1
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
2
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Demirci Y, Heger G, Katkat E, Papatheodorou I, Brazma A, Ozhan G. Brain Regeneration Resembles Brain Cancer at Its Early Wound Healing Stage and Diverges From Cancer Later at Its Proliferation and Differentiation Stages. Front Cell Dev Biol 2022; 10:813314. [PMID: 35223842 PMCID: PMC8868567 DOI: 10.3389/fcell.2022.813314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most frequent type of brain cancers and characterized by continuous proliferation, inflammation, angiogenesis, invasion and dedifferentiation, which are also among the initiator and sustaining factors of brain regeneration during restoration of tissue integrity and function. Thus, brain regeneration and brain cancer should share more molecular mechanisms at early stages of regeneration where cell proliferation dominates. However, the mechanisms could diverge later when the regenerative response terminates, while cancer cells sustain proliferation. To test this hypothesis, we exploited the adult zebrafish that, in contrast to the mammals, can efficiently regenerate the brain in response to injury. By comparing transcriptome profiles of the regenerating zebrafish telencephalon at its three different stages, i.e., 1 day post-lesion (dpl)-early wound healing stage, 3 dpl-early proliferative stage and 14 dpl-differentiation stage, to those of two brain cancers, i.e., low-grade glioma (LGG) and glioblastoma (GBM), we reveal the common and distinct molecular mechanisms of brain regeneration and brain cancer. While the transcriptomes of 1 dpl and 3 dpl harbor unique gene modules and gene expression profiles that are more divergent from the control, the transcriptome of 14 dpl converges to that of the control. Next, by functional analysis of the transcriptomes of brain regeneration stages to LGG and GBM, we reveal the common and distinct molecular pathways in regeneration and cancer. 1 dpl and LGG and GBM resemble with regard to signaling pathways related to metabolism and neurogenesis, while 3 dpl and LGG and GBM share pathways that control cell proliferation and differentiation. On the other hand, 14 dpl and LGG and GBM converge with respect to developmental and morphogenetic processes. Finally, our global comparison of gene expression profiles of three brain regeneration stages, LGG and GBM exhibit that 1 dpl is the most similar stage to LGG and GBM while 14 dpl is the most distant stage to both brain cancers. Therefore, early convergence and later divergence of brain regeneration and brain cancer constitutes a key starting point in comparative understanding of cellular and molecular events between the two phenomena and development of relevant targeted therapies for brain cancers.
Collapse
Affiliation(s)
- Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Irene Papatheodorou
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
- *Correspondence: Gunes Ozhan,
| |
Collapse
|
5
|
Nagarajan PP, Tora MS, Neill SG, Federici T, Texakalidis P, Donsante A, Canoll P, Lei K, Boulis NM. Lentiviral-Induced Spinal Cord Gliomas in Rat Model. Int J Mol Sci 2021; 22:12943. [PMID: 34884748 PMCID: PMC8657985 DOI: 10.3390/ijms222312943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Intramedullary spinal cord tumors are a rare and understudied cancer with poor treatment options and prognosis. Our prior study used a combination of PDGF-B, HRAS, and p53 knockdown to induce the development of high-grade glioma in the spinal cords of minipigs. In this study, we evaluate the ability of each vector alone and combinations of vectors to produce high-grade spinal cord gliomas. Eight groups of rats (n = 8/group) underwent thoracolumbar laminectomy and injection of lentiviral vector in the lateral white matter of the spinal cord. Each group received a different combination of lentiviral vectors expressing PDGF-B, a constitutively active HRAS mutant, or shRNA targeting p53, or a control vector. All animals were monitored once per week for clinical deficits for 98 days. Tissues were harvested and analyzed using hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining. Rats injected with PDGF-B+HRAS+sh-p53 (triple cocktail) exhibited statistically significant declines in all behavioral measures (Basso Beattie Bresnahan scoring, Tarlov scoring, weight, and survival rate) over time when compared to the control. Histologically, all groups except the control and those injected with sh-p53 displayed the development of tumors at the injection site, although there were differences in the rate of tumor growth and the histopathological features of the lesions between groups. Examination of immunohistochemistry revealed rats receiving triple cocktail displayed the largest and most significant increase in the Ki67 proliferation index and GFAP positivity than any other group. PDGF-B+HRAS also displayed a significant increase in the Ki67 proliferation index. Rats receiving PDGF-B alone and PDGF-B+ sh-p53 displayed more a significant increase in SOX2-positive staining than in any other group. We found that different vector combinations produced differing high-grade glioma models in rodents. The combination of all three vectors produced a model of high-grade glioma more efficiently and aggressively with respect to behavioral, physiological, and histological characteristics than the rest of the vector combinations. Thus, the present rat model of spinal cord glioma may potentially be used to evaluate therapeutic strategies in the future.
Collapse
Affiliation(s)
- Purva P. Nagarajan
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
| | - Muhibullah S. Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stewart G. Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Thais Federici
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
| | - Pavlos Texakalidis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
| | - Anthony Donsante
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
| | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.P.N.); (M.S.T.); (T.F.); (P.T.); (A.D.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Application of the antitussive agents oxelaidin and butamirate as anti-glioma agents. Sci Rep 2021; 11:10145. [PMID: 33980886 PMCID: PMC8115262 DOI: 10.1038/s41598-021-89238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with a strong tendency of relapse and resistance to chemotherapy, but we currently lack non-toxic agents that effectively treat GBM. In this study, high-throughput screening of FDA-approved drugs was performed to identify safe and effective molecules and test their effect on GBM cell lines, LN229, U87 and T98G. Cough suppressants, oxelaidin and butamirate inhibited GBM growth. A Ras family GTPase, Ras-related associated with diabetes (RRAD), contributes to activation of STAT3, which is essential for survival and growth of many cancer types. Interestingly, oxelaidin and butamirate did not affect proliferation in RRAD negative GBM cells. Docking simulation analyses revealed selective interactions between oxelaidin and RRAD. The mechanism by which butamirate and oxelaidin inhibits GBM cell growth involves the suppression of STAT3 transcriptional activity, leading to down-regulation of cyclin D1 and survivin. In addition, components of RRAD-associated signaling cascades, including p-EGFR, p-Akt, and p-STAT3, were inhibited upon oxelaidin treatment. Intraperitoneal administration of oxelaidin or butamirate markedly suppressed tumor growth in a glioblastoma xenograft mouse model without significant adverse effects. Our collective findings indicate that oxelaidin and butamirate exert anti-tumor effects in glioblastoma, supporting its utility as a novel therapeutic candidate for glioblastoma.
Collapse
|
7
|
Qian J, Yang M, Feng Q, Pan XY, Yang LL, Yang JL. Inhibition of glioma by adenovirus KGHV500 encoding anti-p21Ras scFv and carried by cytokine-induced killer cells. Exp Biol Med (Maywood) 2021; 246:1228-1238. [PMID: 33535808 PMCID: PMC8142110 DOI: 10.1177/1535370220986769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023] Open
Abstract
Ras gene mutation or overexpression can lead to tumorigenesis in multiple kinds of cancer, including glioma. However, no drugs targeting Ras or its expression products have been approved for clinical application thus far. Adenoviral gene therapy is a promising method for the treatment of glioma. In this study, the human glioma cell line U251 was co-cultured with recombinant adenovirus KGHV500, and the anti-tumor effects of KGHV500 were determined by MTT, scratch test, Transwell invasion, and apoptosis assays. Then, KGHV500 was delivered via the intravenous injection of CIK cells into glioma xenografts. Tumor volume, ki67 proliferation index, apoptosis levels, and anti-p21Ras scFv expression were tested to evaluate targeting ability, anti-tumor efficacy, and safety. We found that the KGHV500 exhibited anti-tumor activity in U251 cells and increased the intracellular expression of anti-p21Ras scFv compared with that in the control groups. CIK cells delivered KGHV500 to U251 glioma cell xenografts and enhanced anti-tumor activity against glioma xenografts compared to that produced by the control treatment. In conclusion, targeting Ras is a useful therapeutic strategy for gliomas and other Ras-driven cancers, and the delivery of anti-p21Ras scFv by recombinant adenovirus and CIK cells may play an essential role in the therapy of Ras-driven cancers.
Collapse
Affiliation(s)
- Jing Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| | - Mo Yang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| | - Xin-Yan Pan
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| | - Li-Lin Yang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| | - Ju-Lun Yang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, PR China
| |
Collapse
|
8
|
Mukherjee S, Stroberg E, Wang F, Morales L, Shan Y, Rao A, Huang JH, Wu E, Fonkem E. SMARCB1 Gene Mutation Predisposes to Earlier Development of Glioblastoma: A Case Report of Familial GBM. J Neuropathol Exp Neurol 2020; 79:562-565. [PMID: 32296843 PMCID: PMC7160617 DOI: 10.1093/jnen/nlaa022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumor. While GBM typically occurs sporadically, familial GBM can be associated with certain hereditary disorders and isolated familial GBMs in the absence of syndrome are rare. Relevant hereditary factors have remained elusive in these cases. Understanding specific genetic abnormality may potentially lead to better treatment strategies in these patients. Here, we analyzed GBM tissue from our patient and 2 afflicted family members, with next generation sequencing to better understand the genetic alterations associated with this disease development. DNA was extracted and sequenced and the data were then analyzed. Results revealed 2 common mutations in afflicted family members; PDGFRA and HRAS. In addition, both siblings showed a mutation of the SMARCB1 gene. The sister of our patient exhibited a homozygous mutation, while our patient had heterozygous mutation of this gene in the tumor tissue. This result suggests that mutation of SMARCB1, either alone or in the presence of PDGFRA and HRAS mutations, is associated with earlier onset GBM.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Shan
- Department of Pathology, Phoenix, Arizona
| | | | | | - Erxi Wu
- Department of Neurosurgery, Phoenix, Arizona
| | - Ekokobe Fonkem
- Baylor Scott & White Health, Temple, Texas; Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona.,University of Arizona School of Medicine
| |
Collapse
|
9
|
Pang L, Hu J, Li F, Yuan H, Yan M, Liao G, Xu L, Pang B, Ping Y, Xiao Y, Li X. Discovering Rare Genes Contributing to Cancer Stemness and Invasive Potential by GBM Single-Cell Transcriptional Analysis. Cancers (Basel) 2019; 11:E2025. [PMID: 31888172 PMCID: PMC6966673 DOI: 10.3390/cancers11122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing presents the sophisticated delineation of cell transcriptomes in many cancer types and highlights the tumor heterogeneity at higher resolution, which provides a new chance to explore the molecular mechanism in a minority of cells. In this study, we utilized publicly available single-cell RNA-seq data to discover and comprehensively dissect rare genes existing in few glioblastoma (GBM) cells. Moreover, we designed a framework to systematically identify 51 rare protein-coding genes (PCGs) and 47 rare long non-coding RNAs (lncRNAs) in GBM. Patients with high expression levels of rare genes like CYB5R2 and TPPP3 had worse overall survival and disease-free survival, implying their potential implication in GBM progression and prognosis. We found that these rare genes tended to be specifically expressed in GBM cancer stem cells, which emphasized their ability to characterize stem-like cancer cells and implied their contribution to GBM growth. Furthermore, rare genes were enriched in a 17-cell subset, which was located in an individual branch of the pseudotime trajectory of cancer progression and exhibited high cell cycle activity and invasive potential. Our study captures the rare genes highly expressed in few cells, deepens our understanding of special states during GBM tumorigenesis and progression such as cancer stemness and invasion, and proposes potential targets for cancer therapy.
Collapse
Affiliation(s)
- Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Huating Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (L.P.); (J.H.); (F.L.); (H.Y.); (M.Y.); (G.L.); (L.X.); (B.P.); (Y.P.)
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
10
|
Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals. Arch Immunol Ther Exp (Warsz) 2017; 65:285-297. [DOI: 10.1007/s00005-017-0459-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022]
|
11
|
K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med Oncol 2016; 34:6. [PMID: 27943100 DOI: 10.1007/s12032-016-0862-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Nephroblastoma (Wilms tumor) is a kidney neoplasia, predominately occurring at very young age, resulting from the malignant transformation of renal stem cells. The Ras proto-oncogenes and B-Raf are members of an intracellular cascade pathway, which regulates cell growth and differentiation, and ultimately cancer development. Our objective was to determine the mutation rate and to measure the mRNA levels of the three Ras genes and of B-Raf in formalin-fixed paraffin-embedded tissue samples from 32 patients with nephroblastoma and 10 controls. No mutations were detected in the four studied genes among our Wilms tumors cases, while Ras and B-Raf expression was higher in malignant samples versus controls. Statistical analysis revealed a positive correlation of K-Ras (p < 0.001) and B-Raf (p = 0.006) with tumor size, a negative correlation of K-Ras (p = 0.041) and H-Ras (p = 0.033) with the percentage of tissue necrosis, and an association of N-Ras (p = 0.047) and B-Raf (p = 0.044) with tissue histology. From the above, we deduce that although Ras and B-Raf mutations are rare events in Wilms tumors, their expression pattern suggests that they play an important role in the development and progression of this malignancy.
Collapse
|
12
|
Thuy MN, Kam JK, Lee GC, Tao PL, Ling DQ, Cheng M, Goh SK, Papachristos AJ, Shukla L, Wall KL, Smoll NR, Jones JJ, Gikenye N, Soh B, Moffat B, Johnson N, Drummond KJ. A novel literature-based approach to identify genetic and molecular predictors of survival in glioblastoma multiforme: Analysis of 14,678 patients using systematic review and meta-analytical tools. J Clin Neurosci 2015; 22:785-99. [DOI: 10.1016/j.jocn.2014.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 01/08/2023]
|
13
|
Yeom SY, Nam DH, Park C. RRAD promotes EGFR-mediated STAT3 activation and induces temozolomide resistance of malignant glioblastoma. Mol Cancer Ther 2014; 13:3049-61. [PMID: 25313011 DOI: 10.1158/1535-7163.mct-14-0244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain cancer with a median survival of less than 2 years. GBM is characterized by abnormal activation of receptor tyrosine kinase and constitutively activated STAT3. Although EGFR phosphorylation and STAT3 activation are essential for the maintenance of GBM cancer stem cells, the molecular mechanism underlying endosome-mediated STAT3 activation is not fully understood. In the current study, we showed that GTP-binding protein RRAD (RAS associated with diabetes, RAD) physically associates with EGFR, and EEA1, enhancing the stability and endosome-associated nuclear translocation of EGFR. Functionally, RRAD contributes to the activation of STAT3 and expression of the stem cell factors OCT4, NANOG, and SOX2, thereby enhancing self-renewing ability, tumor sphere formation, EMT, and in vivo tumorigenesis. Most importantly, RRAD contributes to poor survival in patients with GBM. RRAD expression is correlated with temozolomide resistance, and, conversely, depletion of RRAD leads to sensitization of highly temozolomide-resistant GBM cells. Our data collectively support a novel function of RRAD in STAT3 activation and provide evidence that RRAD acts as a positive regulator in the EGFR signaling pathway. These results demonstrate a critical role for RRAD in GBM tumorigenesis and provide a rationale for the development of pharmacologic inhibitors of RRAD in GBM.
Collapse
Affiliation(s)
- Seon-Yong Yeom
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Milinkovic VP, Skender Gazibara MK, Manojlovic Gacic EM, Gazibara TM, Tanic NT. The impact of TP53 and RAS mutations on cerebellar glioblastomas. Exp Mol Pathol 2014; 97:202-7. [PMID: 25036404 DOI: 10.1016/j.yexmp.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
Cerebellar glioblastoma (cGBM) is a rare, inadequately characterized disease, without detailed information on its molecular basis. This is the first report analyzing both TP53 and RAS alterations in cGBM. TP53 mutations were detected in more than half of the samples from our cohort, mainly in hotspot codons. There were no activating mutations in hotspot codons 12/13 and 61 of KRAS and HRAS genes in cGBM samples but we detected alterations in other parts of exons 2 and 3 of these genes, including premature induction of STOP codon. This mutation was present in 3 out of 5 patients. High incidence of RAS mutations, as well as significantly longer survival of cGBM patients compared to those with supratentorial GBM suggest that cGBM may have different mechanisms of occurrence. Our results suggest that inactivation of TP53 and RAS may play an important role in the progression of cerebellar GBM.
Collapse
Affiliation(s)
- Vedrana P Milinkovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Neurobiology, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Milica K Skender Gazibara
- University of Belgrade, School of Medicine, Institute of Pathology, Doktora Subotica 1, 11000 Belgrade, Serbia
| | - Emilija M Manojlovic Gacic
- University of Belgrade, School of Medicine, Institute of Pathology, Doktora Subotica 1, 11000 Belgrade, Serbia
| | - Tatjana M Gazibara
- University of Belgrade, School of Medicine, Institute of Epidemiology, Visegradska 26, 11000 Belgrade, Serbia
| | - Nikola T Tanic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Neurobiology, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Sadeque A, Serão NV, Southey BR, Delfino KR, Rodriguez-Zas SL. Identification and characterization of alternative exon usage linked glioblastoma multiforme survival. BMC Med Genomics 2012. [PMID: 23206951 PMCID: PMC3548711 DOI: 10.1186/1755-8794-5-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Alternative exon usage (AEU) is an important component of gene regulation. Exon expression platforms allow the detection of associations between AEU and phenotypes such as cancer. Numerous studies have identified associations between gene expression and the brain cancer glioblastoma multiforme (GBM). The few consistent gene expression biomarkers of GBM that have been reported may be due to the limited consideration of AEU and the analytical approaches used. The objectives of this study were to develop a model that accounts for the variations in expression present between the exons within a gene and to identify AEU biomarkers of GBM survival. Methods The expression of exons corresponding to 25,403 genes was related to the survival of 250 individuals diagnosed with GBM in a training data set. Genes exhibiting AEU in the training data set were confirmed in an independent validation data set of 78 patients. A hierarchical mixed model that allows the consideration of covariation between exons within a gene and of the effect of the epidemiological characteristics of the patients was developed to identify associations between exon expression and patient survival. This general model describes all three possible scenarios: multi-exon genes with and without AEU, and single-exon genes. Results AEU associated with GBM survival was identified on 2477 genes (P-value < 5.0E-04 or FDR-adjusted P-value < 0.05). G-protein coupled receptor 98 (Gpr98) and epidermal growth factor (Egf) were among the genes exhibiting AEU with 30 and 9 exons associated with GBM survival, respectively. Pathways enriched among the AEU genes included focal adhesion, ECM-receptor interaction, ABC transporters and pathways in cancer. In addition, 24 multi-exon genes without AEU and 8 single-exon genes were associated with GBM survival (FDR-adjusted P-value < 0.05). Conclusions The inferred patterns of AEU were consistent with in silico AS models. The hierarchical model used offered a flexible and simple way to interpret and identify associations between survival that accommodates multi-exon genes with or without AEU and single exon genes. Our results indicate that differential expression of AEU could be used as biomarker for GBM and potentially other cancers.
Collapse
Affiliation(s)
- Ahmed Sadeque
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
16
|
Amplified and homozygously deleted genes in glioblastoma: impact on gene expression levels. PLoS One 2012; 7:e46088. [PMID: 23029397 PMCID: PMC3460955 DOI: 10.1371/journal.pone.0046088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY Single-nucleotide polymorphism (SNP)-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46), and to evaluate the impact of copy number alterations (CNA) on mRNA levels of the genes involved. PRINCIPAL FINDINGS Recurrent amplicons were detected for chromosomes 7 (50%), 12 (22%), 1 (11%), 4 (9%), 11 (4%), and 17 (4%), whereas homozygous deletions involved chromosomes 9p21 (52%) and 10q (22%). Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2), while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively). Despite homozygous del(9p21) and del(10q23.31) included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.
Collapse
|
17
|
Serão NVL, Delfino KR, Southey BR, Beever JE, Rodriguez-Zas SL. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genomics 2011; 4:49. [PMID: 21649900 PMCID: PMC3127972 DOI: 10.1186/1755-8794-4-49] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/07/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. METHODS A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. RESULTS A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events.Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death. CONCLUSIONS Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.
Collapse
Affiliation(s)
- Nicola VL Serão
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kristin R Delfino
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan E Beever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Lo HW. Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr Cancer Drug Targets 2011; 10:840-8. [PMID: 20718706 DOI: 10.2174/156800910793357970] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 08/17/2010] [Indexed: 11/22/2022]
Abstract
Malignant gliomas are the most common and the deadliest brain malignancies in adults. Despite the lack of a complete understanding of the biology of these tumors, significant advances have been made in the past decades. One of the key discoveries made in the area of malignant gliomas is that these tumors can be induced and maintained by aberrant signaling networks. In this context, the Ras pathway has been extensively exploited, from both basic and translational perspectives. Although somatic oncogenic mutations of Ras genes are frequent in several cancer types, early investigations on gliomas revealed disappointing facts that the Ras mutations are nearly absent in malignant gliomas and that the BRAF mutations are present in a very small percentage of gliomas. Therefore, the observed deregulation of the Ras-RAF-ERK signaling pathway in gliomas is attributed to its upstream positive regulators, including, EGFR and PDGFR known to be highly active in the majority of malignant gliomas. In contrast to the initial negative results on the somatic mutations of H-Ras, K-Ras and BRAF, recent breakthrough studies on pediatric low-grade astrocytomas uncovered genetic alterations of the BRAF gene involving copy number gains and rearrangements. The 7q34 rearrangements result in a novel in-frame KIAA1549:BRAF fusion gene that possesses constitutive BRAF kinase activity resembling oncogenic BRAF (V600E). In light of the earlier findings and recent breakthroughs, this review summarizes our current understanding of the Ras-RAF-ERK signaling pathway in gliomas and the outcome of preclinical and clinical studies that evaluated the efficacy of Ras-targeted therapy in malignant gliomas.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Duke Comprehensive Cancer Center and Duke Brain Tumor Center, 103 Research Drive, Durham, NC 27705, USA.
| |
Collapse
|
19
|
RRP22: a novel neural tumor suppressor for astrocytoma. Med Oncol 2011; 29:332-9. [PMID: 21264544 DOI: 10.1007/s12032-010-9795-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/20/2010] [Indexed: 12/31/2022]
Abstract
Astrocytomas are the most common neoplasm of the central nervous system. Although progress has been made, the survival rate of astrocytoma is still poor. Therefore, improving the prognosis of patients with astrocytomas relies on effective therapies that are directed against unique molecular aberrations. Previous studies have revealed that a novel member of the Ras superfamily, RRP22, which is located on chromosome 22 on the 12q site, is exclusively expressed in the central nervous system. RRP22 can be modified by farnesyl and down-regulated in a variety of neural tumor cell lines. In this study, we analyzed the mRNA level of RRP22 in normal brain tissues and astrocytomas using quantitative RT-PCR. Our results showed that the mRNA level in astrocytomas was significantly down-regulated compared to levels in normal tissues. As the pathological grade (World Health Organization (WHO) classification 2007) increased, the expression of RRP22 decreased. However, according to our research, there was no significant difference between malignant astrocytomas with pathological grades of III or IV. To investigate the possible effects of RRP22 on the biological behavior of glioma cells, we transfected RRP22 into a malignant cell line of astrocytomas, U251. We found that RRP22 inhibited growth, decreased invasiveness, and induced cell death. Thus, RRP22 is a special neural tumor suppressor for human astrocytomas, although further studies are needed to define the detailed mechanisms.
Collapse
|
20
|
Antoniou KM, Margaritopoulos GA, Soufla G, Symvoulakis E, Vassalou E, Lymbouridou R, Samara KD, Kappou D, Spandidos DA, Siafakas NM. Expression analysis of Akt and MAPK signaling pathways in lung tissue of patients with idiopathic pulmonary fibrosis (IPF). J Recept Signal Transduct Res 2010; 30:262-9. [PMID: 20536315 DOI: 10.3109/10799893.2010.489227] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF THE STUDY Several studies in patients with lung cancer have shown that epidermal growth factor receptor regulates various tumorigenic processes through the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin and Ras/Raf/Mek/Erk (mitogen-activated protein kinase (MAPK)) signalling pathways. The aim of our study is to evaluate whether these pathways are implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and to seek indirect evidence of a common pathogenetic pathway with lung cancer. m-RNA expression of oncogenes participating in these two signaling pathways, as well as the combined m-RNA expression of the suppressor genes R-kip and p53 in lung tissue of patients with IPF were evaluated. BASIC PROCEDURES The study population was composed by two distinct groups. Patients with IPF (n = 25) and control subjects who underwent thoracic surgery for reasons other than interstitial lung disease (n = 10). Expression analysis of the aforementioned oncogenes and suppressor genes was performed using real-time reverse transcription polymerase chain reaction. MAIN FINDINGS We found no difference in the overall m- RNA expression between controls and IPF in both investigated pathways. However, Braf has been overexpressed in IPF samples (P = 0.01) in contrast with K-ras that has been found downregulated (P < 0.001) in comparison with controls. PRINCIPAL CONCLUSIONS These findings cannot exclude the hypothesis of involvement of Akt and MAPK signalling pathways in pathogenesis of IPF. However, further investigation is needed in order to verify these data.
Collapse
Affiliation(s)
- Katerina M Antoniou
- Department of Thoracic Medicine, Interstitial Lung Disease Unit, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sørensen M, Kosteljanetz M, Broholm H, Stockhausen MT, Poulsen HS. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010; 12:508-16. [PMID: 20406901 PMCID: PMC2940618 DOI: 10.1093/neuonc/nop063] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 09/07/2009] [Indexed: 12/29/2022] Open
Abstract
The aim of this clinical trial was to investigate safety and efficacy when combining cetuximab with bevacizumab and irinotecan in patients with recurrent primary glioblastoma multiforme (GBM). Patients were included with recurrent primary GBM and progression within 6 months of ending standard treatment (radiotherapy and temozolomide). Bevacizumab and irinotecan were administered IV every 2 weeks. The first 10 patients received bevacizumab 5 mg/kg, but this was increased to 10 mg/kg after interim safety analysis. Irinotecan dose was based on whether patients were taking enzyme-inducing antiepileptic drugs or not: 340 and 125 mg/m(2), respectively. Cetuximab 400 mg/m(2) as loading dose followed by 250 mg/m(2) weekly was administered IV. Forty-three patients were enrolled in the trial, of which 32 were available for response. Radiographic responses were noted in 34%, of which 2 patients had complete responses and 9 patients had partial responses. The 6-month progression-free survival probability was 30% and median overall survival was 29 weeks (95% CI: 23-37 weeks). One patient had lacunar infarction, 1 patient had multiple pulmonary embolisms, and 3 patients had grade 3 skin toxicity, for which 1 patient needed plastic surgery. One patient was excluded due to suspicion of interstitial lung disease. Three patients had deep-vein thrombosis; all continued on study after adequate treatment. Cetuximab in combination with bevacizumab and irinotecan in recurrent GBM is well tolerated except for skin toxicity, with an encouraging response rate. However, the efficacy data do not seem to be superior compared with results with bevacizumab and irinotecan alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hans Skovgaard Poulsen
- Departments of Radiation Biology (B.H., M.-T.S., H.S.P.) and Oncology (B.H., M.S., H.S.P.), The Finsen Center, Copenhagen University Hospital, Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark (U.L.); Department of Oncology, Odense University Hospital, Odense, Denmark (S.H.); Department of Oncology, Aalborg Sygehus, Aarhus University Hospital, Aalborg, Denmark (M.H.); Departments of Neurosurgery (M.K.) and Neuropathology (H.B.), Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|