1
|
Zhai X, Chen B, Hu H, Deng Y, Chen Y, Hong Y, Ren X, Jiang C. Identification of the molecular subtypes and signatures to predict the prognosis, biological functions, and therapeutic response based on the anoikis-related genes in colorectal cancer. Cancer Med 2024; 13:e7315. [PMID: 38785271 PMCID: PMC11117457 DOI: 10.1002/cam4.7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Tumors that resist anoikis, a programmed cell death triggered by detachment from the extracellular matrix, promote metastasis; however, the role of anoikis-related genes (ARGs) in colorectal cancer (CRC) stratification, prognosis, and biological functions remains unclear. METHODS We obtained transcriptomic profiles of CRC and 27 ARGs from The Cancer Genome Atlas, the Gene Expression Omnibus, and MSigDB databases, respectively. CRC tissue samples were classified into two clusters based on the expression pattern of ARGs, and their functional differences were explored. Hub genes were screened using weighted gene co-expression network analysis, univariate analysis, and least absolute selection and shrinkage operator analysis, and validated in cell lines, tissues, or the Human Protein Atlas database. We constructed an ARG-risk model and nomogram to predict prognosis in patients with CRC, which was validated using an external cohort. Multifaceted landscapes, including stemness, tumor microenvironment (TME), immune landscape, and drug sensitivity, between high- and low-risk groups were examined. RESULTS Patients with CRC were divided into C1 and C2 clusters. Cluster C1 exhibited higher TME scores, whereas cluster C2 had favorable outcomes and a higher stemness index. Eight upregulated hub ARGs (TIMP1, P3H1, SPP1, HAMP, IFI30, ADAM8, ITGAX, and APOC1) were utilized to construct the risk model. The qRT-PCR, Western blotting, and immunohistochemistry results were consistent with those of the bioinformatics analysis. Patients with high risk exhibited worse overall survival (p < 0.01), increased stemness, TME, immune checkpoint expression, immune infiltration, tumor mutation burden, and drug susceptibility compared with the patients with low risk. CONCLUSION Our results offer a novel CRC stratification based on ARGs and a risk-scoring system that could predict the prognosis, stemness, TME, immunophenotypes, and drug susceptibility of patients with CRC, thereby improving their prognosis. This stratification may facilitate personalized therapies.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Baoxiang Chen
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Heng Hu
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Yanrong Deng
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Yazhu Chen
- West China Hospital of Sichuan universityChengduChina
| | - Yuntian Hong
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Xianghai Ren
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Congqing Jiang
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| |
Collapse
|
2
|
Shi S, Zhong J, Peng W, Yin H, Zhong D, Cui H, Sun X. System analysis based on the migration- and invasion-related gene sets identifies the infiltration-related genes of glioma. Front Oncol 2023; 13:1075716. [PMID: 37091145 PMCID: PMC10117932 DOI: 10.3389/fonc.2023.1075716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The current database has no information on the infiltration of glioma samples. Here, we assessed the glioma samples' infiltration in The Cancer Gene Atlas (TCGA) through the single-sample Gene Set Enrichment Analysis (ssGSEA) with migration and invasion gene sets. The Weighted Gene Co-expression Network Analysis (WGCNA) and the differentially expressed genes (DEGs) were used to identify the genes most associated with infiltration. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the major biological processes and pathways. Protein-protein interaction (PPI) network analysis and the least absolute shrinkage and selection operator (LASSO) were used to screen the key genes. Furthermore, the nomograms and receiver operating characteristic (ROC) curve were used to evaluate the prognostic and predictive accuracy of this clinical model in patients in TCGA and the Chinese Glioma Genome Atlas (CGGA). The results showed that turquoise was selected as the hub module, and with the intersection of DEGs, we screened 104 common genes. Through LASSO regression, TIMP1, EMP3, IGFBP2, and the other nine genes were screened mostly in correlation with infiltration and prognosis. EMP3 was selected to be verified in vitro. These findings could help researchers better understand the infiltration of gliomas and provide novel therapeutic targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Haoyang Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ma B, Ueda H, Okamoto K, Bando M, Fujimoto S, Okada Y, Kawaguchi T, Wada H, Miyamoto H, Shimada M, Sato Y, Takayama T. TIMP1 promotes cell proliferation and invasion capability of right-sided colon cancers via the FAK/Akt signaling pathway. Cancer Sci 2022; 113:4244-4257. [PMID: 36073574 DOI: 10.1111/cas.15567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Although right-sided colorectal cancer (CRC) shows a worse prognosis than left-sided CRC, the underlying mechanism remains unclear. We established patient-derived organoids (PDOs) from left- and right-sided CRCs and directly compared cell proliferation and invasion capability between them. We then analyzed the expression of numerous genes in signal transduction pathways to clarify the mechanism of the differential prognosis. Cell proliferation activity and invasion capability in right-sided cancer PDOs were significantly higher than in left-sided cancer PDOs and normal PDOs, as revealed by Cell Titer Glo and transwell assays, respectively. We then used quantitative RT-PCR to compare 184 genes in 30 pathways among right-sided and left-sided cancer and normal PDOs and found that the TIMP1 mRNA level was highest in right-sided PDOs. TIMP1 protein levels were upregulated in right-sided PDOs compared with normal PDOs but was downregulated in left-sided PDOs. TIMP1 knockdown with shRNA significantly decreased cell proliferation activity and invasion capability in right-sided PDOs but not in left-sided PDOs. Moreover, TIMP1 knockdown significantly decreased pFAK and pAkt expression levels in right-sided PDOs but not in left-sided PDOs. A database analysis of The Cancer Genome Atlas revealed that TIMP1 expression in right-sided CRCs was significantly higher than in left-sided CRCs. Kaplan-Meier survival analysis showed significantly shorter overall survival in high-TIMP1 patients versus low-TIMP1 patients with right-sided CRCs but not left-sided CRCs. Our data suggest that TIMP1 is overexpressed in right-sided CRCs and promotes cell proliferation and invasion capability through the TIMP1/FAK/Akt pathway, leading to a poor prognosis. The TIMP1/FAK/Akt pathway can be a target for therapeutic agents in right-sided CRCs.
Collapse
Affiliation(s)
- Beibei Ma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyuki Ueda
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuyuki Okada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Nakai N, Hara M, Takahashi H, Shiga K, Hirokawa T, Maeda Y, Yanagita T, Ando N, Takasu K, Suzuki T, Maeda A, Ogawa R, Matsuo Y, Takiguchi S. Cancer cell‑induced tissue inhibitor of metalloproteinase‑1 secretion by cancer‑associated fibroblasts promotes cancer cell migration. Oncol Rep 2022; 47:112. [PMID: 35485275 DOI: 10.3892/or.2022.8323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Cancer‑associated fibroblasts (CAFs) are one of the major components of the cancer stroma in the tumor microenvironment. The interaction between cancer cells and CAFs (cancer‑stromal interaction; CSI) promotes tumor progression, including metastasis. Recently, the tissue inhibitor of metalloproteinase‑1 (TIMP‑1) was reported to promote cancer cell migration and metastasis, which is contrary to its anticancer role as an inhibitor of matrix metalloproteinase. Moreover, CAF‑derived TIMP‑1 is reported to regulate CAF activity. In the present study, we investigated the effect of TIMP‑1 on colon cancer cell migration in vitro. The TIMP‑1 secretion levels from the CAFs and cancer cell lines were comparatively measured to determine the main source of TIMP‑1. Furthermore, the effect of CSI on TIMP‑1 secretion was investigated using the Transwell co‑culture system. Cancer cell migration was evaluated using the wound‑healing assay. The results demonstrated that TIMP‑1 promoted the migration of LoVo cells, a colon cancer cell line, whereas TIMP‑1 neutralization inhibited the enhanced migration. The TIMP‑1 levels secreted from the cancer cells were approximately 10 times less than those secreted from the CAFs. TIMP‑1 secretion was higher in CAFs co‑cultured with cancer cells than in monocultured CAFs. Furthermore, the migration of LoVo cells increased upon co‑culturing with the CAFs. TIMP‑1 neutralization partially inhibited this enhanced migration. These results suggest that CAFs are the primary source of TIMP‑1 and that the TIMP‑1 production is enhanced through CSI in the tumor microenvironment, which promotes cancer cell migration.
Collapse
Affiliation(s)
- Nozomu Nakai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Masayasu Hara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Nanako Ando
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Korehito Takasu
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Anri Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| |
Collapse
|
5
|
Qin L, Wang Y, Yang N, Zhang Y, Zhao T, Wu Y, Jiang J. Tissue inhibitor of metalloproteinase-1 (TIMP-1) as a prognostic biomarker in gastrointestinal cancer: a meta-analysis. PeerJ 2021; 9:e10859. [PMID: 33628641 PMCID: PMC7894117 DOI: 10.7717/peerj.10859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tissue inhibitor of metalloproteinase 1 (TIMP-1) has recently been shown to be dependent on or independent of Matrix metalloproteinases (MMPs) in its roles in tumorigenesis and progression. This appreciation has prompted various studies assessing the prognostic value of TIMP-1 in patients with gastrointestinal cancer, however, the conclusions were still inconsistent. The aim of this study was to assess the prognostic value of TIMP-1-immunohistochemistry (IHC) staining and pretreatment serum/plasma TIMP-1 level in gastrointestinal cancer survival as well as the association between TIMP-1 and clinicopathologic features. Methods The meta-analysis was registered in the International Prospective Register of Systematic Reviews (PROSPERO; Registration NO. CRD42020185407) and followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. A highly sensitive literature search was performed in electronic databases including PubMed, EMBASE and the Cochrane Library. Heterogeneity analysis was conducted using both chi-square-based Q statistics and the I2 test. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to assess the prognostic value of TIMP-1 using the fixed-effects model. Odds ratios (ORs) with 95% CIs were calculated to evaluate the associations between TIMP-1 and clinicopathological characteristics. The meta-analysis was conducted using STATA 12.0 software. Results A total of 3,958 patients from twenty-two studies were included in the meta-analysis. Elevated TIMP-1 levels were significantly associated with poor survival in gastrointestinal cancer (TIMP-1-IHC staining: HR = 2.04, 95% CI [1.59–2.61], I2 = 35.7%, PQ = 0.156; pretreatment serum/plasma TIMP-1 levels: HR = 2.02, 95% CI [1.80–2.28], I2 = 0%, PQ = 0.630). Moreover, clinicopathological parameter data analysis showed that elevated TIMP-1 levels were significantly associated with lymph node metastasis (N1/N2/N3 vs N0: OR = 2.92, 95% CI [1.95–4.38]) and higher TNM stages (III/IV vs I/II: OR = 2.73, 95% CI [1.23–6.04]). Conclusion Both TIMP-1-positive IHC staining and high serum/plasma TIMP-1 levels are poor prognostic factors for the survival of gastrointestinal cancer. In addition, TIMP-1 overexpression was correlated with more advanced clinicopathological features.
Collapse
Affiliation(s)
- Lili Qin
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Yang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianye Zhao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Coexpression of Matrix Metalloproteinase-7 and Tissue Inhibitor of Metalloproteinase-1 as a Prognostic Biomarker in Gastric Cancer. DISEASE MARKERS 2020; 2020:8831466. [PMID: 33005257 PMCID: PMC7509560 DOI: 10.1155/2020/8831466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 01/09/2023]
Abstract
Background Degradation of the extracellular matrix (ECM), an essential step in tumour invasion and metastasis, is mainly dependent on the activities of both matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). This study aimed to explore whether expression of MMP-7 and TIMP-1 alone and in combination can be used as a prognostic marker for gastric cancer (GC). Method A total of 285 patients who had undergone tumourectomy for GC were included. Gastric tumour tissues were stained immunohistochemically to evaluate expression of MMP-7 and TIMP-1. Results Expression of MMP-7 was associated with tumour N stage and neural invasion. Multivariate Cox regression analysis suggested that expression of MMP-7 or TIMP-1 alone cannot serve as an indicator of patient prognosis; however, coexpression of MMP-7 and TIMP-1 was found to be an independent predictive factor of overall survival in patients with GC (HR = 1.74, 95% CI: 1.08-2.80). The results of stratified analysis also showed that the predictive value of MMP-7 and TIMP-1 coexpression was stronger in patients with N3 stage disease and not receiving chemotherapy. Conclusions In conclusion, coexpression of MMP-7 and its inhibitor TIMP-1 in gastric tumour tissues is a potential prognostic marker for GC. Greater knowledge of protein expression will lead to new paradigms and possible improvements in therapeutics.
Collapse
|
7
|
Guo Y, Wang X, Ning W, Zhang H, Yu C. Identification of two core genes in glioblastomas with different isocitrate dehydrogenase mutation status. Mol Biol Rep 2020; 47:7477-7488. [PMID: 32915403 DOI: 10.1007/s11033-020-05804-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/03/2020] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is one of the most common malignancies of the central nervous system, and the Isocitrate Dehydrogenase (IDH) mutation status of GBM has been recognized as a critical prognostic indicator. However, the molecular mechanism underlying the GBM with different IDH mutation status is still not unclear. In this study, a total of 353 DEGs including 207 up-regulated and 146 down-regulated were screened from multiple GBM data sets. Moreover, the biological processes and pathways enriched by DEGs were mainly associated with tumor progression, especially invasion and migration. Then, eight hub genes, including SDC4, SERPINE1, TNC, THBS1, COL1A1, CXCL8, TIMP1 and VEGFA, were selected from a PPI network. Finally, core genes, SERPINE1 and TIMP1, were identified from hub genes by survival analysis and sample validation. Overall, in this study, we revealed underlying molecular mechanisms in GBMs with different IDH mutation status and identified core genes that could be potential markers and targets for diagnosis and treatment of GBMs.
Collapse
Affiliation(s)
- Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, Xiangshan Yikesong Road, Haidian District, Beijing, 100093, People's Republic of China
| | - Xiang Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, Xiangshan Yikesong Road, Haidian District, Beijing, 100093, People's Republic of China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, Xiangshan Yikesong Road, Haidian District, Beijing, 100093, People's Republic of China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, Xiangshan Yikesong Road, Haidian District, Beijing, 100093, People's Republic of China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, Xiangshan Yikesong Road, Haidian District, Beijing, 100093, People's Republic of China.
| |
Collapse
|
8
|
Liu X, Bing Z, Wu J, Zhang J, Zhou W, Ni M, Meng Z, Liu S, Tian J, Zhang X, Li Y, Jia S, Guo S. Integrative Gene Expression Profiling Analysis to Investigate Potential Prognostic Biomarkers for Colorectal Cancer. Med Sci Monit 2020; 26:e918906. [PMID: 31893510 PMCID: PMC6977628 DOI: 10.12659/msm.918906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite noteworthy advancements in the multidisciplinary treatment of colorectal cancer (CRC) and deeper understanding in the molecular mechanisms of CRC, many of CRC patients with histologically identical tumors present different treatment response and prognosis. Thus, more evidence on novel predictive and prognostic biomarkers for CRC remains urgently needed. This study aims to identify potential prognostic biomarkers for CRC with integrative gene expression profiling analysis. MATERIAL AND METHODS Differential expression analysis of paired CRC and adjacent normal tissue samples in 6 microarray datasets was independently performed, and the 6 datasets were integrated by the robust rank aggregation method to detect consistent differentially expressed genes (DEGs). Aberrant expression patterns of these genes were further validated in RNA sequencing data. Then, gene set enrichment analysis (GSEA) was performed to investigate significantly dysregulated biological functions in CRC. Finally, univariate, LASSO and multivariate Cox regression models were built to identify key prognostic genes in CRC patients. RESULTS A total of 990 DEGs (495 downregulated and 495 upregulated genes) were acquired after integratedly analyzing the 6 microarray datasets, and 4131 DEGs (2050 downregulated and 2081 upregulated genes) were obtained from the RNA sequencing dataset. Subsequently, these DEGs were intersected and 885 consistent DEGs were finally identified, including 458 downregulated and 427 upregulated genes. Two risky prognostic genes (TIMP1 and LZTS3) and 5 protective prognostic genes (AXIN2, CXCL1, ITLN1, CPT2 and CLDN23) were identified, which were significantly associated with the prognosis of CRC. CONCLUSIONS The 7 genes that we identified would provide more evidence for further applying novel diagnostic and prognostic biomarkers in clinical practice to facilitate personalized treatment of CRC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China (mainland).,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu, China (mainland).,Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China (mainland).,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yingfei Li
- Center for Drug Metabolism and Pharmacokinetics (DMPK) Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
9
|
Nordgaard C, Doll S, Matos ALDSA, Høeberg M, Kazi JU, Friis S, Stenvang J, Rönnstrand L, Mann M, Manuel Afonso Moreira J. Metallopeptidase inhibitor 1 (TIMP-1) promotes receptor tyrosine kinase c-Kit signaling in colorectal cancer. Mol Oncol 2019; 13:2646-2662. [PMID: 31545548 PMCID: PMC6887592 DOI: 10.1002/1878-0261.12575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP‐1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP‐1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP‐1‐mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP‐1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD‐1 CRC cell clones, bearing either an hemizygous KRAS wild‐type allele or KRAS G13D mutant allele, exposed, or not, to TIMP‐1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c‐Kit, a proto‐oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP‐1. We found that exposure of DLD‐1 CRC cells to exogenously added TIMP‐1 promoted phosphorylation of c‐Kit, indicative of a stimulatory effect of TIMP‐1 on the c‐Kit signaling axis. In addition, TIMP‐1 inhibited c‐Kit shedding in CRC cells grown in the presence of exogenous TIMP‐1. Given the regulatory roles that c‐Kit plays in cell proliferation and migration, and the realization that c‐Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP‐1 overexpression in CRC may be exerted through its effect on c‐Kit signaling.
Collapse
Affiliation(s)
- Cathrine Nordgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | - Mikkel Høeberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julhash Uddin Kazi
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Sweden
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Stenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Sweden.,Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - José Manuel Afonso Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Vočka M, Langer D, Fryba V, Petrtyl J, Hanus T, Kalousova M, Zima T, Petruzelka L. Serum levels of TIMP-1 and MMP-7 as potential biomarkers in patients with metastatic colorectal cancer. Int J Biol Markers 2019; 34:292-301. [PMID: 31578137 DOI: 10.1177/1724600819866202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinases 1 (TIMP-1) and matrix metalloproteinase 7 (MMP-7) were reported to have potent growth promoting activity. Lack of balance between MMPs and TIMPs is an important factor in the development of gastrointestinal malignancies. METHODS We collected serum samples from 97 patients with metastatic colorectal cancer and 79 samples from healthy controls. Serum levels of TIMP-1 and MMP-7 were measured immunochemically and compared with standard tumor markers carcinoembryonic antigen and CA19-9. RESULTS Serum levels of TIMP-1 and MMP-7 were significantly higher in patients with colorectal cancer compared to healthy controls (both, P < 0.001). TIMP-1 and MMP-7 correlate with the presence of colon involvement (P = 0.001; P = 0.012) and the presence of liver metastases (P = 0.002; P = 0.037), and negatively correlate with pulmonary metastases (P = 0.014; P = 0.005). MMP-7 had similar sensitivity and the same specificity as carcinoembryonic antigen. TIMP-1 and MMP-7 had better sensitivity than CA19-9. TIMP-1 and MMP-7 level correlate with worse outcome (P = 0.002). CONCLUSION The results indicate that TIMP-1 and MMP-7 are effective biomarkers in patients with metastatic colorectal cancer with good sensitivity. TIMP-1 and MMP-7 levels strongly correlate with the extent of liver disease and have prognostic value.
Collapse
Affiliation(s)
- Michal Vočka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Daniel Langer
- Surgery Department, Second Faculty of Medicine, Charles University, and Military University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Fryba
- First Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Jaromir Petrtyl
- Fourth Department of Internal Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Tomas Hanus
- Department of Urology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| |
Collapse
|
11
|
Zeng C, Chen Y. HTR1D, TIMP1, SERPINE1, MMP3 and CNR2 affect the survival of patients with colon adenocarcinoma. Oncol Lett 2019; 18:2448-2454. [PMID: 31452735 PMCID: PMC6676656 DOI: 10.3892/ol.2019.10545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/09/2019] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer (CRC) is a tumor that derives from the rectum or colon, and colon adenocarcinoma (COAD) is the most common type of CRC. The present study was performed to identify genes that serve critical roles in the survival of patients with COAD. RNA-sequencing data of COAD was extracted from The Cancer Genome Atlas database, which included 480 tumor samples and 41 normal samples. Using the limma package, differential expression analysis was performed to identify the differentially expressed genes (DEGs). In addition, the potential functions and pathways for the identified DEGs were analyzed using the clusterProfiler package. After the samples were divided into high and low expression groups, survival analysis for the two groups was performed using the Kaplan-Meier model. Using Cytoscape software, a protein-protein interaction network was generated for the survival-associated genes. A total of 1,519 DEGs, including 568 upregulated genes and 951 downregulated genes, were identified in the COAD samples. Enrichment analysis suggested that the DEGs were implicated in numerous functional terms and pathways. Furthermore, 109 DEGs were identified to be survival-associated genes in COAD. According to the degrees of the network nodes, 5-hydroxytryptamine receptor 1D (HTR1D), TIMP metallopeptidase inhibitor 1 (TIMP1), serpin family E member 1 (SERPINE1), matrix metallopeptidase 3 (MMP3) and cannabinoid receptor 2 (CNR2) were key nodes, and the expression levels of these genes were analyzed in clinical samples of CRC. Therefore, the results of the present study suggest HTR1D, TIMP1, SERPINE1, MMP3 and CNR2 may affect the prognosis of patients with COAD.
Collapse
Affiliation(s)
- Chunyan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youxiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Bruun J, Sveen A, Barros R, Eide PW, Eilertsen I, Kolberg M, Pellinen T, David L, Svindland A, Kallioniemi O, Guren MG, Nesbakken A, Almeida R, Lothe RA. Prognostic, predictive, and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer. Mol Oncol 2018; 12:1639-1655. [PMID: 29900672 PMCID: PMC6120232 DOI: 10.1002/1878-0261.12347] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 01/04/2023] Open
Abstract
We aimed to refine the value of CDX2 as an independent prognostic and predictive biomarker in colorectal cancer (CRC) according to disease stage and chemotherapy sensitivity in preclinical models. CDX2 expression was evaluated in 1045 stage I–IV primary CRCs by gene expression (n = 403) or immunohistochemistry (n = 642) and in relation to 5‐year relapse‐free survival (RFS), overall survival (OS), and chemotherapy. Pharmacogenomic associations between CDX2 expression and 69 chemotherapeutics were assessed by drug screening of 35 CRC cell lines. CDX2 expression was lost in 11.6% of cases and showed independent poor prognostic value in multivariable models. For individual stages, CDX2 was prognostic only in stage IV, independent of chemotherapy. Among stage I–III patients not treated in an adjuvant setting, CDX2 loss was associated with a particularly poor survival in the BRAF‐mutated subgroup, but prognostic value was independent of microsatellite instability status and the consensus molecular subtypes. In stage III, the 5‐year RFS rate was higher among patients with loss of CDX2 who received adjuvant chemotherapy than among patients who did not. The CDX2‐negative cell lines were significantly more sensitive to chemotherapeutics than CDX2‐positive cells, and the multidrug resistance genes MDR1 and CFTR were significantly downregulated both in CDX2‐negative cells and in patient tumors. Loss of CDX2 in CRC is an adverse prognostic biomarker only in stage IV disease and appears to be associated with benefit from adjuvant chemotherapy in stage III. Early‐stage patients not qualifying for chemotherapy might be reconsidered for such treatment if their tumor has loss of CDX2 and mutated BRAF.
Collapse
Affiliation(s)
- Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway
| | - Rita Barros
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Portugal.,Instituto de Investigação e InovaçãoemSaúde (i3S), Porto, Portugal.,Faculty of Medicine, University of Porto, Portugal
| | - Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway
| | - Ina Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway
| | - Matthias Kolberg
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Leonor David
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Portugal.,Instituto de Investigação e InovaçãoemSaúde (i3S), Porto, Portugal.,Faculty of Medicine, University of Porto, Portugal
| | - Aud Svindland
- K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Pathology, Oslo University Hospital, Norway
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland.,Science for Life Laboratory, Solna, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Marianne G Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway.,Department of Oncology, Oslo University Hospital, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Gastrointestinal Surgery, Aker Hospital - Oslo University Hospital, Norway
| | - Raquel Almeida
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Portugal.,Instituto de Investigação e InovaçãoemSaúde (i3S), Porto, Portugal.,Faculty of Medicine, University of Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Portugal
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Clinic for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
13
|
Birgisson H, Tsimogiannis K, Freyhult E, Kamali-Moghaddam M. Plasma Protein Profiling Reveal Osteoprotegerin as a Marker of Prognostic Impact for Colorectal Cancer. Transl Oncol 2018; 11:1034-1043. [PMID: 29982101 PMCID: PMC6037900 DOI: 10.1016/j.tranon.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Due to difficulties in predicting recurrences in colorectal cancer stages II and III, reliable prognostic biomarkers could be a breakthrough for individualized treatment and follow-up. OBJECTIVE: To find potential prognostic protein biomarkers in colorectal cancer, using the proximity extension assays. METHODS: A panel of 92 oncology-related proteins was analyzed with proximity extension assays, in plasma from a cohort of 261 colorectal cancer patients with stage II-IV. The survival analyses were corrected for disease stage and age, and the recurrence analyses were corrected for disease stage. The significance threshold was adjusted for multiple comparisons. RESULTS: The plasma proteins expression levels had a greater prognostic relevance in disease stage III colorectal cancer than in disease stage II, and for overall survival than for time to recurrence. Osteoprotegerin was the only biomarker candidate in the protein panel that had a statistical significant association with overall survival (P = .00029). None of the proteins were statistically significantly associated with time to recurrence. CONCLUSIONS: Of the 92 analyzed plasma proteins, osteoprotegerin showed the strongest prognostic impact in patients with colorectal cancer, and therefore osteoprotegerin is a potential predictive marker, and it also could be a target for treatments.
Collapse
Affiliation(s)
- Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | | | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Böckelman C, Beilmann-Lehtonen I, Kaprio T, Koskensalo S, Tervahartiala T, Mustonen H, Stenman UH, Sorsa T, Haglund C. Serum MMP-8 and TIMP-1 predict prognosis in colorectal cancer. BMC Cancer 2018; 18:679. [PMID: 29929486 PMCID: PMC6013876 DOI: 10.1186/s12885-018-4589-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Almost all of the extracellular matrix (ECM) components can be degraded by the endoproteinases matrix metalloproteinases (MMPs). Important regulators of MMPs, and thereby of the extracellular environment, are tissue inhibitors of metalloproteinases (TIMPs), and especially TIMP-1. Early tumor development, as well as distant metastasis, may be results of an MMP/TIMP ratio imbalance altering the ECM. MMPs are elevated in several inflammatory conditions. Our aim is to investigate the prognostic role of MMP-8, - 9, and TIMP-1 in colorectal cancer (CRC) and their relationship to inflammation. METHODS We included 337 colorectal cancer patients and 47 controls undergoing surgery at Helsinki University Hospital in Finland, 1998-2011. Serum levels of MMP-8 and plasma levels of C-reactive protein (CRP) were determined with a time-resolved immunofluorometric assay (IFMA), and MMP-9 and TIMP-1 with commercial enzyme-linked immunosorbent assay (ELISA) kits. Association and correlation analyses were performed with the Mann-Whitney U, Kruskal-Wallis, and Spearman rank correlation tests. Survival curves were constructed according to the Kaplan-Meier method and compared with the log-rank test. RESULTS Among patients with advanced disease, serum levels of MMP-8 and TIMP-1 were elevated. CRC patients with high MMP-8 (HR (hazard ratio) 1.72, 95% confidence interval (CI) 1.17-2.52, P = 0.005) and those with high TIMP-1 (HR 1.80, 95% CI 1.23-2.64, P = 0.002) had worse prognoses. MMP-9 level failed to serve as a prognostic factor. In multivariable survival analysis, Dukes stage, and low MMP-9/TIMP-1 molar ratio (HR 0.46, 95% CI 0.33-0.98, P = 0.042) were independently predicted prognosis. A weak correlation between CRP and MMP-8 (rS = 0.229, P < 0.001), and TIMP-1 (rS = 0.280, P < 0.001) was noted. Among patients showing no systemic inflammatory response, MMP-8 (HR 1.66, 95% CI 1.10-2.53, P = 0.017) and TIMP-1 (HR 1.59, 95% CI 1.05-2.42, P = 0.029) were prognostic factors. CONCLUSIONS MMP-8 and TIMP-1 in serum, but not MMP-9, identified CRC patients with bad prognosis. Among patients showing no systemic inflammatory response, MMP-8 and TIMP-1 may associate with poor prognosis.
Collapse
Affiliation(s)
- Camilla Böckelman
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland. .,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.
| | - Ines Beilmann-Lehtonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Selja Koskensalo
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, P.O. Box 63, Haartmaninkatu 8, 2nd floor, FIN-00014, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, P.O. Box 700, FIN-00029 HUS, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, P.O. Box 63, Haartmaninkatu 8, 2nd floor, FIN-00014, Helsinki, Finland.,Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 105, Haartmaninkatu 4, Terkon tutkijatilat, 3. krs, FIN-00029 HUS, Helsinki, Finland
| |
Collapse
|
15
|
Aaberg-Jessen C, Sørensen MD, Matos ALSA, Moreira JM, Brünner N, Knudsen A, Kristensen BW. Co-expression of TIMP-1 and its cell surface binding partner CD63 in glioblastomas. BMC Cancer 2018. [PMID: 29523123 PMCID: PMC5845145 DOI: 10.1186/s12885-018-4179-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background We have previously identified tissue inhibitor of metalloproteinases-1 (TIMP-1) as a prognostic marker in glioblastomas. TIMP-1 has been associated with chemotherapy resistance, and CD63, a known TIMP-1-binding protein, has been suggested to be responsible for this effect. The aim of this study was to assess CD63 expression in astrocytomas focusing on the prognostic potential of CD63 alone and in combination with TIMP-1. Methods CD63 expression was investigated immunohistochemically in a cohort of 111 astrocytomas and correlated to tumor grade and overall survival by semi-quantitative scoring. CD63 expression in tumor-associated microglia/macrophages was examined by double-immunofluorescence with ionized calcium-binding adapter molecule 1 (Iba1). The association between CD63 and TIMP-1 was investigated using previously obtained TIMP-1 data from our astrocytoma cohort. Cellular co-expression of TIMP-1 and CD63 as well as TIMP-1 and the tumor stem cell-related markers CD133 and Sox2 was investigated with immunofluorescence. TIMP-1 and CD63 protein interaction was detected by an oligonucleotide-based proximity ligation assay and verified using co-immunoprecipitation. Results The expression of CD63 was widely distributed in astrocytomas with a significantly increased level in glioblastomas. CD63 levels did not significantly correlate with patient survival at a protein level, and CD63 did not augment the prognostic significance of TIMP-1. Up to 38% of the CD63+ cells expressed Iba1; however, Iba1 did not appear to impact the prognostic value of CD63. A significant correlation was found between TIMP-1 and CD63, and the TIMP-1 and CD63 proteins were co-expressed at the cellular level and located in close molecular proximity, suggesting that TIMP-1 and CD63 could be co-players in glioblastomas. Some TIMP-1+ cells expressed CD133 and Sox2. Conclusion The present study suggests that CD63 is highly expressed in glioblastomas and that TIMP-1 and CD63 interact. CD63 does not add to the prognostic value of TIMP-1. Co-expression of TIMP-1 and stem cell markers as well as the wide expression of CD63 might suggest a role for TIMP-1 and CD63 in glioblastoma stemness. Electronic supplementary material The online version of this article (10.1186/s12885-018-4179-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Aaberg-Jessen
- Department of Pathology, Odense University Hospital, J.B. Winsloews Vej 15, 5000, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Mia D Sørensen
- Department of Pathology, Odense University Hospital, J.B. Winsloews Vej 15, 5000, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, J.B. Winsloews Vej 19, 5000, Odense, Denmark.
| | - Ana L S A Matos
- Cancer Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - José M Moreira
- Cancer Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nils Brünner
- Cancer Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Arnon Knudsen
- Department of Pathology, Odense University Hospital, J.B. Winsloews Vej 15, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsloews Vej 19, 5000, Odense, Denmark
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, J.B. Winsloews Vej 15, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsloews Vej 19, 5000, Odense, Denmark
| |
Collapse
|
16
|
Tissue Inhibitor of Metalloproteinases-1 as a Biological Marker in Colorectal Cancer: Influence of Smoking on Plasma Levels? Int J Biol Markers 2018; 28:226-30. [DOI: 10.5301/jbm.5000017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/20/2022]
Abstract
Background At present plasma tissue inhibitor of metalloproteinases-1 (TIMP-1) is undergoing validation as a biological marker in colorectal cancer (CRC). The clinical implementation of plasma TIMP-1 in prognosis, prediction, screening and monitoring CRC requires robust information as to the influence of preanalytical factors, including inter- and intrapersonal biological variations. The aim of the present study was to evaluate the possible effects of smoking on the level of TIMP-1 in plasma from healthy subjects. Materials and Methods Forty-six never-smokers and 48 daily smokers participated in the 13-week study. Smokers were randomized into 3 groups of 16 subjects each: one group continued to smoke, a second group refrained from smoking and used a transdermal nicotine patch, and a third group refrained from smoking and used placebo patches. Plasma TIMP-1 levels were determined using ELISA. Results No significant differences in TIMP-1 levels could be shown between the smoking group, the 2 different abstinent smoking groups and the never-smoking group. Conclusion Smoking does not appear to have any influence on TIMP-1 levels in plasma collected from healthy subjects.
Collapse
|
17
|
The tumor microenvironment promotes cancer progression and cell migration. Oncotarget 2018; 8:9608-9616. [PMID: 28030810 PMCID: PMC5354757 DOI: 10.18632/oncotarget.14155] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment contributes to cancer progression, in part through interactions between tumor and normal stromal cells. This study analyzed morphological and molecular changes induced in co-cultured human fibroblasts (HFs) and the MG-63 osteosarcoma cell line. Co-cultured cell monolayers were morphologically analyzed using high resolution scanning electron microscopy (HR-SEM), and trans-well assays were performed to assess cell migration and invasion. Proteins involved in inflammatory responses, cancer cell invasion, and angiogenesis were assessed using western blotting. HR-SEM showed progressive spatial orientation loss by fibroblasts in contact with MG-63s, while MG-63s proliferated rapidly and invaded HF space. Trans-well assays showed enhanced MG-63 migration in the presence of HFs. IL-6 expression was increased in co-cultured HFs, possibly stimulated by TNF-α. HFs do not normally express YKL-40 but did so in co-culture. Band densitometric analyses showed that increasing YKL-40 expression was followed by VEGF overexpression, especially in MG-63s. Finally, our results confirmed fibroblasts as the main matrix metalloproteinase source in this tumor microenvironment. Our study sheds new light on how tumor-stroma interactions promote tumor development and progression, and may support identification of novel anti-cancer therapeutics.
Collapse
|
18
|
D'Costa Z, Jones K, Azad A, van Stiphout R, Lim SY, Gomes AL, Kinchesh P, Smart SC, Gillies McKenna W, Buffa FM, Sansom OJ, Muschel RJ, O'Neill E, Fokas E. Gemcitabine-Induced TIMP1 Attenuates Therapy Response and Promotes Tumor Growth and Liver Metastasis in Pancreatic Cancer. Cancer Res 2017; 77:5952-5962. [PMID: 28765154 DOI: 10.1158/0008-5472.can-16-2833] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Gemcitabine constitutes one of the backbones for chemotherapy treatment in pancreatic ductal adenocarcinoma (PDAC), but patients often respond poorly to this agent. Molecular markers downstream of gemcitabine treatment in preclinical models may provide an insight into resistance mechanisms. Using cytokine arrays, we identified potential secretory biomarkers of gemcitabine resistance (response) in the transgenic KRasG12D; Trp53R172H; Pdx-1 Cre (KPC) mouse model of PDAC. We verified the oncogenic role of the cytokine tissue inhibitor of matrix metalloproteinases 1 (TIMP1) in primary pancreatic tumors and metastases using both in vitro techniques and animal models. We identified potential pathways affected downstream of TIMP1 using the Illumina Human H12 array. Our findings were validated in both primary and metastatic models of pancreatic cancer. Gemcitabine increased inflammatory cytokines including TIMP1 in the KPC mouse model. TIMP1 was upregulated in patients with pancreatic intraepithelial neoplasias grade 3 and PDAC lesions relative to matched normal pancreatic tissue. In addition, TIMP1 played a role in tumor clonogenic survival and vascular density, while TIMP1 inhibition resensitized tumors to gemcitabine and radiotherapy. We observed a linear relationship between TIMP-1 expression, liver metastatic burden, and infiltration by CD11b+Gr1+ myeloid cells and CD4+CD25+FOXP3+ Tregs, whereas the presence of tumor cells was required for immune cell infiltration. Overall, our results identify TIMP1 upregulation as a resistance mechanism to gemcitabine and provide a rationale for combining chemo/radiotherapy with TIMP1 inhibitors in PDAC. Cancer Res; 77(21); 5952-62. ©2017 AACR.
Collapse
Affiliation(s)
- Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Keaton Jones
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruud van Stiphout
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Su Y Lim
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Paul Kinchesh
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute of Oncology, University of Glasgow, Glasgow, United Kingdom
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Eric O'Neill
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines. Pathol Oncol Res 2017; 25:59-69. [PMID: 28963609 DOI: 10.1007/s12253-017-0312-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
Abstract
The multifunctional protein - tissue inhibitor of metalloproteinases-1 (TIMP-1) - has been associated with a poor prognosis in several types of cancers including glioblastomas. In addition, TIMP-1 has been associated with decreased response to chemotherapy, and especially the efficacy of the family of topoisomerase (TOP) inhibitors has been related to TIMP-1. As a second line treatment of glioblastomas, the vascular endothelial growth factor (VEGF) antibody bevacizumab is administered in combination with the TOP1 inhibitor irinotecan and glioblastoma cell levels of TIMP-1 could therefore potentially influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1 overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1 transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces the effect of TOP inhibitors in glioblastoma. TIMP-1 also appeared to reduce spheroid growth, but did not influence invasion. Whether TIMP-1 plays a role in irinotecan resistance and has a predictive potential in glioblastoma patients remains to be elucidated.
Collapse
|
20
|
Pisamai S, Rungsipipat A, Kunnasut N, Suriyaphol G. Immunohistochemical Expression Profiles of Cell Adhesion Molecules, Matrix Metalloproteinases and their Tissue Inhibitors in Central and Peripheral Neoplastic Foci of Feline Mammary Carcinoma. J Comp Pathol 2017; 157:150-162. [PMID: 28942298 DOI: 10.1016/j.jcpa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Feline mammary carcinoma (FMC) is a common cancer with high metastatic potential and high mortality rate. Loss of cell-cell interactions and degradation of the extracellular matrix by proteinases enhances tumour invasion and metastasis. Peripheral neoplastic foci (PNF) are defined as the presence of discrete tumour cell clusters, splitting off from central neoplastic foci (CNF) and lodging around these CNF. PNF therefore locate at the tumour-host interface at the site of invasion. The aim of this study was to evaluate immunohistochemically the expression of cell adhesion molecules (e-cadherin [CDH-1], syndecan 1 [SDC-1] and nectin-2), matrix metalloproteinases (matrix metalloproteinase [MMP]-2, MMP-7 and MMP-9) and their tissue inhibitors (tissue inhibitor of matrix metalloproteinase [TIMP]-1 and TIMP-2) together with the cellular proliferation marker, Ki67, in CNF and PNF of FMCs of different clinical stages and histological grades. Compared with control sections from areas of mammary gland hyperplasia, lower expression of MMP-7 and TIMP-2 was observed in all stages. Increased expression of TIMP-1 was observed in PNF in early-stage disease with no metastasis, while marked expression of CDH-1 and Ki67 occurred in late-stage FMC. In addition, the expression of MMP-2, MMP-9 and TIMP-1 in PNF of tumours with high histological grade (grade III) was higher than in low-grade tumours. The observed divergent protein expression in PNF could potentially form the basis of acting as novel markers in FMC. Potential markers may include the expression of TIMP-1 in PNF in early stage lesions, the expression of CDH-1 and Ki67 in late stages and the expression of MMP-2, MMP-9 and TIMP-1 in high-grade tumours.
Collapse
Affiliation(s)
- S Pisamai
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Rungsipipat
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - N Kunnasut
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - G Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
21
|
Aaberg-Jessen C, Halle B, Jensen SS, Müller S, Rømer UM, Pedersen CB, Brünner N, Kristensen BW. Comparative studies of TIMP-1 immunohistochemistry, TIMP-1 FISH analysis and plasma TIMP-1 in glioblastoma patients. J Neurooncol 2016; 130:439-448. [PMID: 27619981 PMCID: PMC5118392 DOI: 10.1007/s11060-016-2252-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/21/2016] [Indexed: 02/04/2023]
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) has been associated with poor prognosis and resistance towards chemotherapy in several cancer forms. In a previous study we found an association between a low TIMP-1 tumor immunoreactivity and increased survival for glioblastoma patients, when compared to moderate and high TIMP-1 tumor immunoreactivity. The aim of the present study was to further evaluate TIMP-1 as a biomarker in gliomas by studying TIMP-1 gene copy numbers by fluorescence in situ hybridization (FISH) on 33 glioblastoma biopsies and by measuring levels of TIMP-1 in plasma obtained pre-operatively from 43 patients (31 gliomas including 21 glioblastomas) by enzyme-linked immunosorbent assay (ELISA). The results showed TIMP-1 gene copy numbers per cell ranging from 1 to 5 and the TIMP-1/CEN-X ratio ranging between 0.7 and 1.09, suggesting neither amplification nor loss of the TIMP-1 gene. The TIMP-1 protein levels measured in plasma were not significantly higher than TIMP-1 levels measured in healthy subjects. No correlation was identified between TIMP-1 tumor cell immunoreactivities and the TIMP-1 gene copy numbers or the plasma TIMP-1 levels. In conclusion, high immunohistochemical TIMP-1 protein levels in glioblastomas were not caused by TIMP-1 gene amplification and TIMP-1 in plasma was low and not directly related to tumor TIMP-1 immunoreactivity. The study suggests that TIMP-1 immunohistochemistry is the method of choice for future clinical studies evaluating TIMP-1 as a biomarker in glioblastomas.
Collapse
Affiliation(s)
- Charlotte Aaberg-Jessen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3. Floor, 5000, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Bo Halle
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3. Floor, 5000, Odense, Denmark
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - Stine S Jensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3. Floor, 5000, Odense, Denmark
| | | | - Unni Maria Rømer
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nils Brünner
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3. Floor, 5000, Odense, Denmark.
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
22
|
Lu X, Duan L, Xie H, Lu X, Lu D, Lu D, Jiang N, Chen Y. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction. Onco Targets Ther 2016; 9:4343-9. [PMID: 27486337 PMCID: PMC4958364 DOI: 10.2147/ott.s99580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Adenocarcinoma of esophagogastric junction (AEG) is a lethal malignancy featured with early metastasis, poor prognosis, and few treatment options. Matrix metalloproteinase (MMP) and metalloproteinase suppressor (TIMP) have been considered to be associated with cancer invasion and metastasis. In our study, we evaluated expressions of MMP-9, MMP-2, TIMP-1, and TIMP-2 in AEG and their correlation with clinicopathological parameters and the overall survival rate. METHODS Expressions of MMP-9, MMP-2, TIMP-1, and TIMP-2 in specimens from 120 AEGs were detected by immunohistochemistry. The correlations between expressions of these four proteins and clinicopathological characters were analyzed by chi-square test. Moreover, the prognostic value of these four biomarkers was evaluated by univariate analysis with Kaplan-Meier method and multivariate analysis with Cox regression model. RESULTS The positive expression rate of MMP-9, MMP-2, TIMP-1, and TIMP-2 was 65%, 53%, 70%, and 49%, respectively, in the detected 120 AEG samples. MMP-9 was significantly associated with poorly histological differentiation (P=0.001), lymph node metastasis (P=0.007), and UICC stage (P=0.008). TIMP-1 showed significantly reversed correlations with histological differentiation (P=0.001), lymph node metastasis (P=0.007), and Union for International Cancer Control stage (P=0.008). Univariate analysis revealed that lymph node metastasis (P=0.002), depth of invasion (P=0.050), and MMP-9+/TIMP-1 phonotype (P<0.001) were significantly associated with the overall survival rate. Multivariate analyses demonstrated that MMP-9+/TIMP-1-phenotype was an independent prognostic factor in AEGs. CONCLUSION Detection of MMP-9 and TIMP-1 expression allows stratification of AEG patients into different survival categories and can be useful for precise individual evaluation and survival prediction.
Collapse
Affiliation(s)
- Xiaofei Lu
- Department of General Surgery, Qilu Hospital of Shandong University; Department of General Surgery, Jinan Central Hospital of Shandong University
| | - Lingling Duan
- Department of Preventive Medicine, Jinan Central Hospital Affiliated to Shandong University
| | - Hongqin Xie
- Department of Gynecology and Obstetrics, Third People's Hospital of Jinan
| | - Xiaoxia Lu
- Department of Physical Examination, Second Hospital of Shandong University of Traditional Chinese Medicine
| | - Daolin Lu
- Health Technology Exchange Center of Jinan
| | | | - Nan Jiang
- Department of Pathology, Shandong University Medical School, Jinan, People's Republic of China
| | - Yuxin Chen
- Department of General Surgery, Qilu Hospital of Shandong University
| |
Collapse
|
23
|
Alpízar-Alpízar W, Laerum OD, Christensen IJ, Ovrebo K, Skarstein A, Høyer-Hansen G, Ploug M, Illemann M. Tissue Inhibitor of Metalloproteinase-1 Is Confined to Tumor-Associated Myofibroblasts and Is Increased With Progression in Gastric Adenocarcinoma. J Histochem Cytochem 2016; 64:483-94. [PMID: 27370797 DOI: 10.1369/0022155416656173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
The tissue inhibitor of metalloproteinase-1 (TIMP-1) inhibits the extracellular matrix-degrading activity of several matrix metalloproteinases, thereby regulating cancer cell invasion and metastasis. Studies describing the expression pattern and cellular localization of TIMP-1 in gastric cancer are, however, highly discordant. We addressed these inconsistencies by performing immunohistochemistry and in situ hybridization analyses in a set of 49 gastric cancer lesions to reexamine the TIMP-1 localization. In addition, we correlated these findings to clinicopathological parameters. We show that strong expression of TIMP-1 protein and mRNA was observed in a subpopulation of stromal fibroblast-like cells at the periphery of the cancer lesions. In a few cases, a small fraction of cancer cells showed weak expression of TIMP-1 protein and mRNA. The stromal TIMP-1-expressing cells were mainly tumor-associated myofibroblasts. In the normal-appearing mucosa, scattered TIMP-1 protein was only found in chromogranin A positive cells. TIMP-1-positive myofibroblasts at the invasive front of the tumors were more frequently seen in intestinal than in diffuse histological subtype cases (p=0.009). A significant trend to a higher number of cases showing TIMP-1 staining in myofibroblasts with increasing tumor, node, metastasis (TNM) stage was also revealed (p=0.041). In conclusion, tumor-associated myofibroblasts are the main source of increased TIMP-1 expression in gastric cancer.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Center for Research in Microscopic Structures (CIEMIC) and Cancer Research Program, Health Research Institute (INISA), University of Costa Rica, San José, Costa Rica (WA-A)
| | - Ole Didrik Laerum
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Bergen, Norway (ODL),Departments of Pathology, Haukeland University Hospital, Bergen, Norway (ODL)
| | - Ib J Christensen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI)
| | - Kjell Ovrebo
- Department of Surgical Sciences, University of Bergen, Bergen, Norway (KO),Surgery, Haukeland University Hospital, Bergen, Norway (KO, AS)
| | - Arne Skarstein
- Department of Clinical Medicine, University of Bergen, Bergen, Norway (AS),Surgery, Haukeland University Hospital, Bergen, Norway (KO, AS)
| | - Gunilla Høyer-Hansen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI)
| | - Martin Illemann
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI),Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark (WA-A, ODL, IJC, GH-H, MP, MI)
| |
Collapse
|
24
|
Ghanipour L, Darmanis S, Landegren U, Glimelius B, Påhlman L, Birgisson H. Detection of Biomarkers with Solid-Phase Proximity Ligation Assay in Patients with Colorectal Cancer. Transl Oncol 2016; 9:251-5. [PMID: 27267845 PMCID: PMC4907971 DOI: 10.1016/j.tranon.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/10/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND: In the search for prognostic biomarkers, a significant amount of precious biobanked blood samples is needed for conventional analyses. Solid-phase proximity ligation assay (SP-PLA) is an analytic method with the ability to analyze many proteins at the same time in small amounts of plasma. The aim of this study was to explore the potential use of SP-PLA for biomarker validation in patients with colorectal cancer (CRC). MATERIAL AND METHODS: Plasma samples from patients with stage I to IV CRC, with (n = 31) and without (n = 29) disease dissemination at diagnosis or later, were analyzed with SP-PLA using 35 antibodies targeting an equal number of proteins in 5-μl plasma samples. Carcinoembryonic antigen (CEA), analyzed earlier in this cohort using a different technology, was used as a reference. RESULTS: A total of 21 of the 35 investigated proteins were detectable with SP-PLA. Patients in stage II to III with disseminated disease had lower plasma concentrations of HCC-4 (P = .025). Low plasma levels of tissue inhibitor of metalloproteinases–1 were seen in patients with disseminated disease stage II (P = .003). The level of CEA was higher in patients with disease dissemination compared with those without (P = .007). CONCLUSION: SP-PLA has the ability to analyze many protein markers simultaneously in a small amount of blood. However, none of the markers selected for the present SP-PLA analyses gave better prognostic information than CEA.
Collapse
Affiliation(s)
- Lana Ghanipour
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden.
| | - Spyros Darmanis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Bengt Glimelius
- Department of Radiology, Oncology and Radiation Science, University of Uppsala, Uppsala, Sweden
| | - Lars Påhlman
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
25
|
Duffy MJ. Personalized treatment for patients with colorectal cancer: role of biomarkers. Biomark Med 2016; 9:337-47. [PMID: 25808438 DOI: 10.2217/bmm.15.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The systemic treatment of patients with colorectal cancer (CRC) has traditionally been based on clinical and tumor histological criteria. Recently however, several prognostic and predictive biomarkers have been proposed for patients with newly diagnosed CRC, including the subgroup with stage II disease. Among the best validated prognostic biomarkers for CRC are CEA levels, MS instability status and certain gene signatures. Although no biomarker currently exists for identifying patients likely to benefit from chemotherapy, the mutational status of KRAS and NRAS is used to predict response to cetuximab and panitumumab. For upfront identification of patients at high risk of suffering from severe therapy-related toxicity, specific variants of dihydropyrimidine dehydrogenase may be measured for predicting toxicity from fluoropyrimidines and uridine diphosphate glucuronosyltransferase*28 (UGT1A1*28) for predicting toxicity from irinotecan.
Collapse
|
26
|
Wilhelmsen M, Kring T, Jorgensen LN, Madsen MR, Jess P, Bulut O, Nielsen KT, Andersen CL, Nielsen HJ. Determinants of recurrence after intended curative resection for colorectal cancer. Scand J Gastroenterol 2014; 49:1399-408. [PMID: 25370351 DOI: 10.3109/00365521.2014.926981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite intended curative resection, colorectal cancer will recur in ∼45% of the patients. Results of meta-analyses conclude that frequent follow-up does not lead to early detection of recurrence, but improves overall survival. The present literature shows that several factors play important roles in development of recurrence. It is well established that emergency surgery is a major determinant of recurrence. Moreover, anastomotic leakages, postoperative bacterial infections, and blood transfusions increase the recurrence rates although the exact mechanisms still remain obscure. From pathology studies it has been shown that tumors behave differently depending on their location and recur more often when micrometastases are present in lymph nodes and around vessels and nerves. K-ras mutations, microsatellite instability, and mismatch repair genes have also been shown to be important in relation with recurrences, and tumors appear to have different mutations depending on their location. Patients with stage II or III disease are often treated with adjuvant chemotherapy despite the fact that the treatments are far from efficient among all patients, who are at risk of recurrence. Studies are now being presented identifying subgroups, in which the therapy is inefficient. Unfortunately, only few of these facts are implemented in the present follow-up programs. Therefore, further research is urgently needed to verify which of the well-known parameters as well as new parameters that must be added to the current follow-up programs to identify patients at risk of recurrence.
Collapse
Affiliation(s)
- Michael Wilhelmsen
- Department of Surgical Gastroenterology 360, Hvidovre Hospital , Hvidovre , Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Herszényi L, Barabás L, Hritz I, István G, Tulassay Z. Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol 2014; 20:13246-13257. [PMID: 25309062 PMCID: PMC4188883 DOI: 10.3748/wjg.v20.i37.13246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/26/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Tumor invasion and metastasis is a highly complicated, multi-step phenomenon. In the complex event of tumor progression, tumor cells interact with basement membrane and extracellular matrix components. Proteolytic enzymes (proteinases) are involved in the degradation of extracellular matrix, but also in cancer invasion and metastasis. The four categories of proteinases (cysteine-, serine-, aspartic-, and metalloproteinases) are named and classified according to the essential catalytic component in their active site. We and others have shown that proteolytic enzymes play a major role not only in colorectal cancer (CRC) invasion and metastasis, but also in malignant transformation of precancerous lesions into cancer. Tissue and serum-plasma antigen concentrations of proteinases might be of great value in identifying patients with poor prognosis in CRC. Our results, in concordance with others indicate the potential tumor marker impact of proteinases for the early diagnosis of CRC. In addition, proteinases may also serve as potential target molecules for therapeutic agents.
Collapse
|
28
|
Duffy MJ, Lamerz R, Haglund C, Nicolini A, Kalousová M, Holubec L, Sturgeon C. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 2014; 134:2513-22. [PMID: 23852704 PMCID: PMC4217376 DOI: 10.1002/ijc.28384] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Biomarkers currently play an important role in the detection and management of patients with several different types of gastrointestinal cancer, especially colorectal, gastric, gastro-oesophageal junction (GOJ) adenocarcinomas and gastrointestinal stromal tumors (GISTs). The aim of this article is to provide updated and evidence-based guidelines for the use of biomarkers in the different gastrointestinal malignancies. Recommended biomarkers for colorectal cancer include an immunochemical-based fecal occult blood test in screening asymptomatic subjects ≥50 years of age for neoplasia, serial CEA levels in postoperative surveillance of stage II and III patients who may be candidates for surgical resection or systemic therapy in the event of distant metastasis occurring, K-RAS mutation status for identifying patients with advanced disease likely to benefit from anti-EGFR therapeutic antibodies and microsatellite instability testing as a first-line screen for subjects with Lynch syndrome. In advanced gastric or GOJ cancers, measurement of HER2 is recommended in selecting patients for treatment with trastuzumab. For patients with suspected GIST, determination of KIT protein should be used as a diagnostic aid, while KIT mutational analysis may be used for treatment planning in patients with diagnosed GISTs.
Collapse
Affiliation(s)
- MJ Duffy
- Clinical Research Center, St Vincent’s University Hospital, Dublin 4 and UCD School of Medicine and Medical Science, Conway Institute, University College DublinDublin, Ireland
| | - R Lamerz
- Medical Department II, Klinikum Grosshadern, Med. Klinik IIMunich, Germany
| | - C Haglund
- Department of Surgery, Helsinki University Central HospitalHelsinki, Finland
| | - A Nicolini
- Department of Oncology, University of PisaPisa, Italy
| | - M Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in PraguePrague, Czech Republic
| | - L Holubec
- Department of Oncology and Radiotherapy, University Hospital of PilsenPilsen, Czech Republic
| | - C Sturgeon
- Department of Clinical Biochemistry, Royal Infirmary of EdinburghEdinburgh, United Kingdom
| |
Collapse
|
29
|
Predicting the pathologic response of locally advanced rectal cancer to neoadjuvant concurrent chemoradiation using enzyme-linked immunosorbent assays (ELISAs) for biomarkers. J Cancer Res Clin Oncol 2014; 140:399-409. [DOI: 10.1007/s00432-013-1578-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/19/2013] [Indexed: 02/01/2023]
|
30
|
Hekmat O, Munk S, Fogh L, Yadav R, Francavilla C, Horn H, Würtz SØ, Schrohl AS, Damsgaard B, Rømer MU, Belling KC, Jensen NF, Gromova I, Bekker-Jensen DB, Moreira JM, Jensen LJ, Gupta R, Lademann U, Brünner N, Olsen JV, Stenvang J. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. J Proteome Res 2013; 12:4136-51. [PMID: 23909892 DOI: 10.1021/pr400457u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A, and 2B, which may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated with drug resistance or sensitivity, and drug transportation. The NetworKIN algorithm predicted the protein kinases CK2a, CDK1, PLK1, and ATM as likely candidates involved in the hyperphosphorylation of the topoisomerases. Up-regulation of protein and/or phosphorylation levels of topoisomerases in TIMP-1 high expressing cells may be part of the mechanisms by which TIMP-1 confers resistance to treatment with the widely used topoisomerase inhibitors in breast and colorectal cancer.
Collapse
Affiliation(s)
- Omid Hekmat
- Institute of Veterinary Disease Biology, Faculty of Health and Medical Sciences and Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Dyrlægevej 88, 1., 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grunnet M, Mau-Sørensen M, Brünner N. Tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker in gastric cancer: a review. Scand J Gastroenterol 2013; 48:899-905. [PMID: 23834019 DOI: 10.3109/00365521.2013.812235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The value of Tissue Inhibitor of MetalloProteinase-1 (TIMP-1) as a biomarker in patients with gastric cancer (GC) is widely debated. The aim of this review is to evaluate available literature describing the association between levels of TIMP-1 in tumor tissue and/or blood and the prognosis of patients suffering from GC. MATERIAL AND METHODS Using the search words 'TIMP-1', 'Gastric Cancer' and 'Tumor marker', a search was carried out on PubMed. Exclusion criteria were articles never published in English, articles from before 1995 and articles evaluating tumor markers other than TIMP-1 in GC. RESULTS Of initially 50 articles, 17 were found to fulfill the selection criteria and relevant for this study. The 17 articles evaluated the usefulness of TIMP-1 levels in tumor tissue or blood, respectively, as a prognostic marker in patients with GC. CONCLUSIONS A literature search showed that elevated protein levels of TIMP-1 in either tumor tissue extracts or in plasma from patients suffering from GC associates with poor patient outcome.
Collapse
Affiliation(s)
- Mie Grunnet
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci 2012; 13:13240-63. [PMID: 23202950 PMCID: PMC3497324 DOI: 10.3390/ijms131013240] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in the degradation of extracellular matrix components crucial for tumor growth, invasion and metastasis. MMPs are controlled by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). We and others have demonstrated that MMPs and TIMPs are especially important in the process of tumor invasion, progression and the metastasis of colorectal cancer (CRC). It has been proposed that MMPs and TIMPs might play a part not only in tumor invasion and initiation of metastasis but also in carcinogenesis from colorectal adenomas. Several recent studies demonstrated that high preoperative serum or plasma MMP-2, MMP-9 and TIMP-1 antigen levels are strong predictive factors for poor prognosis in patients with CRC and their determination might be useful for identification of patients with higher risk for cancer recurrence. MMP-9 and TIMP-1 have significant potential tumor marker impact in CRC. Their diagnostic sensitivity is consistently higher than those of conventional biomarkers. The pharmacological targeting of CRC by the development of a new generation of selective inhibitors of MMPs, that is highly specific for certain MMPs, is a promising and challenging area for the future.
Collapse
Affiliation(s)
- László Herszényi
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| | - István Hritz
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
- First Department of Medicine, Fejér County Szent György Hospital, Székesfehérvár, H-8000, Hungary
| | - Gábor Lakatos
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
- Department of Oncology, Szent László Hospital, Budapest, H-1097, Hungary
| | - Mária Zsófia Varga
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| | - Zsolt Tulassay
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| |
Collapse
|
33
|
Väyrynen JP, Vornanen J, Tervahartiala T, Sorsa T, Bloigu R, Salo T, Tuomisto A, Mäkinen MJ. Serum MMP-8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int J Cancer 2011; 131:E463-74. [PMID: 21918979 DOI: 10.1002/ijc.26435] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/08/2011] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinases (MMPs) form a family of zinc-dependent endoproteases participating in cancer pathogenesis by promoting invasion and regulating growth signaling, apoptosis, angiogenesis and immune responses. MMP-8 is an intriguing MMP with recently discovered antitumor activity and immunoregulatory properties, but its role in colorectal cancer (CRC) has not been studied extensively. Preoperative serum MMP-8 levels (S-MMP-8) of 148 CRC patients and 83 healthy controls were measured using an immunofluorometric assay and related to clinical and pathological parameters. The patients had higher S-MMP-8 than the controls (median 63.0 vs. 17.2 ng/ml, p = 1.5E - 9), and a receiver operating characteristics analysis yielded an area under the curve of 0.751 in differentiating the groups. In univariate analyses, S-MMP-8 correlated positively with disease stage (p = 4.5E - 4), the degree of primary tumor necrosis (p = 0.0024) and blood neutrophil count (Pearson r = 0.523, p = 2.5E - 9). Particular interest was also addressed to the inflammatory properties of the tumors, and both variables studied, peritumoral tumor-destructing inflammatory infiltrate and Crohn's-like lymphoid reaction (CLR), showed a negative correlation with S-MMP-8 (p = 0.041 and p = 0.0057, respectively). In a multiple linear regression analysis, high S-MMP-8 associated with elevated blood neutrophil count, distant metastases, low-grade CLR and low body mass index. Overall, our results indicate that MMP-8 is involved in the course and progression of CRC influencing the immune response against the tumor and contributing to the resolution of necrosis. Serum or plasma MMP-8 may prove to be a worthy biomarker for CRC.
Collapse
Affiliation(s)
- Juha P Väyrynen
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Birgisson H, Wallin U, Holmberg L, Glimelius B. Survival endpoints in colorectal cancer and the effect of second primary other cancer on disease free survival. BMC Cancer 2011; 11:438. [PMID: 21989154 PMCID: PMC3209454 DOI: 10.1186/1471-2407-11-438] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 10/11/2011] [Indexed: 01/01/2023] Open
Abstract
Background In cancer research the selection and definitions of survival endpoints are important and yet they are not used consistently. The aim of this study was to compare different survival endpoints in patients with primary colorectal cancer (CRC) and to understand the effect of second primary other cancer on disease-free survival (DFS) calculations. Methods A population-based cohort of 415 patients with CRC, 332 of whom were treated with curative intention between the years 2000-2003, was analysed. Events such as locoregional recurrence, distant metastases, second primary cancers, death, cause of death and loss to follow-up were recorded. Different survival endpoints, including DFS, overall survival, cancer-specific survival, relapse-free survival, time to treatment failure and time to recurrence were compared and DFS was calculated with and without inclusion of second primary other cancers. Results The events that occurred most often in patients treated with curative intention were non-cancer-related death (n = 74), distant metastases (n = 66) and death from CRC (n = 59). DFS was the survival endpoint with most events (n = 170) followed by overall survival (n = 144) and relapse-free survival (n = 139). Fewer events were seen for time to treatment failure (n = 80), time to recurrence (n = 68) and cancer-specific survival (n = 59). Second primary other cancer occurred in 26 patients and its inclusion as an event in DFS calculations had a detrimental effect on the survival. The DFS for patients with stage I-III disease was 62% after 5 years if second primary other cancer was not included as an event, compared with 58% if it was. However, the difference was larger for stage II (68 vs 60%) than for stage III (49 vs 47%). Conclusions The inclusion of second primary other cancer as an endpoint in DFS analyses significantly alters the DFS for patients with CRC. Researchers and journals must clearly define survival endpoints in all trial protocols and published manuscripts.
Collapse
Affiliation(s)
- Helgi Birgisson
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|