate [RER]=2.28; 95% confidence interval [CI], 0.183-0.764) and Pim-3 (RER=3.06; 95% CI, 0.423-0.816) compared with other lesions. IHG had lower expression of Pim-1 (RER=0.31; 95% CI, 0.401-0.844) and Pim-3 (RER=0.354; 95% CI, 0.322-0.816) and noninvasive high-grade urothelial carcinoma (NIHG) demonstrated increased expression of Pim-1 and (RER=2.09; 95% CI, 0.124-0.739) and Pim-2 (RER=1.70; 95% CI, 0.151-0.591). At least 1 Pim kinase protein was expressed at the following rates: 49% in IHG, 66% in NIHG, and 76% in NILG. CONCLUSION A high percentage of urothelial carcinomas express Pim kinases. Pim expression differs in NILG, NIHG, and IHG lesions.
Collapse
|
48
|
Darby RAJ, Unsworth A, Knapp S, Kerr ID, Callaghan R. Overcoming ABCG2-mediated drug resistance with imidazo-[1,2-b]-pyridazine-based Pim1 kinase inhibitors. Cancer Chemother Pharmacol 2015; 76:853-64. [PMID: 26351135 DOI: 10.1007/s00280-015-2858-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/25/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE Multidrug efflux pumps such as ABCG2 confer drug resistance to a number of cancer types, leading to poor prognosis and outcome. To date, the strategy of directly inhibiting multidrug efflux pumps in order to overcome drug resistance in cancer has been unsuccessful. An alternative strategy is to target proteins involved in the regulation of multidrug efflux pump activity or expression. Pim1 kinase has been demonstrated to phosphorylate ABCG2, promote its oligomerisation and contribute to its ability to confer drug resistance. METHODS In the present manuscript, imidazo-pyridazine-based inhibitors of Pim1 were examined for their ability to overcome ABCG2-mediated drug resistance. Drug efficacy was measured as a cytotoxic response or an effect on transport by ABCG2. Protein expression patterns were assessed using western immuno-blotting. RESULTS The two Pim1 inhibitors increased the potency of flavopiridol, mitoxantrone, topotecan and doxorubicin, specifically in ABCG2-expressing cells. This effect was associated with an increase in the cellular accumulation of [(3)H]-mitoxantrone, suggesting direct impairment of the transporter. However, prolonged pre-incubation with the studied inhibitors greatly enhanced the effect on mitoxantrone accumulation. The inhibitors caused a significant time-dependent reduction in the expression of ABCG2 in the resistant cells, an effect that would improve drug efficacy. CONCLUSION Consequently, it appears that the Pim1 inhibitors display a dual-mode effect on ABCG2-expressing cancer cells. This may provide a powerful new strategy in overcoming drug resistance by targeting proteins that regulate expression of efflux pumps.
Collapse
Affiliation(s)
- Richard A J Darby
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Headington, UK
- Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus, NDM Research Building, Oxford, OX3 7FZ, UK
| | - Amanda Unsworth
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Headington, UK
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus, NDM Research Building, Oxford, OX3 7FZ, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Richard Callaghan
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Headington, UK.
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
49
|
Rajaratnam R, Martin EK, Dörr M, Harms K, Casini A, Meggers E. Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes. Inorg Chem 2015; 54:8111-20. [DOI: 10.1021/acs.inorgchem.5b01349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Elisabeth K. Martin
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Markus Dörr
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology
and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Cardiff School
of Chemistry, University of Cardiff, Park Place, Cardiff CF10 3A, U.K
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
50
|
Abstract
The initiation and progression of human cancer is frequently linked to the uncontrolled activation of survival kinases. Two such pro-survival kinases that are commonly amplified in cancer are PIM and Akt. These oncogenic proteins are serine/threonine kinases that regulate tumorigenesis by phosphorylating substrates that control the cell cycle, cellular metabolism, proliferation, and survival. Growing evidence suggests that cross-talk exists between the PIM and Akt kinases, indicating that they control partially overlapping survival signaling pathways that are critical to the initiation, progression, and metastatic spread of many types of cancer. The PI3K/Akt signaling pathway is activated in many human tumors, and it is well established as a promising anticancer target. Likewise, based on the role of PIM kinases in normal and tumor tissues, it is clear that this family of kinases represents an interesting target for anticancer therapy. Pharmacological inhibition of PIM has the potential to significantly influence the efficacy of standard and targeted therapies. This review focuses on the regulation of PIM kinases, their role in tumorigenesis, and the biological impact of their interaction with the Akt signaling pathway on the efficacy of cancer therapy.
Collapse
|