1
|
Mikhailov A, Deresz K, Tiognou AT, Kostin G, Lassalle-Kaiser B, Schaniel D. Electronic structure of light-induced nitrosyl linkage isomers revealed by X-ray absorption spectroscopy at Ru L 3,2-edges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125053. [PMID: 39241399 DOI: 10.1016/j.saa.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful tool for examining changes of the electronic and molecular structure following light-induced excitation of a molecule. Specifically, this method can be applied to investigate the ground (GS, RuNO) and metastable states (MS1, RuON and MS2, Ruη2(NO)) of the nitrosyl ligand (NO), which differ in their coordination mode to the metal. In this work, we report for the first time experimental and theoretical (DFT) Ru L3,2-edge XA spectra for the octahedral complex trans-[RuNOPy4F](ClO4)2 (1, Py = pyridine) in both ground and metastable states. The transition from GS to MS1 using 420 nm light excitation leads to a significant downshift of the 2p → LUMO(+1) peaks by about 0.5-0.8 eV, attributed to the destabilisation of 2p orbitals and stabilization of LUMO(+1). Subsequent irradiation of MS1 at 920 nm produces isomer MS2, for which even greater stabilization of LUMO occurs, though without a significant change in 2p energy. The change in 2p energy is attributed to a variation in the charge on the Ru atom after NO isomerization, while LUMO(+1) stabilization is related to changes in the Ru(NO) bond length and the composition of this orbital.
Collapse
Affiliation(s)
- Artem Mikhailov
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| | - Krystyna Deresz
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France; Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Gennadiy Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | | | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| |
Collapse
|
2
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Svensson PHW, Schwob L, Grånäs O, Unger I, Björneholm O, Timneanu N, Lindblad R, Vieli AL, Zamudio-Bayer V, Timm M, Hirsch K, Caleman C, Berholts M. Heavy element incorporation in nitroimidazole radiosensitizers: molecular-level insights into fragmentation dynamics. Phys Chem Chem Phys 2024; 26:770-779. [PMID: 37888897 DOI: 10.1039/d3cp03800a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The present study investigates the photofragmentation behavior of iodine-enhanced nitroimidazole-based radiosensitizer model compounds in their protonated form using near-edge X-ray absorption mass spectrometry and quantum mechanical calculations. These molecules possess dual functionality: improved photoabsorption capabilities and the ability to generate species that are relevant to cancer sensitization upon photofragmentation. Four samples were investigated by scanning the generated fragments in the energy regions around C 1s, N 1s, O 1s, and I 3d-edges with a particular focus on NO2+ production. The experimental summed ion yield spectra are explained using the theoretical near-edge X-ray absorption fine structure spectrum based on density functional theory. Born-Oppenheimer-based molecular dynamics simulations were performed to investigate the fragmentation processes.
Collapse
Affiliation(s)
- Pamela H W Svensson
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Isaak Unger
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Olle Björneholm
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Nicusor Timneanu
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Rebecka Lindblad
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Anna-Lydia Vieli
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz Zentrum Berlin für Materialien und Energie, 12489 Berlin-Adlershof, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz Zentrum Berlin für Materialien und Energie, 12489 Berlin-Adlershof, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz Zentrum Berlin für Materialien und Energie, 12489 Berlin-Adlershof, Germany
| | - Carl Caleman
- Department of Physics and Astronomy, University of Uppsala, SE-75120 Uppsala, Sweden.
- Center for Free-Electron Laser Science, DESY, DE-22607 Hamburg, Germany
| | - Marta Berholts
- Institute of Physics, University of Tartu, W. Ostwald 1, EST-50411, Tartu, Estonia.
| |
Collapse
|
4
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
5
|
Bai Q, Wang M, Liu J, Sun X, Yang P, Qu F, Lin H. Porous Molybdenum Nitride Nanosphere as Carrier-Free and Efficient Nitric Oxide Donor for Synergistic Nitric Oxide and Chemo/Sonodynamic Therapy. ACS NANO 2023; 17:20098-20111. [PMID: 37805936 DOI: 10.1021/acsnano.3c05790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Given its abundant physiological functions, nitric oxide (NO) has attracted much attention as a cancer therapy. The sensitive release and great supply capacity are significant indicators of NO donors and their performance. Here, a transition metal nitride (TMN) MoN@PEG is adopted as an efficient NO donor. The release process starts with H+-triggered denitrogen owing to the high electronegativity of the N atom and weak Mo-N bond. Then, these active NHx are oxidized by O2 and other reactive oxygen species (ROS) to form NO, endowing specific release to the tumor microenvironment (TME). With a porous nanosphere structure (80 nm), MoN@PEG does not require an extra carrier for NO delivery, contributing to ultrahigh atomic utilization for outstanding release ability (94.1 ± 5.6 μM). In addition, it can also serve as a peroxidase and sonosensitizer for anticancer treatment. To further improve the charge separation, MoN-Pt@PEG was prepared to enhance the sonodynamic therapy (SDT) effect. Accordingly, ultrasound (US) further promotes NO generation due to more ROS generation, facilitating in situ peroxynitrite (·ONOO-) generation with great cytotoxicity. At the same time, the nanostructure also degrades gradually, leading to high elimination (94.6%) via feces and urine within 14-day. The synergistic NO and chemo-/sono-dynamic therapy brings prominent antitumor efficiency and further activates the immune response to inhibit metastasis and recurrence. This work develops a family of NO donors that would further widen the application of NO therapy in other fields.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
6
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
7
|
Ribeiro E, Vale N. Understanding the Clinical Use of Levosimendan and Perspectives on its Future in Oncology. Biomolecules 2023; 13:1296. [PMID: 37759695 PMCID: PMC10526140 DOI: 10.3390/biom13091296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Drug repurposing, also known as repositioning or reprofiling, has emerged as a promising strategy to accelerate drug discovery and development. This approach involves identifying new medical indications for existing approved drugs, harnessing the extensive knowledge of their bioavailability, pharmacokinetics, safety and efficacy. Levosimendan, a calcium sensitizer initially approved for heart failure, has been repurposed for oncology due to its multifaceted pharmacodynamics, including phosphodiesterase 3 inhibition, nitric oxide production and reduction of reactive oxygen species. Studies have demonstrated that levosimendan inhibits cancer cell migration and sensitizes hypoxic cells to radiation. Moreover, it exerts organ-protective effects by activating mitochondrial potassium channels. Combining levosimendan with traditional anticancer agents such as 5-fluorouracil (5-FU) has shown a synergistic effect in bladder cancer cells, highlighting its potential as a novel therapeutic approach. This drug repurposing strategy offers a cost-effective and time-efficient solution for developing new treatments, ultimately contributing to the advancement of cancer therapeutics and improved outcomes for patients. Further investigations and clinical trials are warranted to validate the effectiveness of levosimendan in oncology and explore its potential benefits in a clinical setting.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Ribeiro E, Vale N. Repurposing of the Drug Tezosentan for Cancer Therapy. Curr Issues Mol Biol 2023; 45:5118-5131. [PMID: 37367074 DOI: 10.3390/cimb45060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Tezosentan is a vasodilator drug that was originally developed to treat pulmonary arterial hypertension. It acts by inhibiting endothelin (ET) receptors, which are overexpressed in many types of cancer cells. Endothelin-1 (ET1) is a substance produced by the body that causes blood vessels to narrow. Tezosentan has affinity for both ETA and ETB receptors. By blocking the effects of ET1, tezosentan can help to dilate blood vessels, improve the blood flow, and reduce the workload on the heart. Tezosentan has been found to have anticancer properties due to its ability to target the ET receptors, which are involved in promoting cellular processes such as proliferation, survival, neovascularization, immune cell response, and drug resistance. This review intends to demonstrate the potential of this drug in the field of oncology. Drug repurposing can be an excellent way to improve the known profiles of first-line drugs and to solve several resistance problems of these same antineoplastic drugs.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
9
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Bolognesi P, Avaldi L. Photoelectron-photoion(s) coincidence studies of molecules of biological interest. Phys Chem Chem Phys 2022; 24:22356-22370. [PMID: 36124990 DOI: 10.1039/d2cp03079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectron-photoion(s) coincidence, PEPICO, experiments with synchrotron radiation have become one of the most powerful tools to investigate dissociative photoionization thanks to their selectivity. In this paper their application to the study of molecular species of biological interest in the gas phase is reviewed. Some applications of PEPICO to the study of potential radiosensitizers, amino acids and small peptides and opportunities offered by the advent of novel methods for the production of beams of these molecules are discussed.
Collapse
Affiliation(s)
- P Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 00015 Monterotondo Scalo, Italy.
| | - L Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 00015 Monterotondo Scalo, Italy.
| |
Collapse
|
11
|
Yang C, Mu G, Zhang Y, Gao Y, Zhang W, Liu J, Zhang W, Li P, Yang L, Yang Z, Gao J, Liu J. Supramolecular Nitric Oxide Depot for Hypoxic Tumor Vessel Normalization and Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202625. [PMID: 35906003 DOI: 10.1002/adma.202202625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In cancer radiotherapy, the lack of fixed DNA damage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16 tumors more efficiently than releasing at single dosage.
Collapse
Affiliation(s)
- Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Paiyun Li
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
12
|
Lee DN, Kim YR, Kim Y, Park BJ, Lee SJ, Kim SJ, Shin JH. Therapeutic Potency of NO Loaded into Anticancer Copper Metal-Organic Framework through Nonclassical Hydrogen Bonding. ACS APPLIED BIO MATERIALS 2022; 5:4301-4309. [PMID: 36041482 DOI: 10.1021/acsabm.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) are potential exogenous scaffolds for therapeutic nitric oxide (NO) delivery because they can store drug or bioactive gas molecules within pores or on active metal sites. Herein, we employed a Cu-MOF coordinated with glutarate (glu) and 1,2-bis(4-pyridyl)ethane (bpa) to obtain NO-loaded Cu-MOF (NO⊂Cu-MOF). NO loading transformed the space group of Cu-MOF from monoclinic C2/c to triclinic P-1 through nonclassical hydrogen bonding with glu and bpa. Cu-MOF showed good stability in deionized water and phosphate-buffered saline. NO⊂Cu-MOF released up to 1.10 μmol mg-1 NO over 14.6 h at 37 °C, which is suitable for therapeutic applications. NO⊂Cu-MOF showed moderate biocompatibility with L-929 cells and significant anticancer activity against HeLa cells, suggesting an apoptosis-mediated cell death mechanism. These insights into NO bonding modes with Cu-MOF that enable controlled NO release can inspire the design of functional MOFs as hybrid NO donors for drug delivery.
Collapse
Affiliation(s)
- Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Yeong Rim Kim
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Youngmee Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Bong Joo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul01897, Republic of Korea
| | - Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Sung-Jin Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
13
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
14
|
Kumar S, Ben Chouikha I, Kerkeni B, García G, Limão-Vieira P. Bound Electron Enhanced Radiosensitisation of Nimorazole upon Charge Transfer. Molecules 2022; 27:molecules27134134. [PMID: 35807379 PMCID: PMC9268075 DOI: 10.3390/molecules27134134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10–400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO•− at 226 u and nitrogen dioxide anion NO2− at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (θ ≈ 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Islem Ben Chouikha
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
| | - Boutheïna Kerkeni
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
- ISAMM, Université de La Manouba, La Manouba 2010, Tunisia
- Correspondence: (B.K.); (P.L.-V.)
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (B.K.); (P.L.-V.)
| |
Collapse
|
15
|
Satta M, Casavola AR, Cartoni A, Castrovilli MC, Catone D, Chiarinelli J, Borocci S, Avaldi L, Bolognesi P. Ionization of 2- and 4(5)-Nitroimidazoles Radiosensitizers: A "Kinetic Competition" Between NO 2 and NO Losses. Chemphyschem 2021; 22:2387-2391. [PMID: 34597457 PMCID: PMC9293481 DOI: 10.1002/cphc.202100629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Nitroimidazoles are a class of chemicals with a remarkable broad spectrum of applications from the production of explosives to the use as radiosensitizers in radiotherapy. The understanding of thedynamics of their fragmentation induced by ionizing sources is of fundamental interest. The goal of this work is to theoretically investigate the kinetic competition between the two most important decomposition channels of 2, 4 and 5‐Nitroimidazole cations: the NO and NO2 losses. The calculated rate constants of the two processes are in very good agreement with the experimental Photoelectron‐Photoion Coincidence (PEPICO) branching ratio. This study solves the intriguing and theoretically unexplained experimental observation that 2‐Nitroimidazole, at variance with the other two regio‐isomers is a source for only NO at low energies (<12.76 eV). This is a key point for biomedical application of the nitroimidazoles, because NO is the vasodilator that favors the reoxigenation of hypoxic tumor tissues.
Collapse
Affiliation(s)
- Mauro Satta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Dipartimento di Chimica, Università degli studi di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Anna Rita Casavola
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Antonella Cartoni
- Dipartimento di Chimica, Università degli studi di Roma La Sapienza, Pl.e Aldo Moro 5, 00185, Roma, Italy
| | - Mattea Carmen Castrovilli
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Daniele Catone
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 2, Via del Fosso del Cavaliere 10, 00133, Roma, Italy
| | - Jacopo Chiarinelli
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Stefano Borocci
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, Viterbo, Italy
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Paola Bolognesi
- Istituto di Struttura della Materia (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00016, Monterotondo Scalo (RM), Italy
| |
Collapse
|
16
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
17
|
Lee J, Hlaing SP, Hasan N, Kwak D, Kim H, Cao J, Yoon IS, Yun H, Jung Y, Yoo JW. Tumor-Penetrable Nitric Oxide-Releasing Nanoparticles Potentiate Local Antimelanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30383-30396. [PMID: 34162207 DOI: 10.1021/acsami.1c07407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although nitric oxide (NO) has been emerging as a novel local anticancer agent because of its potent cytotoxic effects and lack of off-target side effects, its clinical applications remain a challenge because of the short effective diffusion distance of NO that limits its anticancer activity. In this study, we synthesized albumin-coated poly(lactic-co-glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles (Alb-PLP/NO NPs) that possess tumor-penetrating and NO-releasing properties for an effective local treatment of melanoma. Sufficient NO-loading and prolonged NO-releasing characteristics of Alb-PLP/NO NPs were acquired through PLGA-conjugated LP/NO copolymer (PLP/NO) synthesis, followed by nanoparticle fabrication. In addition, tumor penetration ability was rendered by the electrostatic adsorption of the albumin on the surface of the nanoparticles. The Alb-PLP/NO NPs showed enhanced intracellular NO delivery efficiency and cytotoxicity to B16F10 murine melanoma cells. In B16F10-tumor-bearing mice, the Alb-PLP/NO NPs showed improved extracellular matrix penetration and spatial distribution in the tumor tissue after intratumoral injection, resulting in enhanced antitumor activity. Taken together, the results suggest that Alb-PLP/NO NPs represent a promising new modality for the local treatment of melanoma.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jiafu Cao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
18
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
19
|
Saqib M, Arthur-Baidoo E, Ončák M, Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int J Mol Sci 2020; 21:ijms21238906. [PMID: 33255344 PMCID: PMC7727711 DOI: 10.3390/ijms21238906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrofurans belong to the class of drugs typically used as antibiotics or antimicrobials. The defining structural component is a furan ring with a nitro group attached. In the present investigation, electron attachment to 2-nitrofuran (C4H3NO3), which is considered as a potential radiosensitizer candidate for application in radiotherapy, has been studied in a crossed electron-molecular beams experiment. The present results indicate that low-energy electrons with kinetic energies of about 0-12 eV effectively decompose the molecule. In total, twelve fragment anions were detected within the detection limit of the apparatus, as well as the parent anion of 2-nitrofuran. One major resonance region of ≈0-5 eV is observed in which the most abundant anions NO2-, C4H3O-, and C4H3NO3- are detected. The experimental results are supported by ab initio calculations of electronic states in the resulting anion, thermochemical thresholds, connectivity between electronic states of the anion, and reactivity analysis in the hot ground state.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Correspondence: (M.O.); (S.D.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Correspondence: (M.O.); (S.D.)
| |
Collapse
|
20
|
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel) 2020; 12:E1881. [PMID: 32668616 PMCID: PMC7408898 DOI: 10.3390/cancers12071881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide and CRC therapy remains unsatisfactory. In recent decades, nitric oxide (NO)-a free-radical gas-plus its endogenous producer NO synthases (NOS), have attracted considerable attention. NO exerts dual effects (pro- and anti-tumor) in cancers. Endogenous levels of NO promote colon neoplasms, whereas exogenously sustained doses lead to cytotoxic functions. Importantly, NO has been implicated as an essential mediator in many signaling pathways in CRC, such as the Wnt/β-catenin and extracellular-signal-regulated kinase (ERK) pathways, which are closely associated with cancer initiation, metastasis, inflammation, and chemo-/radio-resistance. Therefore, NO/NOS have been proposed as promising targets in the regulation of CRC carcinogenesis. Clinically relevant NO-donating agents have been developed for CRC therapy to deliver a high level of NO to tumor sites. Notably, inducible NOS (iNOS) is ubiquitously over-expressed in inflammatory-associated colon cancer. The development of iNOS inhibitors contributes to targeted therapies for CRC with clinical benefits. In this review, we summarize the multifaceted mechanisms of NO-mediated networks in several hallmarks of CRC. We review the clinical manifestation and limitations of NO donors and NOS inhibitors in clinical trials. We also discuss the possible directions of NO/NOS therapies in the immediate future.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yan Li
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yue Zhou
- Department of Statistics, North Dakota University, Fargo, ND 58105, USA;
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
21
|
Meißner R, Feketeová L, Ribar A, Fink K, Limão-Vieira P, Denifl S. Electron Ionization of Imidazole and Its Derivative 2-Nitroimidazole. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2678-2691. [PMID: 31667709 PMCID: PMC6914720 DOI: 10.1007/s13361-019-02337-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 09/08/2019] [Indexed: 05/09/2023]
Abstract
Imidazole (IMI) is a basic building block of many biologically important compounds. Thus, its electron ionization properties are of major interest and essential for the comparison with other molecular targets containing its elemental structure. 2-Nitroimidazole (2NI) contains the imidazole ring together with nitrogen dioxide bound to the C2 position, making it a radiosensitizing compound in hypoxic tumors. In the present study, we investigated electron ionization of IMI and 2NI and determined the mass spectra, the ionization energies, and appearance energies of the most abundant fragment cations. The experiments were complemented by quantum chemical calculations on the thermodynamic thresholds and potential energy surfaces, with particular attention to the calculated transition states for the most important dissociation reactions. In the case of IMI, substantially lower threshold values (up to ~ 1.5 eV) were obtained in the present work compared to the only available previous electron ionization study. Closer agreement was found with recent photon ionization values, albeit the general trend of slightly higher values for the case of electron ionization. The only exception for imidazole was found in the molecular cation at m/z 40 which is tentatively assigned to the quasi-linear HCCNH+/ HCNCH+. Electron ionization of 2NI leads to analogous fragment cations as in imidazole, yet different dissociation pathways must be operative due to the presence of the NO2 group. Regarding the potential radiosensitization properties of 2NI, electron ionization is characterized by dominant parent cation formation and release of the neutral NO radical.
Collapse
Affiliation(s)
- Rebecca Meißner
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Linda Feketeová
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
- Institut de Physique des 2 Infinis de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 novembre 1918, 69622, Villeurbanne, France.
| | - Anita Ribar
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Katharina Fink
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
22
|
Milutinović M, Vasić S, Obradović A, Zuher A, Jovanović M, Radovanović M, Čomić L, Marković S. Phytochemical Evaluation, Antimicrobial and Anticancer Properties of New “Oligo Grapes” Supplement. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19860371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research presents complete data about phytochemical analysis and biological activities of a new dietary supplement for commercial use “Oligo Grapes” (OG), and its individual constituents: lyophilized pomace (LP), clay supplemented with red wine extract, lyophilized pomace ethanolic extract (PE), and red wine extract. OG, as a commercially available food supplement, has not been previously tested for its biological activity. Now we want to present new data about its phytochemical screening, antioxidant and antibacterial activities, and anticancer properties with respect to its cytotoxicity and effects on redox status in colon cancer cell lines. The tested extracts expressed strong antibacterial activity against Proteus mirabilis and Proteus mirabilis ATCC 12453, where the synergy of contents inside the supplement demonstrated a higher influence on the bacteria than its separately tested constituents. Among the investigated extracts, PE, as the extract with the highest phenolics concentration, had remarkable cytotoxic activity on HCT-116 and SW-480 colon cancer cells. Also, the treatments modulated redox status in the investigated cancer cells, by inducing oxidative and nitrosative stress, which could be one of the preferred mechanisms of the anticancer action. Based on the achieved antimicrobial and anticancer properties, there is a need for producing different food supplements and nutritional products originating from grapes. In this respect, the food supplement OG and its health benefits deserve scientific attention and further research.
Collapse
Affiliation(s)
- Milena Milutinović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Sava Vasić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Ana Obradović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Aida Zuher
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Milena Jovanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | | | - Ljiljana Čomić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Snežana Marković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| |
Collapse
|
23
|
Yoshikawa T, Mori Y, Feng H, Phan KQ, Kishimura A, Kang JH, Mori T, Katayama Y. Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int J Pharm 2019; 565:481-487. [PMID: 31102802 DOI: 10.1016/j.ijpharm.2019.05.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Abstract
The modulation of blood flow to tumors is a prominent strategy for improving the tumor accumulation of nanomedicines, resulting from the enhanced permeability and retention (EPR) effect. We previously reported a promising EPR enhancer-a nitric oxide (NO) donor-containing liposome (NO-LP)-which showed enhanced accumulation in tumor tissue. Herein, we study NO-LP in greater detail to clarify its practical use as an EPR enhancer. NO-LP was found to have advantages as a NO donor, including the ability to maintain NO donation over long periods of time, and a constant rate of NO-release irrespective of the environmental pH. NO-LP showed rapid accumulation in tumor tissue after injection (1 h), and then accumulation was continuously enhanced until 48 h. Enhanced NO-LP accumulation was observed specifically in tumor, while the accumulation in other organs remained relatively unchanged. The results obtained show the promising features of NO-LP as an EPR enhancer.
Collapse
Affiliation(s)
- Takuma Yoshikawa
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yukina Mori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Haitao Feng
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Khanh Quoc Phan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka, Japan; Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Chiarinelli J, Casavola AR, Castrovilli MC, Bolognesi P, Cartoni A, Wang F, Richter R, Catone D, Tosic S, Marinkovic BP, Avaldi L. Radiation Damage Mechanisms of Chemotherapeutically Active Nitroimidazole Derived Compounds. Front Chem 2019; 7:329. [PMID: 31157205 PMCID: PMC6528692 DOI: 10.3389/fchem.2019.00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 11/15/2022] Open
Abstract
Photoionization mass spectrometry, photoelectron-photoion coincidence spectroscopic technique, and computational methods have been combined to investigate the fragmentation of two nitroimidazole derived compounds: the metronidazole and misonidazole. These molecules are used in radiotherapy thanks to their capability to sensitize hypoxic tumor cells to radiation by "mimicking" the effects of the presence of oxygen as a damaging agent. Previous investigations of the fragmentation patterns of the nitroimidazole isomers (Bolognesi et al., 2016; Cartoni et al., 2018) have shown their capacity to produce reactive molecular species such as nitric oxide, carbon monoxide or hydrogen cyanide, and their potential impact on the biological system. The results of the present work suggest that different mechanisms are active for the more complex metronidazole and misonidazole molecules. The release of nitric oxide is hampered by the efficient formation of nitrous acid or nitrogen dioxide. Although both metronidazole and misonidazole contain imidazole ring in the backbone, the side branches of these molecules lead to very different bonding mechanisms and properties.
Collapse
Affiliation(s)
- Jacopo Chiarinelli
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Anna Rita Casavola
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
| | - Mattea Carmen Castrovilli
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
| | - Paola Bolognesi
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
| | - Antonella Cartoni
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
- Dipartimento di Chimica, Sapienza Università di Roma, Rome, Italy
| | - Feng Wang
- Molecular Modelling Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - R. Richter
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Daniele Catone
- CNR-Istituto di Struttura Della Materia, Area della Ricerca di Tor Vergata, Rome, Italy
| | - Sanja Tosic
- Institute of Physics, Laboratory for Atomic Collision Processes, University of Belgrade, Belgrade, Serbia
| | - Bratislav P. Marinkovic
- Institute of Physics, Laboratory for Atomic Collision Processes, University of Belgrade, Belgrade, Serbia
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy
| |
Collapse
|
25
|
Mendes M, Probst M, Maihom T, García G, Limão-Vieira P. Selective Bond Excision in Nitroimidazoles by Electron Transfer Experiments. J Phys Chem A 2019; 123:4068-4073. [PMID: 30995841 DOI: 10.1021/acs.jpca.9b02064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have performed comprehensive charge-transfer experiments yielding negative ion formation in collisions of fast neutral potassium atoms with nitroimidazole and methylated derivative molecules. The anionic pattern reveals that in the unimolecular decomposition of the precursor parent anion, single and multiple bond cleavages are attained. Selective excision of hydrogen atoms from the N1 position in 4-nitroimidazole (4NI) is completely blocked upon methylation in 1-methyl-4-nitroimidazole (1m4NI) and 1-methyl-5-nitroimidazole (1m5NI). Additionally, only 4NI and 2-nitroimidazole (2NI) are efficient in selectively producing neutral •OH and NO• radicals in contrast to 1m4NI and 1m5NI. These findings present a novel experimental evidence of selective chemical bond breaking by just tuning the proper collision energy in atom-molecule collision experiments. The present work contributes to the current need of pinpointing a class of charge-transfer collisions that exhibit selective reactivity of the kind demonstrated here, extending to tailored chemical control for different applications such as tumor radiation therapy through nitroimidazole-based radiosensitization.
Collapse
Affiliation(s)
- M Mendes
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics , Universidade NOVA de Lisboa , Campus de Caparica , 2829-516 Caparica , Portugal.,Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas , Serrano 113-bis , 28006 Madrid , Spain
| | - M Probst
- Institut für Ionenphysik und Angewandte Physik , Leopold Franzens Universität Innsbruck , Technikerstrasse 25 , 6020 Innsbruck , Austria
| | - T Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science , Kasetsart University , Kamphaeng Saen Campus , Nakhon Pathom 73140 , Thailand
| | - G García
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas , Serrano 113-bis , 28006 Madrid , Spain
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics , Universidade NOVA de Lisboa , Campus de Caparica , 2829-516 Caparica , Portugal
| |
Collapse
|
26
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
27
|
Voss NCS, Kold-Petersen H, Boedtkjer E. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am J Physiol Heart Circ Physiol 2019; 316:H245-H254. [DOI: 10.1152/ajpheart.00368.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.
Collapse
Affiliation(s)
- Ninna C. S. Voss
- Research Unit, Regional Hospital Randers, Randers, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Lee H, Choi YK. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int J Mol Sci 2018; 20:ijms20010078. [PMID: 30585210 PMCID: PMC6337166 DOI: 10.3390/ijms20010078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.
Collapse
Affiliation(s)
- Huiju Lee
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
29
|
Nagane M, Kuppusamy ML, An J, Mast JM, Gogna R, Yasui H, Yamamori T, Inanami O, Kuppusamy P. Ataxia-Telangiectasia Mutated (ATM) Kinase Regulates eNOS Expression and Modulates Radiosensitivity in Endothelial Cells Exposed to Ionizing Radiation. Radiat Res 2018; 189:519-528. [PMID: 29474156 DOI: 10.1667/rr14781.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endothelial nitric oxide synthase (eNOS), a constitutive enzyme expressed in vascular endothelial cells, is the main source of nitric oxide (NO), which plays key roles in diverse biological functions, including regulation of vascular tone. Exposure to radiation has been known to generate nitric oxide from eNOS; however, the precise mechanism of its generation and function is not known. The goal of this study was to determine the involvement of radiation-induced DNA damage response (DDR) on eNOS transcription and its effect on cell survival after irradiation. Irradiated bovine aortic endothelial cells showed increased eNOS transcription and NO generation through upregulation of ataxia-telangiectasia mutated (ATM) kinase. Radiation exposure induced NO inhibited cell death, as well as induced cellular senescence postirradiation. This study established that radiation-induced DDR uses ATM kinase to upregulate eNOS transcription and NO generation, leading to cellular senescence, which may play a critical role in radiation-mediated cardiovascular injury.
Collapse
Affiliation(s)
- Masaki Nagane
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,c Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - M Lakshmi Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jennifer An
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jesse M Mast
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Rajan Gogna
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,d Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Hironobu Yasui
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tohru Yamamori
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Inanami
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Periannan Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
30
|
Gallez B, Neveu MA, Danhier P, Jordan BF. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:700-711. [DOI: 10.1016/j.bbabio.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
|
31
|
Colliez F, Gallez B, Jordan BF. Assessing Tumor Oxygenation for Predicting Outcome in Radiation Oncology: A Review of Studies Correlating Tumor Hypoxic Status and Outcome in the Preclinical and Clinical Settings. Front Oncol 2017; 7:10. [PMID: 28180110 PMCID: PMC5263142 DOI: 10.3389/fonc.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygenation could help to predict the outcome of cancer patients undergoing radiation therapy. Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the most oxygenated regions require lower radiation doses. However, the assessment of tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To fully integrate tumor hypoxia parameters into effective improvements of the individually tailored radiation therapy protocols in cancer patients, methods allowing non-invasively repeated, safe, and robust mapping of changes in tissue oxygenation are required. In this review, non-invasive methods dedicated to assessing tumor oxygenation with the ultimate goal of predicting outcome in radiation oncology are presented, including positron emission tomography used with nitroimidazole tracers, magnetic resonance methods using endogenous contrasts (R1 and R2*-based methods), and electron paramagnetic resonance oximetry; the goal is to highlight results of studies establishing correlations between tumor hypoxic status and patients’ outcome in the preclinical and clinical settings.
Collapse
Affiliation(s)
- Florence Colliez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
32
|
Zhao Y, Wang D, Xu T, Liu P, Cao Y, Wang Y, Yang X, Xu X, Wang X, Niu H. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget 2016; 6:39196-210. [PMID: 26474279 PMCID: PMC4770766 DOI: 10.18632/oncotarget.5538] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/02/2015] [Indexed: 01/19/2023] Open
Abstract
Background In the present study, we aimed to investigate the influence of lactate shuttling on the functional polarization and spatial distribution of transitional cell carcinoma of the bladder (TCCB) cells and macrophages. Methods We designed a microfluidic coculture chip for real-time integrative assays. The effect of lactate shuttling on the re-education of macrophages by TCCB cells was explored by measuring the levels of NO using a total NO assay kit and by evaluating the protein expression of iNOS, p-NFkB-p65, Arg-1 and HIF-1α via cell immunofluorescence and western blotting. Additionally, we examined TCCB cell viability using acridine orange/ethidium bromide (AO/EB) and MitoTracker staining. Moreover, the concentration distributions of lactate and large signaling proteins in the culture chambers were measured using 4′,6-diamidino-2-phenylindole (DAPI) and fluorescein isothiocyanate-dextran (FITC-dextran). Furthermore, the recruitment of macrophages and the influence of macrophages on BC metastasis were observed via light microscopy. Results We confirmed that TCCB cells reprogrammed macrophages into an M2 phenotype. Moreover, lactate inhibited M1 polarization and induced M2 polarization of macrophages, but blockade of cancer cell-macrophage lactate flux significantly inhibited the re-education of macrophages by TCCB cells. In addition, lactate diffused faster and deeper than large signaling proteins in the microfluidic tumor microenvironment. Furthermore, lactate alone induced the migration of macrophages, and M1, but not M2, macrophages reduced the motility of TCCB cells. Conclusions TCCB cells reprogrammed macrophages into an M2 phenotype in a manner that depended on cancer cell-TAM lactate flux. Furthermore, the lactate shuttle may be a determinant of the density of TAMs in tumor tissue.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Degui Wang
- Department of Anatomy, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Xu
- Department of Geratology, The 401st Hospital of PLA, Qingdao, China
| | - Pengfei Liu
- Department of Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanwei Cao
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Yonghua Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xiaodong Xu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xinsheng Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| |
Collapse
|
33
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
34
|
Bolognesi P, Casavola AR, Cartoni A, Richter R, Markus P, Borocci S, Chiarinelli J, Tošić S, Sa’adeh H, Masič M, Marinković B, Prince K, Avaldi L. Communication: “Position” does matter: The photofragmentation of the nitroimidazole isomers. J Chem Phys 2016; 145:191102. [DOI: 10.1063/1.4967770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- P. Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
| | - A. R. Casavola
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
| | - A. Cartoni
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| | - R. Richter
- Elettra-Sincrotrone Trieste, Basovizza, Italy
| | - P. Markus
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
| | - S. Borocci
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, Viterbo, Italy
| | - J. Chiarinelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
| | - S. Tošić
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - H. Sa’adeh
- Department of Physics, The University of Jordan, Amman, Jordan
| | - M. Masič
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - B.P. Marinković
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - K.C. Prince
- Elettra-Sincrotrone Trieste, Basovizza, Italy
| | - L. Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma1, Monterotondo, Italy
| |
Collapse
|
35
|
Sansalone L, Tang S, Zhang Y, Thapaliya ER, Raymo FM, Garcia-Amorós J. Semiconductor Quantum Dots with Photoresponsive Ligands. Top Curr Chem (Cham) 2016; 374:73. [DOI: 10.1007/s41061-016-0073-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
36
|
Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorg Med Chem 2016; 24:967-75. [PMID: 26822567 DOI: 10.1016/j.bmc.2016.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
A library of nitric oxide-donor doxorubicins (NO-DOXOs) was synthesized by linking appropriate NO-donor moieties at C-14 position through an ester bridge. Their hydrolytic stability was evaluated. The intracellular accumulation and cytotoxicity of these novel NO-DOXOs were studied in DOXO-sensitive (HT29) and DOXO-resistant (HT29/dx) tumor-cells. Hydrolytically-stable compounds accumulated in HT29 and HT29/dx cells, thanks to the nitration of plasma-membrane efflux transporters. Surprisingly, no close correlation was found between intracellular accumulation and cytotoxicity. Only compounds with high mitochondria retention (due to nitration of mitochondrial efflux transporter) exert high cytotoxicity, through the activation of a mitochondrial-dependent apoptosis.
Collapse
|
37
|
Fernandes AC, Pinto ML, Antunes F, Pires J. Synthetic cobalt clays for the storage and slow release of therapeutic nitric oxide. RSC Adv 2016. [DOI: 10.1039/c6ra05794b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is one of the smallest endogenous molecules with particularly interesting aspect roles in biological systems, despite its toxicological potential.
Collapse
Affiliation(s)
- Ana C. Fernandes
- Centro de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Moisés L. Pinto
- CERENA
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Fernando Antunes
- Centro de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - João Pires
- Centro de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
38
|
De Preter G, Deriemaeker C, Danhier P, Brisson L, Cao Pham TT, Grégoire V, Jordan BF, Sonveaux P, Gallez B. A Fast Hydrogen Sulfide-Releasing Donor Increases the Tumor Response to Radiotherapy. Mol Cancer Ther 2015; 15:154-61. [PMID: 26682572 DOI: 10.1158/1535-7163.mct-15-0691-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2S) is the last gaseous transmitter identified in mammals, and previous studies have reported disparate conclusions regarding the implication of H2S in cancer progression. In the present study, we hypothesized that sodium hydrosulfide (NaHS), a fast H2S-releasing donor, might interfere with the mitochondrial respiratory chain of tumor cells, increase tumor oxygenation, and potentiate the response to irradiation. Using electron paramagnetic resonance (EPR) oximetry, we found a rapid increase in tumor pO2 after NaHS administration (0.1 mmol/kg) in two human tumor models (breast MDA-MB-231 and cervix SiHa), an effect that was due to a decreased oxygen consumption and an increased tumor perfusion. Tumors irradiated 15 minutes after a single NaHS administration were more sensitive to irradiation compared with those that received irradiation alone (increase in growth delay by 50%). This radiosensitization was due to the oxygen effect, as the increased growth delay was abolished when temporarily clamped tumors were irradiated. In contrast, daily NaHS injection (0.1 mmol/kg/day for 14 days) did not provide any effect on tumor growth in vivo. To understand these paradoxical data, we analyzed the impact of external factors on the cellular response to NaHS. We found that extracellular pH had a dramatic effect on the cell response to NaHS, as the proliferation rate (measured in vitro by BrdU incorporation) was increased at pH = 7.4, but decreased at pH = 6.5. Overall, our study highlights the complex role of environmental components in the response of cancer cells to H2S and suggests a new approach for the use of H2S donors in combination with radiotherapy.
Collapse
Affiliation(s)
- Géraldine De Preter
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Deriemaeker
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Lucie Brisson
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Thanh Trang Cao Pham
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Vincent Grégoire
- Pole of Molecular Imaging, Radiotherapy and Oncology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
39
|
Abstract
The three endogenous gaseous transmitters - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) - regulate a number of key biological functions. Emerging data have revealed several new mechanisms for each of these three gasotransmitters in tumour biology. It is now appreciated that they show bimodal pharmacological character in cancer, in that not only the inhibition of their biosynthesis but also elevation of their concentration beyond a certain threshold can exert anticancer effects. This Review discusses the role of each gasotransmitter in cancer and the effects of pharmacological agents - some of which are in early-stage clinical studies - that modulate the levels of each gasotransmitter. A clearer understanding of the pharmacological character of these three gases and the mechanisms underlying their biological effects is expected to guide further clinical translation.
Collapse
|
40
|
Ben Chaaben A, Mariaselvam C, Salah S, Busson M, Dulphy N, Douik H, Ghanem A, Boukaouci W, Al Daccak R, Mamoghli T, Harzallah L, Bouassida J, Fortier C, Gritli S, Ben Hamida J, Charron D, Krishnamoorthy R, Guemira F, Tamouza R. Polymorphisms in oxidative stress-related genes are associated with nasopharyngeal carcinoma susceptibility. Immunobiology 2015; 220:20-5. [PMID: 25446398 DOI: 10.1016/j.imbio.2014.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a complex multifactorial disorder involving both genetic and environmental factors. Polymorphisms of genes encoding nitric oxide synthase (NOS) and antioxidant glutathione-S transferases (GSTs) have been associated with various tumors. We examined the combined role of NOS3, NOS2 and GST polymorphisms in NPC risk in Tunisians. We found that NOS3−786C allele and −786 CC genotype, NOS3+894T allele and +894 GT+TT genotypes, NOS2−277 G allele and −277 GG genotype, and GSTT1 del/del genotype, are more prevalent in NPC patients as compared to healthy controls. Our results suggest that genetically driven dysfunction in red–ox stress pathway could augment the risk in NPC-susceptible individuals.
Collapse
Affiliation(s)
- Arij Ben Chaaben
- Department of Clinical Biology, Salah Azaiz Institut of Cancer, Tunis, Tunisia; INSERM, U940, Saint-Louis Hospital, Paris, France; Biochemistry Department, ISBAT, Science University of Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol 2015; 6:1-8. [PMID: 26164533 PMCID: PMC4529402 DOI: 10.1016/j.redox.2015.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023] Open
Abstract
The endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer – while not entirely understood – is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic. . NO radiosensitizes by reaction with DNA radicals, by its metabolites and by impact on the vasculature. Understanding the local and context-specific activity of NO is key for radiosensitizer development RRx-001 induces NO production under hypoxia with promising radiosensitizing activity.
Collapse
|
42
|
Fernandes AC, Pinto ML, Antunes F, Pires J. l-Histidine-based organoclays for the storage and release of therapeutic nitric oxide. J Mater Chem B 2015; 3:3556-3563. [PMID: 32262240 DOI: 10.1039/c4tb01913j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite its toxicity, in low concentrations, nitric oxide (NO) is a small endogenous molecule with a particularly important role in the regulation of several biochemical pathways of the human body. The potential of l-histidine-modified clays (organoclays) for storage and therapeutic release of nitric oxide was assessed. Materials were characterized by powder X-ray diffraction, TG-DSC, IR spectroscopy, and nitrogen adsorption at -196 °C. The NO storage and release kinetics was studied both in the gas and liquid phases. For some materials, improvement was observed for both the released amounts and the release profile for the organoclays in relation to the respective raw clays. Assays with HeLa cells indicated that the materials have low cytotoxicity.
Collapse
Affiliation(s)
- Ana C Fernandes
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | | | | |
Collapse
|
43
|
Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One 2015; 10:e0124000. [PMID: 25860911 PMCID: PMC4393109 DOI: 10.1371/journal.pone.0124000] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 01/14/2023] Open
Abstract
Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.
Collapse
Affiliation(s)
- Laxmidhar Das
- Biochemistry and Molecular Biology Laboratory, Department of Zoology (Centre of Advanced Study), Banaras Hindu University, Varanasi-221005, India
| | - Manjula Vinayak
- Biochemistry and Molecular Biology Laboratory, Department of Zoology (Centre of Advanced Study), Banaras Hindu University, Varanasi-221005, India
- * E-mail:
| |
Collapse
|
44
|
Ryu YK, Lee MH, Lee J, Lee JW, Jang SJ, Kang JH, Moon EY. γ-Irradiated cancer cells promote tumor growth by activation of Toll-like receptor 1-mediated inducible nitric oxide synthase in macrophages. J Leukoc Biol 2015; 97:711-721. [DOI: 10.1189/jlb.3a0114-055r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
RT is commonly used to treat malignant tumors. However, tumor regrowth is a major limitation to RT as an antitumor treatment. In the present study, we investigated the tumor-promoting effects of high-dose (or ablative) RT treatments on tumor-bearing mice. We focused on the role of macrophages that interact with IR-CCs in the TME, which cause tumor regrowth. We observed that CT26(H-2d) tumor growth was enhanced by i.v. injection of IR-CT26 cells compared with NR control CT26 cells. The levels of iNOS gene expression and NO production from RAW264.7 macrophages (H-2d) in response to the interaction with IR-CT26 cells were higher than with NR-CT26 cells. When CT26 tumor-bearing mice were treated i.v. with L-NMMA, a NOS inhibitor, the reduction in in vivo tumor growth was higher in the IR-CT26-injected group compared with the NR-CT26-injected control group. In vivo CT26 tumor growth was decreased after transplanting PEM extracted from L-NMMA-treated, tumor-bearing mice. Although iNOS activity was reduced by inhibiting TLR1 expression with TLR1-siRNA, it was enhanced by TLR1 overexpression. Transcriptional activation and protein expression levels of iNOS were also decreased in the presence of TLR1-siRNA but increased as a result of TLR1 overexpression. These results demonstrate that postradiotherapeutic tumor regrowth may be caused by interaction of IR-CCs with macrophages that induce TLR1-mediated iNOS expression and NO production. Our data suggest that iNOS in macrophages could be a useful target to regulate postradiotherapeutic responses in hosts and subsequently limit tumor regrowth.
Collapse
Affiliation(s)
- Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Mi-Hee Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Su-Jin Jang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Science , Seoul , Korea
| | - Joo-Hyun Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Science , Seoul , Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| |
Collapse
|
45
|
Fantappiè O, Sassoli C, Tani A, Nosi D, Marchetti S, Formigli L, Mazzanti R. Mitochondria of a human multidrug-resistant hepatocellular carcinoma cell line constitutively express inducible nitric oxide synthase in the inner membrane. J Cell Mol Med 2015; 19:1410-7. [PMID: 25691007 PMCID: PMC4459854 DOI: 10.1111/jcmm.12528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a crucial role in pathways of stress conditions. They can be transported from one cell to another, bringing their features to the cell where they are transported. It has been shown in cancer cells overexpressing multidrug resistance (MDR) that mitochondria express proteins involved in drug resistance such as P-glycoprotein (P-gp), breast cancer resistant protein and multiple resistance protein-1. The MDR phenotype is associated with the constitutive expression of COX-2 and iNOS, whereas celecoxib, a specific inhibitor of COX-2 activity, reverses drug resistance of MDR cells by releasing cytochrome c from mitochondria. It is possible that COX-2 and iNOS are also expressed in mitochondria of cancer cells overexpressing the MDR phenotype. This study involved experiments using the human HCC PLC/PRF/5 cell line with and without MDR phenotype and melanoma A375 cells that do not express the MDR1 phenotype but they do iNOS. Western blot analysis, confocal immunofluorescence and immune electron microscopy showed that iNOS is localized in mitochondria of MDR1-positive cells, whereas COX-2 is not. Low and moderate concentrations of celecoxib modulate the expression of iNOS and P-gp in mitochondria of MDR cancer cells independently from inhibition of COX-2 activity. However, A375 cells that express iNOS also in mitochondria, were not MDR1 positive. In conclusion, iNOS can be localized in mitochondria of HCC cells overexpressing MDR1 phenotype, however this phenomenon appears independent from the MDR1 phenotype occurrence. The presence of iNOS in mitochondria of human HCC cells phenotype probably concurs to a more aggressive behaviour of cancer cells.
Collapse
Affiliation(s)
- Ornella Fantappiè
- Department of Experimental and Clinical Medicine - Section of Internal Medicine and Hepatology, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Serena Marchetti
- Department of Experimental Therapy and Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Roberto Mazzanti
- Department of Experimental and Clinical Medicine - Section of Internal Medicine and Hepatology, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
46
|
Radiation sensitization with sodium nitrite in patients with brain metastases: a pilot randomized controlled trial. Med Oncol 2015; 32:46. [DOI: 10.1007/s12032-015-0493-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
47
|
Gao M, Liu S, Fan A, Wang Z, Zhao Y. Nitric oxide-releasing graft polymer micelles with distinct pendant amphiphiles. RSC Adv 2015. [DOI: 10.1039/c5ra13341f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The architecture of nitric oxide-releasing graft polymer micelles affects the cargo release profile.
Collapse
Affiliation(s)
- Min Gao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Aiping Fan
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
48
|
Site-directed delivery of nitric oxide to cancers. Nitric Oxide 2014; 43:8-16. [PMID: 25124221 DOI: 10.1016/j.niox.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Abstract
Nitric oxide (NO) is a reactive gaseous free radical which mediates numerous biological processes. At elevated levels, NO is found to be toxic to cancers and hence, a number of strategies for site-directed delivery of NO to cancers are in development during the past two decades. More recently, the focus of research has been to, in conjunction with other cancer drugs deliver NO to cancers for its secondary effects including inhibition of cellular drug efflux pumps. Among the various approaches toward site-selective delivery of exogenous NO sources, enzyme activated nitric oxide donors belonging to the diazeniumdiolate category afford unique advantages including exquisite control of rates of NO generation and selectivity of NO production. For this prodrug approach, enzymes including esterase, glutathione/glutathione S-transferase, DT-diaphorase, and nitroreductase are utilized. Here, we review the design and development of various approaches to enzymatic site-directed delivery of NO to cancers and their potential.
Collapse
|
49
|
Pedrini I, Gazzano E, Chegaev K, Rolando B, Marengo A, Kopecka J, Fruttero R, Ghigo D, Arpicco S, Riganti C. Liposomal nitrooxy-doxorubicin: one step over caelyx in drug-resistant human cancer cells. Mol Pharm 2014; 11:3068-79. [PMID: 25057799 DOI: 10.1021/mp500257s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work we prepared and characterized two liposomal formulations of a semisynthetic nitric oxide (NO)-releasing doxorubicin (Dox), called nitrooxy-Dox (NitDox), which we previously demonstrated to be cytotoxic in Dox-resistant human colon cancer cells. Liposomes with 38.2% (Lip A) and 19.1% (Lip B) cholesterol were synthesized: both formulations had similar size and zeta potential values and caused the same intracellular distribution of free NitDox, but Lip B accumulated and released NitDox more efficiently. In Dox-resistant human colon cancer cells, Lip A and Lip B exhibited a more favorable kinetics of drug uptake and NO release, and a stronger cytotoxicity than Dox and free NitDox. While Caelyx, one of the liposomal Dox formulations approved for breast and ovary tumors treatment, was ineffective in Dox-resistant breast/ovary cancer cells, Lip B, and to a lesser extent Lip A, still exerted a significant cytotoxicity in these cells. This event was accompanied in parallel by a higher release of NO, which caused nitration of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two transporters involved in Dox efflux, and impaired their pump activity. By doing so, the efflux kinetics of Dox after treatment with Lip B was markedly slowed down and the intracellular accumulation of Dox was increased in breast and ovary drug-resistant cells. We propose these liposomal formulations of NitDox as new tools with a specific indication for tumors overexpressing Pgp and MRP1.
Collapse
Affiliation(s)
- Isabella Pedrini
- Department of Drug Science and Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chan MW, Nathanael G, Kis A, Amirabadi A, Zhong A, Rayner T, Weiss R, Detzler G, Jong R, Gahunia H, Moineddin R, Crawley A, Doria AS. Systematic protocol for assessment of the validity of BOLD MRI in a rabbit model of inflammatory arthritis at 1.5 tesla. Pediatr Radiol 2014; 44:566-75. [PMID: 24366603 DOI: 10.1007/s00247-013-2844-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Blood-oxygen-level-dependent (BOLD) MRI has the potential to identify regions of early hypoxic and vascular joint changes in inflammatory arthritis. There is no standard protocol for analysis of BOLD MRI measurements in musculoskeletal disorders. OBJECTIVE To optimize the following BOLD MRI reading parameters: (1) statistical threshold values (low, r > 0.01 versus high, r > 0.2); (2) summary measures of BOLD contrast (percentage of activated voxels [PT%] versus percentage signal difference between on-and-off signal intensities [diff_on_off]); and (3) direction of BOLD response (positive, negative and positive + negative). MATERIALS AND METHODS Using BOLD MRI protocols at 1.5 T, arthritic (n = 21) and contralateral (n = 21) knees of 21 juvenile rabbits were imaged at baseline and on days 1, 14 and 28 after a unilateral intra-articular injection of carrageenan. Nine non-injected rabbits served as external control knees (n = 18). By comparing arthritic to contralateral knees, receiver operating characteristic curves were used to determine diagnostic accuracy. RESULTS Using diff_on_off and positive + negative responses, a threshold of r > 0.01 was more accurate than r > 0.2 (P = 0.03 at day 28). Comparison of summary measures yielded no statistically significant difference (P > 0.05). Although positive + negative (AUC = 0.86 at day 28) and negative responses (AUC = 0.90 at day 28) for PT% were the most diagnostically accurate, positive + negative responses for diff_on_off (AUC = 0.78 at day 28) also had acceptable accuracy. CONCLUSIONS The most clinically relevant reading parameters included a lower threshold of r > 0.01 and a positive + negative BOLD response. We propose that diff_on_off is a more clinically relevant summary measure of BOLD MRI, while PT% can be used as an ancillary measure.
Collapse
Affiliation(s)
- Michael W Chan
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, Canada, M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|