1
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
2
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Li S, Jiang F, Chen F, Deng Y, Huang H. Silencing long noncoding RNA LINC01133 suppresses pancreatic cancer through regulation of microRNA-1299-dependent IGF2BP3. J Biochem Mol Toxicol 2024; 38:e23534. [PMID: 37718503 DOI: 10.1002/jbt.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The deregulation of long noncoding RNAs (lncRNAs) holds great potential in the treatment of multiple cancers, including pancreatic cancer (PC). However, the specific molecular mechanisms by which LINC01133 contributes to pancreatic cancer remain unknown. Subsequent to bioinformatics analysis, we predicted and analyzed differentially expressed lncRNAs, microRNAs, and genes in pancreatic cancer. We determined the expression patterns of LINC01133, miR-1299, and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in pancreatic cancer cells, and validated their interactions through luciferase reporter and RNA immunoprecipitation assays. We implemented loss-of-function and gain-of-function experiments for LINC01133, miR-1299, and IGF2BP3 to assay their potential effects on pancreatic cancer cell functions. We observed high expression of LINC01133 and IGF2BP3, but low expression of miR-1299, in pancreatic cancer cells. Furthermore, we found that LINC01133 enhances IGF2BP3 through binding with miR-1299. Silencing LINC01133 or IGF2BP3 and/or overexpressing miR-1299 limited pancreatic cancer cell proliferation, invasion, epithelial-mesenchymal transition, and suppressed tumorigenic abilities in mice lacking T cells (nude mice). Overall, our findings identified that silencing LINC01133 downregulates IGF2BP3 by upregulating miR-1299 expression, ultimately leading to the prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Sumei Li
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Fengru Jiang
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Feiyu Chen
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Yinzhao Deng
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Haiying Huang
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Lin Y, Shi H, Wu L, Ge L, Ma Z. Research progress of N6-methyladenosine in colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36394. [PMID: 38013272 PMCID: PMC10681580 DOI: 10.1097/md.0000000000036394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer is the third most common malignant tumor worldwide, causing serious harm to human health. Epigenetic modification, especially RNA methylation modification, plays a critical role in the occurrence and development of colorectal cancer via post-transcriptional regulation of mRNA and non-coding RNA expression. Among these, N6-methyladenosine (m6A) is the most common chemical modification in mammals, which plays an important role in the progress of cancer, including colorectal cancer. m6A is a dynamic and reversible process and is mainly regulated by m6A methyltransferase ("writers"), m6A demethylases ("erasers"), and m6A binding proteins ("readers"). Herein, we reviewed recent advances in the role of m6A modification in colorectal cancer and focused on the factors affecting m6A modification. Furthermore, we discussed the clinical application of m6A modifications for colorectal cancer diagnosis, prognosis, and treatment and provided guides in clinical practice. m6A modification and m6A regulators play significant roles in the occurrence and development of colorectal cancer by regulating the stability and translation of mRNAs, the maturation of miRNAs, and the function of lncRNAs. m6A regulators can play biological roles in colorectal cancer through m6A-dependent manner or m6A-independent manner. Multiplies of internal factors, including miRNAs and lncRNAs, and external factors can also regulate the m6A modification by completing with m6A regulators in a base complement manner, regulating the expression of m6A and mutating the m6A site. m6A regulators and m6A modificantion are diagnostic and prognostic markers for CRC. Therefore, m6A regulators and m6A modificantion may be potential therapeutic target for CRC in the future.
Collapse
Affiliation(s)
- Yu Lin
- Department of Respiratory, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Hongjun Shi
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Lianping Wu
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Linyang Ge
- Department of Respiratory, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Zengqing Ma
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| |
Collapse
|
5
|
Anisimova AS, Karagöz GE. Optimized infrared photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (IR-PAR-CLIP) protocol identifies novel IGF2BP3-interacting RNAs in colon cancer cells. RNA (NEW YORK, N.Y.) 2023; 29:1818-1836. [PMID: 37582618 PMCID: PMC10578486 DOI: 10.1261/rna.079714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
The conserved family of RNA-binding proteins (RBPs), IGF2BPs, plays an essential role in posttranscriptional regulation controlling mRNA stability, localization, and translation. Mammalian cells express three isoforms of IGF2BPs: IGF2BP1-3. IGF2BP3 is highly overexpressed in cancer cells, and its expression correlates with a poor prognosis in various tumors. Therefore, revealing its target RNAs with high specificity in healthy tissues and in cancer cells is of crucial importance. Photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) identifies the binding sites of RBPs on their target RNAs at nucleotide resolution in a transcriptome-wide manner. Here, we optimized the PAR-CLIP protocol to study RNA targets of endogenous IGF2BP3 in a human colorectal carcinoma cell line. To this end, we first established an immunoprecipitation protocol to obtain highly pure endogenous IGF2BP3-RNA complexes. Second, we modified the protocol to use highly sensitive infrared (IR) fluorescent dyes instead of radioactive probes to visualize IGF2BP3-crosslinked RNAs. We named the modified method "IR-PAR-CLIP." Third, we compared RNase cleavage conditions and found that sequence preferences of the RNases impact the number of the identified IGF2BP3 targets and introduce a systematic bias in the identified RNA motifs. Fourth, we adapted the single adapter circular ligation approach to increase the efficiency in library preparation. The optimized IR-PAR-CLIP protocol revealed novel RNA targets of IGF2BP3 in a human colorectal carcinoma cell line. We anticipate that our IR-PAR-CLIP approach provides a framework for studies of other RBPs.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
| |
Collapse
|
6
|
Wang W, Zhou L, Zhang X, Li Z. Mollugin suppresses proliferation and drives ferroptosis of colorectal cancer cells through inhibition of insulin-like growth factor 2 mRNA binding protein 3/glutathione peroxidase 4 axis. Biomed Pharmacother 2023; 166:115427. [PMID: 37677963 DOI: 10.1016/j.biopha.2023.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Increasing researches have demonstrated that targeting ferroptosis might be a new conceptual avenue to treat colorectal cancer (CRC). Mollugin is a phytochemical isolated from Rubia cordifolia L. with antitumor activity. However, whether ferroptosis mediates the antitumor activity of mollugin in CRC has not been explored. Our study aims to investigate the antitumor and pro-ferroptosis effects, and mechanisms of mollugin in CRC. We found that mollugin led to ferroptosis in CRC cells, resulting in reduced GSH level and elevated levels of ROS, Fe2+, and MDA. Mollugin treatment caused obvious decrease in cell viability and proliferation in CRC cells, which were aggravated by ferroptosis inducer erastin and attenuated by ferroptosis inhibitor ferrostatin-1. Tumor xenografts experiments proved that mollugin suppressed the tumor growth, while treatment with ferrostatin-1 attenuated the antitumor activity of mollugin in vivo. Integrated bioinformatics analysis showed that insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) was highly expressed in CRC tissues and indicated poor prognosis. Further investigation indicated that the IGF2BP3/glutathione peroxidase 4 (GPX4) axis was involved in mollugin-regulated ferroptosis in CRC. In conclusions, Mollugin suppresses proliferation and drives ferroptosis of CRC cells by inhibiting the IGF2BP3/GPX4 axis, suggesting that mollugin may be a potential therapeutic option for CRC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, P.R. China
| | - Lijiang Zhou
- Department of Oncology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, P.R. China
| | - Xinyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, P.R. China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, P.R. China.
| |
Collapse
|
7
|
Wei L, Wu Y, Cai S, Qin Y, Xing S, Wang Z. Long Non-coding RNA Linc01224 Regulates Hypopharyngeal Squamous Cell Carcinoma Growth Through Interactions with miR-485-5p and IGF2BP3. J Cancer 2023; 14:3009-3022. [PMID: 37859812 PMCID: PMC10583594 DOI: 10.7150/jca.85019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023] Open
Abstract
Increasing evidence illustrates that long non-coding RNAs (lncRNAs) play significant oncogenic roles, including hypopharyngeal squamous cell carcinoma (HSCC). The function and mechanism of long non-coding RNAs (lncRNAs) in hypopharyngeal squamous cell carcinoma (HSCC) have not been fully elucidated. Therefore, this study aimed to investigate the role of a specific lncRNA, linc01224, in regulating the miR-485-5p/IGF2BP3 axis in HSCC. We confirmed the lncRNA expression profiles in 5 pairs of HSCC and normal tissues by lncRNA sequencing. Another 28 HSCC tissues were further validated by quantitative real-time PCR (qRT-PCR). qRT-PCR was also used to detect the expression levels of linc01224, miR-485-5p and IGF2BP3 in HSCC cell lines. Next, functional experiments in vitro and in vivo were applied to determine the effects of linc01224 silencing on tumor proliferation, migration, apoptosis and progression in HSCC. Linc01224 expression was significantly higher in HSCC tissues than in adjacent normal tissues. In addition, HSCC patients with low IGF2BP3 expression had good survival. In vitro assays were mechanistically performed to explore whether linc01224 positively regulates IGF2BP3 expression via its competitive inhibition of miR-485-5p. An in vivo animal model also confirmed that linc01224 could promote the occurrence and development of HSCC. Our study first identified that linc01224 plays an oncogenic role in HSCC. It suggests that linc01224 may act as a prognostic biomarker and potential therapeutic target for HSCC.
Collapse
Affiliation(s)
- Lai Wei
- Department of Otolaryngology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033, Shenzhen, China
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Yuanhang Wu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116000, Dalian, China
| | - Sisi Cai
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Yulan Qin
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Shuangchun Xing
- Department of Otolaryngology, The First Affiliated Hospital of Dalian Medical University, 116000, Dalian, China
| | - Zhiqiang Wang
- Department of Otolaryngology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033, Shenzhen, China
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| |
Collapse
|
8
|
Klingbeil KD, Tang JP, Graham DS, Lofftus SY, Jaiswal AK, Lin TL, Frias C, Chen LY, Nakasaki M, Dry SM, Crompton JG, Eilber FC, Rao DS, Kalbasi A, Kadera BE. IGF2BP3 as a Prognostic Biomarker in Well-Differentiated/Dedifferentiated Liposarcoma. Cancers (Basel) 2023; 15:4489. [PMID: 37760460 PMCID: PMC10526143 DOI: 10.3390/cancers15184489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although IGF2BP3 has been implicated in tumorigenesis and poor outcomes in multiple cancers, its role in soft-tissue sarcoma (STS) remains unknown. Preliminary data have suggested an association with IGF2BP3 expression among patients with well-differentiated/dedifferentiated liposarcoma (WD/DD LPS), a disease where molecular risk stratification is lacking. METHODS We examined the survival associations of IGF2BP3 via univariate and multivariate Cox regression in three unique datasets: (1) the Cancer Genome Atlas (TCGA), (2) an in-house gene microarray, and (3) an in-house tissue microarray (TMA). A fourth dataset, representing an independent in-house TMA, was used for validation. RESULTS Within the TCGA dataset, IGF2BP3 expression was a poor prognostic factor uniquely in DD LPS (OS 1.6 vs. 5.0 years, p = 0.009). Within the microarray dataset, IGF2BP3 expression in WD/DD LPS was associated with worse survival (OS 7.7 vs. 21.5 years, p = 0.02). IGF2BP3 protein expression also portended worse survival in WD/DD LPS (OS 3.7 vs. 13.8 years, p < 0.001), which was confirmed in our validation cohort (OS 2.7 vs. 14.9 years, p < 0.001). In the multivariate model, IGF2BP3 was an independent risk factor for OS, (HR 2.55, p = 0.034). CONCLUSION IGF2BP3 is highly expressed in a subset of WD/DD LPS. Across independent datasets, IGF2BP3 is also a biomarker of disease progression and worse survival.
Collapse
Affiliation(s)
- Kyle D. Klingbeil
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Pengfei Tang
- University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Danielle S. Graham
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Serena Y. Lofftus
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Tasha L. Lin
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Chris Frias
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Lucia Y. Chen
- Department of Medicine, Statistics Core, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Manando Nakasaki
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Sarah M. Dry
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fritz C. Eilber
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinesh S. Rao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brian E. Kadera
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
10
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
11
|
Di Fusco D, Di Grazia A, Di Maggio G, Segreto MT, Iannucci A, Maresca C, De Stefano A, Sica G, Stolfi C, Monteleone G, Monteleone I. A novel tumour enhancer function of Insulin-like growth factor II mRNA-binding protein 3 in colorectal cancer. Cell Death Dis 2023; 14:243. [PMID: 37024466 PMCID: PMC10079693 DOI: 10.1038/s41419-023-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
CRC cells evolve a variety of strategies to limit or circumvent apoptosis cell death. RNA binding proteins (RBPs) regulate many of the molecular mechanisms that underlie the development of cancer. The insulin-like growth factor II mRNA-binding proteins (IMP) family are oncofoetal RBPs, consisting of IMP1, IMP2 and IMP3, which have an important role in RNA metabolism. IMP3 is highly expressed in colorectal cancer (CRC) tissue, where its expression often correlates with poor prognosis. However, the role of IMP3 in CRC is not fully understood. IMP3 expression was analysed using a public database and by Western blotting and immunohistochemistry in human colon samples derived from patients with sporadic CRC and healthy subjects. To address whether IMP3 controls cancer cell survival, we analysed cell death pathways in in vitro and in vivo experiments after IMP3 downregulation by siRNA or an antisense oligonucleotide. IMP3 was highly expressed in CRC samples compared to normal control tissues. The knockdown of IMP3 enhanced a caspase-independent cell death in CRC cell lines. Furthermore, the treatment of CRC cells with IMP3 siRNA did not alter the expression of GSDMD, GPX-4 and the activated form of RIP3, three key molecules that govern pyroptosis, ferroptosis and necroptosis, respectively. Abrogation of IMP3 in CRC significantly reduced Bcl-2 and Bcl-xL mRNA and was associated with an altered mitochondrial membrane potential that allowed the nuclear migration of the apoptosis-inducing factor (AIF). Moreover, specific immunoprecipitation experiments on CRC human cell lines indicated that IMP3 binds Bcl-2 and Bcl-xL mRNA, suggesting that IMP3 acts as a regulator of the intrinsic apoptotic pathway through the surveillance of anti-apoptotic Bcl mRNA metabolism. Finally, we showed that IMP3 block inhibited the growth of CRC cell lines in vivo after transplantation into immunodeficient mice. Altogether, these data support a novel role for IMP3 in controlling the intrinsic caspase-independent apoptotic pathway in CRC.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Giulia Di Maggio
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of 'Tor Vergata', Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy.
| |
Collapse
|
12
|
Huang W, Zhu L, Huang H, Li Y, Wang G, Zhang C. IGF2BP3 overexpression predicts poor prognosis and correlates with immune infiltration in bladder cancer. BMC Cancer 2023; 23:116. [PMID: 36732736 PMCID: PMC9896754 DOI: 10.1186/s12885-022-10353-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IGF2BP3 expression is associated with poor prognosis in cancers of multiple tissue origins. However, the precise mechanism of its co-carcinogenic action in bladder cancer is unknown. METHODS We aimed to demonstrate the relationship between IGF2BP3 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. We next validated IGF2BP3 expression in the Gene Expression Omnibus (GEO) database (GSE3167). Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic values of IGF2BP3. Cox and logistic regression were used to explore the factors affecting the prognosis. Protein-protein interactions (PPIs) network was constructed by STRING. Enrichment analyses were performed to infer involved pathways and functional categories of IGF2BP3 using the cluster Profiler package. We applied single-sample gene set enrichment analysis (ssGSEA) algorithm and TIMER database to evaluate the expression level of immune genes. RESULTS Pan-cancer analyses reveal that IGF2BP3 was higher in most cancer types, including bladder cancer, and the same results were found in GSE3167. The area under the ROC curve of IGF2BP3 was 0.736, which indicated that IGF2BP3 may be a potential diagnostic biomarker. High IGF2BP3 expression was associated with poorer overall survival (OS) (P = 0.015). For validation, we collected 95 bladder cancer samples and found that IGF2BP3 expression was higher in bladder cancer tissues than that in non-tumor bladder tissues by immunohistochemistry staining. We found a positive correlation between the expression level of IGF2BP3 and the clinical stage of bladder cancer. Immunocyte infiltration analysis showed that high IGF2BP3 expression was correlated with regulating the infiltration level of immune cell, including neutrophil cells and macrophages. IGF2BP3 promotes migration and invasion of bladder cancer cells, while IGF2BP3 inhibition had the opposite effects. Higher IGF2BP3 expression was closely associated with advanced TNM stage. CONCLUSION IGF2BP3 overexpression was related to disease progression and poor prognosis, as well as infiltration of immune cells in bladder cancer. IGF2BP3 can be a promising independent prognostic biomarker and potential treatment target for bladder cancer.
Collapse
Affiliation(s)
- Wei Huang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Lizhen Zhu
- grid.412604.50000 0004 1758 4073Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Haoxuan Huang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Yuanyuan Li
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Gongxian Wang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Cheng Zhang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| |
Collapse
|
13
|
Chen P, Xu J, Cui Z, Wu S, Xie T, Zhang X. Multi-omics analysis of N6-methyladenosine reader IGF2BP3 as a promising biomarker in pan-cancer. Front Immunol 2023; 14:1071675. [PMID: 36761737 PMCID: PMC9905439 DOI: 10.3389/fimmu.2023.1071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported to exhibit an oncogenic effect as an RNA-binding protein (RBP) by promoting tumor cell proliferation, migration and invasion in several tumor types. However, a pan-cancer analysis of IGF2BP3 is not currently available, and the exact roles of IGF2BP3 in prognosis and immunology in cancer patients remain enigmatic. The main aim of this study was to provide visualization of the systemic prognostic landscape of IGF2BP3 in pan-cancer and to uncover the potential relationship between IGF2BP3 expression in the tumor microenvironment and immune infiltration profile. Methods Raw data on IGF2BP3 expression were obtained from GTEx, CCLE, TCGA, and HPA data portals. We have investigated the expression patterns, diagnostic and prognostic significance, mutation landscapes, functional analysis, and functional states of IGF2BP3 utilizing multiple databases, including HPA, TISIDB, cBioPortal, GeneMANIA, GESA, and CancerSEA. Moreover, the relationship of IGF2BP3 expression with immune infiltrates, TMB, MSI and immune-related genes was evaluated in pan-cancer. IGF2BP3 with drug sensitivity analysis was performed from the CellMiner database. Furthermore, the expression of IGF2BP3 in different grades of glioma was detected by immunohistochemical staining and western blot. Results We found that IGF2BP3 was ubiquitously highly expressed in pan-cancer and significantly correlated with diagnosis, prognosis, TMB, MSI, and drug sensitivity in various types of cancer. Besides, IGF2BP3 was involved in many cancer pathways and varied in different immune and molecular subtypes of cancers. Additionally, IGF2BP3 is critically associated with genetic markers of immunomodulators in various cancers. Finally, we validated that IGF2BP3 protein expression was significantly higher in glioma than in normal tissue, especially in GBM. Conclusions IGF2BP3 may be a potential molecular biomarker for diagnosis and prognosis in pan-cancer, especially for glioma. It could become a novel therapeutic target for various cancers.
Collapse
Affiliation(s)
- Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zihan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Silin Wu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.,Digital Medical Research Center, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Abnormal Expression of N6-Methyladenosine RNA Methylation Regulator IGF2BP3 in Colon Cancer Predicts a Poor Prognosis. DISEASE MARKERS 2022; 2022:5883101. [PMID: 35677634 PMCID: PMC9170420 DOI: 10.1155/2022/5883101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The value of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an N6-methyladenosine (m6A) RNA methylation regulatory factor, in the prognosis of colon cancer was still unclear. High levels of IGF2BP3 were expressed in colon adenocarcinoma (COAD) samples and in human colon cancer tissues, which was associated with poorer overall survival (OS). We validated IGF2BP3 as an independent prognostic risk biomarker in COAD patients. Moreover, functional enrichment analysis suggested that differentially expressed genes (DEGs) of groups with high versus low IGF2BP3 expression were related to immune- and cancer-related pathways. Furthermore, the tumor microenvironments of high- versus low-IGF2BP3 expression groups showed significant differences and IGF2BP3 predicted the efficiency of immunotherapy. Finally, protein-protein interaction network analysis suggested that there was a direct or indirect interaction among IGF2BP3, WNT7B, VANGL2, NKD1, AXIN2, RNF43, and CDKN2A. In brief, IGF2BP3 was confirmed as an independent prognostic signature in COAD patients and might be a therapeutic target in this study. Moreover, IGF2BP3 could be used in personalized immunotherapy for COAD.
Collapse
|
15
|
Endo I, Amatya VJ, Kushitani K, Kambara T, Nakagiri T, Fujii Y, Takeshima Y. Insulin-Like Growth Factor 2 mRNA Binding Protein 3 Promotes Cell Proliferation of Malignant Mesothelioma Cells by Downregulating p27Kip1. Front Oncol 2022; 11:795467. [PMID: 35127504 PMCID: PMC8807558 DOI: 10.3389/fonc.2021.795467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Malignant mesothelioma is a tumor with a poor prognosis, mainly caused by asbestos exposure and with no adequate treatment yet. To develop future therapeutic targets, we analyzed the microarray dataset GSE 29370 of malignant mesothelioma and reactive mesothelial hyperplasia, downloaded from the Gene Expression Omnibus (GEO) database. We identified insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) as one of the significantly upregulated genes in malignant mesothelioma. IGF2BP3 functions as an oncoprotein in many human cancers; however, to our knowledge, this is the first study on the biological function of IGF2BP3 in malignant mesothelioma cells. The knockdown of IGF2BP3 in malignant mesothelioma cells resulted in the suppression of cell proliferation with an increase in the proportion of cells in the G1 phase of the cell cycle. Furthermore, knockdown of IGF2BP3 inhibited cell migration and invasion. We focused on the cell cycle assay to investigate the role of IGF2BP3 in cell proliferation in malignant mesothelioma. Among the various proteins involved in cell cycle regulation, the expression of p27 Kip1 (p27) increased significantly upon IGF2BP3 knockdown. Next, p27 siRNA was added to suppress the increased expression of p27. The results showed that p27 knockdown attenuated the effects of IGF2BP3 knockdown on cell proliferation and G1 phase arrest. In conclusion, we found that IGF2BP3 promotes cell proliferation, a critical step in tumorigenesis, by suppressing the expression of p27 in malignant mesothelioma.
Collapse
|
16
|
A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment. iScience 2022; 25:103617. [PMID: 35106465 PMCID: PMC8786644 DOI: 10.1016/j.isci.2021.103617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Predicting cancer survival from molecular data is an important aspect of biomedical research because it allows quantifying patient risks and thus individualizing therapy. We introduce XGBoost tree ensemble learning to predict survival from transcriptome data of 8,024 patients from 25 different cancer types and show highly competitive performance with state-of-the-art methods. To further improve plausibility of the machine learning approach we conducted two additional steps. In the first step, we applied pan-cancer training and showed that it substantially improves prognosis compared with cancer subtype-specific training. In the second step, we applied network propagation and inferred a pan-cancer survival network consisting of 103 genes. This network highlights cross-cohort features and is predictive for the tumor microenvironment and immune status of the patients. Our work demonstrates that pan-cancer learning combined with network propagation generalizes over multiple cancer types and identifies biologically plausible features that can serve as biomarkers for monitoring cancer survival. Highly performing cancer survival prediction with XGBoost Pan-cancer training outperforms single-cohort training Combined approach consisting of machine learning and network propagation Tumor microenvironment is most strongly involved in cancer survival prediction
Collapse
|
17
|
Tran TM, Philipp J, Bassi JS, Nibber N, Draper JM, Lin TL, Palanichamy JK, Jaiswal AK, Silva O, Paing M, King J, Katzman S, Sanford JR, Rao DS. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia 2022; 36:68-79. [PMID: 34321607 PMCID: PMC8727287 DOI: 10.1038/s41375-021-01346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.
Collapse
Affiliation(s)
- Tiffany M Tran
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA
| | - Julia Philipp
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Jaspal Singh Bassi
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Neha Nibber
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Tasha L Lin
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Doctoral Program, UCLA, Los Angeles, CA, 90095, USA
| | - Jayanth Kumar Palanichamy
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - May Paing
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer King
- Division of Rheumatology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Sol Katzman
- UCSC Genomics Institute, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Dinesh S Rao
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:649-664. [PMID: 34703650 PMCID: PMC8516998 DOI: 10.1016/j.omtn.2021.08.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) continues to be the most common gastrointestinal malignancy in China, and tumor metastases are a major reason for poor prognosis. Circular RNAs (circRNAs) are an intriguing type of noncoding RNAs with important regulatory roles. However, the roles of circRNAs in GC metastasis have not been fully elucidated. Here, we reported that circ-transportin 3 (TNPO3) was significantly downregulated in 103 pairs of GC tissues compared with matched noncancerous tissues. The level of circ-TNPO3 expression correlated with differentiation of GC, and plasma circ-TNPO3 could serve as a potential diagnostic biomarker. Functionally, circ-TNPO3 inhibited proliferation and migration of GC in vitro and in vivo. We further verified that circ-TNPO3 competitively interacted with insulin-like growth factor 2 binding protein 3 (IGF2BP3) protein; thus, the role of IGF2BP3 in stabilizing MYC mRNA was weakened, which inhibited the expression of MYC and its target SNAIL. Taken together, circ-TNPO3 acts as a protein decoy for IGF2BP3 to regulate the MYC-SNAIL axis, thereby suppressing the proliferation and metastasis of GC. Therefore, circ-TNPO3 has the potential to serve as a therapeutic target for GC.
Collapse
|
19
|
Sun C, Zheng X, Sun Y, Yu J, Sheng M, Yan S, Zhu Q, Lan Q. Identification of IGF2BP3 as an Adverse Prognostic Biomarker of Gliomas. Front Genet 2021; 12:743738. [PMID: 34721530 PMCID: PMC8551830 DOI: 10.3389/fgene.2021.743738] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification can alter gene expression and function by regulating RNA splicing, stability, translocation, and translation. It is involved in various types of cancer. However, its role in gliomas is not well known. This study aimed to determine the prognostic value of the m6A RNA methylation regulator in gliomas and investigate the underlying mechanisms of the aberrant expression of m6A-related genes.mRNA expression profiles and clinical information of 448 glioma samples were obtained from The Cancer Genome Atlas and cBioportal. The expression of m6A-related genes in normal controls and low-grade glioma and glioblastoma was obtained from Gene Expression Profiling Interactive Analysis. Further, m6A-related gene expression and its relationship with prognosis were obtained through The Chinese Glioma Genome Atlas (CGGA). Multivariate Cox regression analyses were performed, and a nomogram was built with potential risk factors based on a multivariate Cox analysis to predict survival probability. Online tools such as Gene Set Enrichment Analysis, STRING, Cytoscape, and Molecular Complex Detection were applied for bioinformatics analysis and to investigate the underlying mechanisms of the aberrant expression of m6A-related genes. The multivariate Cox regression analysis found that higher expression levels of YTHDC2 and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3, also called IMP3) were independent negative and positive prognostic factors for overall survival (OS), respectively. Data from the CGGA database showed that IGF2BP3 expression increased when the tumor grade increased. Receiver operating characteristic (ROC) curve was used to evaluate the predictive specificity and sensitivity. The area under the ROC curve indicated that the OS prediction was 0.92 (1-year) and 0.917 (3-years), indicating that m6A-related genes could predict patient survival. In addition, IGF2BP3 was closely related to the shorter survival period of patients. Copy number variation and DNA methylation, but not somatic mutations, might contribute to the abnormal upregulation of IGF2BP3 in gliomas. Significantly altered genes were identified, and the protein–protein interaction network was constructed. Based on the data presented, our study identified several m6A-related genes, especially IGF2BP3, that could be potential prognostic biomarkers of gliomas. The study unveiled the potential regulatory mechanism of IGF2BP3 in gliomas.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingxin Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Minfeng Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suji Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
The biological function of IGF2BPs and their role in tumorigenesis. Invest New Drugs 2021; 39:1682-1693. [PMID: 34251559 DOI: 10.1007/s10637-021-01148-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) pertain to a highly conservative RNA-binding family that works as a post-transcriptional fine-tuner for target transcripts. Emerging evidence suggests that IGF2BPs regulate RNA processing and metabolism, including stability, translation, and localization, and are involved in various cellular functions and pathophysiologies. In this review, we summarize the roles and molecular mechanisms of IGF2BPs in cancer development and progression. We mainly discuss the functional relevance of IGF2BPs in embryo development, neurogenesis, metabolism, RNA processing, and tumorigenesis. Understanding IGF2BPs role in tumor progression will provide new insight into cancer pathophysiology.
Collapse
|
21
|
Busuioc C, Ciocan-Cartita CA, Braicu C, Zanoaga O, Raduly L, Trif M, Muresan MS, Ionescu C, Stefan C, Crivii C, Al Hajjar N, Mǎrgǎrit S, Berindan-Neagoe I. Epithelial-Mesenchymal Transition Gene Signature Related to Prognostic in Colon Adenocarcinoma. J Pers Med 2021; 11:jpm11060476. [PMID: 34073426 PMCID: PMC8229043 DOI: 10.3390/jpm11060476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Colon adenocarcinoma (COAD) remains an important cause of cancer-related mortality worldwide. Epithelial–mesenchymal transition (EMT) is a key mechanism, promoting not only the invasive or metastatic phenotype but also resistance to therapy. Using bioinformatics approaches, we studied the alteration on EMT related genes and its implication on COAD prognostic based on public datasets. For the EMT mechanisms, two overexpressed genes were identified (NOX4 and IGF2BP3), as well as five downregulated genes (BMP5, DACT3, EEF1A2, GCNT2 and SFRP1) that were related to prognosis in COAD. A qRT-PCR validation step was conducted in a COAD patient cohort comprising of 29 tumor tissues and 29 normal adjacent tissues, endorsing the expression level for BMP5, as well as for two of the miRNAs targeting key EMT related genes, revealing upregulation of miR-27a-5p and miR-146a-5p. The EMT signature can be used to develop a panel of biomarkers for recurrence prediction in COAD patients, which may contribute to the improvement of risk stratification for the patients.
Collapse
Affiliation(s)
- Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Cristina Alexandra Ciocan-Cartita
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Mihai-Stefan Muresan
- 7th Surgical Department, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Calin Ionescu
- 7th Surgical Department, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Cristina Stefan
- Sing Duke-NUS Global Health Institute Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Carmen Crivii
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Correspondence: (C.C.); (S.M.)
| | - Nadim Al Hajjar
- Department of Surgery, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania;
- Department of Surgery, University of Medicine and Pharmacy, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Simona Mǎrgǎrit
- Department of Anesthesia and Intensive Care I, Iuliu Hatieganu University of Medicine and Pharmacy, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Intensive Care Unit, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Correspondence: (C.C.); (S.M.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| |
Collapse
|
22
|
Bevanda Glibo D, Bevanda D, Vukojević K, Tomić S. IMP3 protein is an independent prognostic factor of clinical stage II rectal cancer. Sci Rep 2021; 11:10844. [PMID: 34035433 PMCID: PMC8149387 DOI: 10.1038/s41598-021-90513-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Immunohistochemical level of IMP3-protein in patients with rectal cancer in clinical stage II (141), were correlated with sociodemographic, pathohistological and clinical indicators and duration of overall-survival and progression-free-survival. Vascular invasion was associated with IMP3-positive immunostaining (p < 0.001). Vascular invasion ratio in the group of poorly-differentiated-tumors was 21 times higher than in the group of well-differentiated-tumors. IMP3-positive patients lived 2.2 times shorter than negative (p < 0.001). Patients with well-differentiated-tumors lived 1.7 times longer than the subjects with poorly-differentiated-tumors (p < 0.001). Patients without vascular invasion lived 2.7 times longer than the subjects with vascular invasion (p < 0.001). The risk of mortality was 2.3 times higher for IMP3 positive patients (p = 0.027) and 10.4 higher for the patients with vascular invasion (p < 0.001). IMP3-negative participants had 2.3 times longer free interval without disease (p < 0.001). The free interval without disease was 3.6 times longer in the group without vascular invasion (p < 0.001). The risk of disease relapse in the IMP3 positive group was 5.3 times higher (p < 0.001) and with vascular invasion was 8 times longer (p < 0.001). The risk of disease relapse was 6.8 times higher in the group with vascular invasion (p < 0.001). Patients with rectal cancer and high IMP3-protein level will have a shorter overall survival relative to patients without or with low levels of IMP3. The analysis of IMP3 expression by immunohistochemistry pointed IMP3 as an independent prognostic factor of clinical stage II rectal cancer.
Collapse
Affiliation(s)
- Daniela Bevanda Glibo
- Department of Internal Medicine, University Hospital Center Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Danijel Bevanda
- Department of Internal Medicine, University Hospital Center Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia. .,Department of Medical Genetics, School of Medicine, University of Mostar, 88000, Mostar, Bosnia and Herzegovina.
| | - Snježana Tomić
- Department of Pathology, Citology and Forensic Medicine, University Hospital Center Split, 21000, Split, Croatia
| |
Collapse
|
23
|
Huang YY, Zhang CM, Dai YB, Lin JG, Lin N, Huang ZX, Xu TW. USP11 facilitates colorectal cancer proliferation and metastasis by regulating IGF2BP3 stability. Am J Transl Res 2021; 13:480-496. [PMID: 33594305 PMCID: PMC7868846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The abnormal expression of ubiquitin-specific protease 11 (USP11) is thought to be related to tumor development and progression; however, few studies have reported the biological function and clinical importance of USP11 in colorectal cancer (CRC). Therefore, it is necessary to further explore the role of USP11 in CRC. Immunohistochemical staining was used to explore the association between prognosis and USP11 expression in CRC. Cholecystokinin octapeptide (CCK-8), colony formation, transwell, and animal assays were used to study the abilities of proliferation, migration, and invasion in CRC cells. Co-immunoprecipitation assays, Western blotting, ubiquitination assays, and rescue experiments were performed to elucidate the interaction between USP11 and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). We verified that USP11 was overexpressed in CRC tissues and was associated with the depth of tumor invasion and metastasis. USP11 knockdown or overexpression could weaken or reinforce the abilities of proliferation, migration, and invasion in CRC cells in vivo or in vitro. IGF2BP3 was protected by USP11 from degradation via deubiquitination. The rescue experiments revealed that IGF2BP3 overexpression could effectively reverse the decrease in cell proliferation, migration, and invasion caused by USP11 knockdown. Therefore, USP11 might be involved in CRC tumorigenesis and development through a USP11-IGF2BP3 axis pathway, and USP11 overexpression might be a novel indicator for poor prognosis and a potential therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Ya-Yu Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
- Department of Radiation Oncology, Xiamen Branch, Zhongshan Hospital, Fudan UniversityXiamen 361004, Fujian, China
| | - Chang-Mao Zhang
- Department of General Surgery, Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Yang-Bin Dai
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Jian-Guang Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Na Lin
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Zhong-Xin Huang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Tian-Wen Xu
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| |
Collapse
|
24
|
Zhang J, Ding F, Jiao D, Li Q, Ma H. The Aberrant Expression of MicroRNA-125a-5p/IGF2BP3 Axis in Advanced Gastric Cancer and Its Clinical Relevance. Technol Cancer Res Treat 2020; 19:1533033820917332. [PMID: 32266868 PMCID: PMC7144671 DOI: 10.1177/1533033820917332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins have been associated with cancer development. The overexpression of a well-known RNA-binding protein, insulin-like growth factor 2 messenger RNA-binding protein 3, has been identified as an indicator of poor prognosis in patients with various types of cancer. Although gastric cancer is a relatively frequent and potentially fatal malignancy, the mechanism by which insulin-like growth factor 2 messenger RNA-binding protein 3 regulates the development of this cancer remains unclear. This study aimed to investigate the role and regulatory mechanism of insulin-like growth factor 2 messenger RNA-binding protein 3 in gastric cancer. An analysis of IGF2BP3 expression patterns reported in 4 public gastric cancer-related microarray data sets from the Gene Expression Omnibus and The Cancer Genome Atlas-Stomach Adenocarcinoma revealed strong expression of this gene in gastric cancer tissues. Insulin-like growth factor 2 messenger RNA-binding protein 3 expression in gastric cancer was further confirmed via quantitative reverse transcription polymerase chain reaction and immunohistochemistry, respectively, in an in-house gastric cancer cohort (n = 30), and the association of insulin-like growth factor 2 messenger RNA-binding protein 3 expression with clinical parameters and prognosis was analyzed. Notably, stronger IGF2BP3 expression significantly correlated with poor prognosis, and significant changes in insulin-like growth factor 2 messenger RNA-binding protein 3 expression were only confirmed in patients with advanced-stage gastric cancer in an independent cohort. The effects of insulin-like growth factor 2 messenger RNA-binding protein 3 on cell proliferation were confirmed through in vitro experiments involving the HGC-27 gastric cancer cell line. MicroR-125a-5p, a candidate microRNA that target on insulin-like growth factor 2 messenger RNA-binding protein 3, decreased in advanced-stage gastric cancer. Upregulation of microR-125a-5p inhibited insulin-like growth factor 2 messenger RNA-binding protein 3, and dual-luciferase report assay indicated that microR-125a-5p inhibited the translation of IGF2BP3 by directly targeting the 3' untranslated region. These results indicate that the microR-125a-5p/insulin-like growth factor 2 messenger RNA-binding protein 3 axis contributes to the oncogenesis of advanced gastric cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, The First Hospital of Lanzhou University, Lanzhou, China.,The first two authors contributed equally to this paper
| | - Fanghui Ding
- Department of General Surgery (5th), The First Hospital of Lanzhou University, Lanzhou, China.,The first two authors contributed equally to this paper
| | - Dan Jiao
- Department of Pathology, Hospital for JiuQuan City in Gansu Province, Jiuquan, China
| | - Qiaozhi Li
- Department of Pathology, The Fifth People's Hospital of Foshan City, Foshan, China
| | - Hong Ma
- Faculty of Pathology, Xinjiang Medical University, Urumchi, China
| |
Collapse
|
25
|
Yang Z, Wang T, Wu D, Min Z, Tan J, Yu B. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:203. [PMID: 32993738 PMCID: PMC7523351 DOI: 10.1186/s13046-020-01714-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Background N6-Methyladenosine (m6A) modification has been implicated in multiple processes for colon cancer development. IGF2BP3 was a newly reported m6A reader, whereas its role in colon cancer remains unclear. Methods The expression of m6A associated enzymes and total m6A level were measured by Western Blotting analysis and m6A RNA Methylation Quantification Kit respectively. Cell cycle was analyzed by flowcytometry. The interaction of IGF2BP3 and related targets was analyzed by RNA immunoprecipitation (RIP) and m6A RNA immunoprecipitation (MeRIP) assays. Results We investigated all m6A regulated enzymes in colon cancer and found only the overexpression of IGF2BP3 was associated with cancer progression and survival based on The Cancer Genome Atlas (TCGA) databases. Additionally, we also demonstrated IGF2BP3 was associated with DNA replication in the cell cycle. Knockdown of IGF2BP3 significantly repressed percentage of S phase of cell cycle as well as cell proliferation. Further research demonstrated IGF2BP3 bound to the mRNA of Cyclin D1 (CCND1, checkpoint of G1/S phase of cell cycle) and reduced its mRNA stability via reading m6A modification in the CDS region. Overexpression of Cyclin D1 in IGF2BP3 down-regulated cells completely rescued the inhibited percentage of S phase in cell cycle as well as cell proliferation. Additionally, we also demonstrated a similar role of IGF2BP3 at VEGF. IGF2BP3 bound to the mRNA of VEGF and reads m6A modification, thus regulated both expression and stability of VEGF mRNA. Knockdown of IGF2BP3 repressed angiogenesis in colon cancer via regulating VEGF. Conclusion Knockdown of IGF2BP3 repressed DNA replication in the S phase of cell cycle and angiogenesis via reading m6A modification of CCND1 and VEGF respectively. IGF2BP3 was a possible prognosis marker and potential therapeutic target of colon cancer.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399, China
| | - Tingfeng Wang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399, China
| | - Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399, China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399, China
| | - Jingyun Tan
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399, China. .,Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
26
|
Xueqing H, Jun Z, Yueqiang J, Xin L, Liya H, Yuanyuan F, Yuting Z, Hao Z, Hua W, Jian L, Tiejun Y. IGF2BP3 May Contributes to Lung Tumorigenesis by Regulating the Alternative Splicing of PKM. Front Bioeng Biotechnol 2020; 8:679. [PMID: 32984260 PMCID: PMC7492387 DOI: 10.3389/fbioe.2020.00679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
RNA binding proteins (RBPs) play a key role in genome regulation. Here we report the post-transcript regulation of IGF2BP3, which belongs to the insulin-like growth factor 2 mRNA binding protein family. We used iRIP-seq and RNA-seq to analyze the transcript regulation and alternative splicing on IGF2BP3 treated with overexpression cells and control. Overexpressed IGF2BP3 has broadly increased genes expression which involved in G-protein coupled receptor signaling pathway, positive regulation of cell proliferation, and signal transduction. IGF2BP3 regulated alternative splicing of multiple genes mainly clustered at response to hypoxia, negative regulation of transcription, and embryonic development. This study first provides alternative splicing analysis on transcription level of IGF2BP3 regulation, which laid the foundation for later research on IGF2BP3 critical functions.
Collapse
Affiliation(s)
- Huang Xueqing
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Jun
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Yueqiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liao Xin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Liya
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Yuanyuan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Yuting
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Hao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Hua
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jian
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Tiejun
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Li K, Huang F, Li Y, Li D, Lin H, Ni R, Zhang Q, Zhao M, Huang S, Zou L, Huang C. Stabilization of oncogenic transcripts by the IGF2BP3/ELAVL1 complex promotes tumorigenicity in colorectal cancer. Am J Cancer Res 2020; 10:2480-2494. [PMID: 32905413 PMCID: PMC7471344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023] Open
Abstract
The expression of RNA-binding proteins (RBPs) is dysregulated in colorectal cancer (CRC) and in other types of cancer. Among the RBPs, the insulin-like growth factor-2 messenger RNA binding protein (IGF2BP1-3) family is involved in the development of the colon and the progression of CRC. However, the regulation of mRNA fate by IGF2BP3 in CRC remains less well understood. Here, we show that IGF2BP3 interacts with ELAVL1 to coregulate a cohort of genes involved in the cell cycle and cell proliferation. Mechanistically, recognition of these mRNAs by the IGF2BP3/ELAVL1 complex leads to prolonged half-lives of the mRNA molecules and increased expression of the target genes, thereby driving CRC cell proliferation. Interestingly, knockdown of either IGF2BP3 or ELAVL1 impairs the IGF2BP3/ELAVL1 complex-enhanced mRNA stability, suggesting a functional interdependency between IGF2BP3 and ELAVL1 in CRC. Our findings reveal the molecular mechanism by which IGF2BP3 regulates mRNA stability and identify the cooperativity of the IGF2BP3/ELAVL1 complex as a novel therapeutic target in CRC.
Collapse
Affiliation(s)
- Kexin Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Dongdong Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Hong Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Ruoxuan Ni
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Qiao Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
28
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
29
|
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J, Chen C. Tumor Suppressor microRNA-138 Suppresses Low-Grade Glioma Development and Metastasis via Regulating IGF2BP2. Onco Targets Ther 2020; 13:2247-2260. [PMID: 32214825 PMCID: PMC7082711 DOI: 10.2147/ott.s232795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background Low-grade gliomas (LGG), approximately constitute one-third of all types of gliomas, are prone to relapse and metastasis. MicroRNA-138 (miR-138) is reported to be dysregulated in diverse human tumors and mainly function as a tumor suppressor. In this study, we analyzed the expression profile and function of miR-138 in LGG. Methods Quantitative PCR (qPCR) and public database bioinformatics analysis were performed to determine the miR-138 levels in LGG. MiR-138 overexpression in LGG cells was achieved by miR-138 mimics transfection. Cell proliferation was assessed by CCK8, EdU and colony formation assays. Cell invasion and migration were analyzed by transwell and wound-healing assays. Xenograft model was employed to study the role of miR-138 in LGG growth in vivo. The target of miR-138 was validated by multiple methods, such as luciferase reporter assay, RT-qPCR and Western blot. Bioinformatics analysis was conducted to explore the molecular mechanisms by which miR-138 contributed to LGG progression. Results miR-138 was significantly downregulated in LGG tumor tissues and low expression of miR-138 was significantly associated with poor prognosis as well as relapse and metastasis in LGG patients. Functional analysis indicated that ectopic miR-138 expression suppressed LGG cell growth and invasive phenotype in vitro, and inhibited tumor development in vivo. Moreover, miR-138 directly targeted and repressed insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) by targeting the 3ʹ-UTR of IGF2BP2, inhibiting epithelial to mesenchymal transition (EMT) to attenuate LGG aggressiveness. In addition, we found that elevated IGF2BP2 expression correlates with poor survival of LGG patients. Conclusion miR-138 may function as a tumor inhibitor by directly inhibiting IGF2BP2 and suppressing EMT in the progression of LGG.
Collapse
Affiliation(s)
- Yang Yang
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xinyu Liu
- School of Intelligent Manufacturing, The Huanghuai University, Zhumadian 463000, People's Republic of China
| | - Lulu Cheng
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Li Li
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zhenyu Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, People's Republic of China
| | - Zong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Gang Han
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xuefeng Wan
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zaizhong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Chuanliang Chen
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
30
|
García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-y-Miño C. Post-transcriptional Regulation of Colorectal Cancer: A Focus on RNA-Binding Proteins. Front Mol Biosci 2019; 6:65. [PMID: 31440515 PMCID: PMC6693420 DOI: 10.3389/fmolb.2019.00065] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health problem with an estimated 1. 8 million new cases worldwide. To date, most CRC studies have focused on DNA-related aberrations, leaving post-transcriptional processes under-studied. However, post-transcriptional alterations have been shown to play a significant part in the maintenance of cancer features. RNA binding proteins (RBPs) are uprising as critical regulators of every cancer hallmark, yet little is known regarding the underlying mechanisms and key downstream oncogenic targets. Currently, more than a thousand RBPs have been discovered in humans and only a few have been implicated in the carcinogenic process and even much less in CRC. Identification of cancer-related RBPs is of great interest to better understand CRC biology and potentially unveil new targets for cancer therapy and prognostic biomarkers. In this work, we reviewed all RBPs which have a role in CRC, including their control by microRNAs, xenograft studies and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - César Paz-y-Miño
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
31
|
Borys AM, Seweryn M, Gołąbek T, Bełch Ł, Klimkowska A, Totoń-Żurańska J, Machlowska J, Chłosta P, Okoń K, Wołkow PP. Patterns of gene expression characterize T1 and T3 clear cell renal cell carcinoma subtypes. PLoS One 2019; 14:e0216793. [PMID: 31150395 PMCID: PMC6544217 DOI: 10.1371/journal.pone.0216793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Renal carcinoma is the 20th most common cancer worldwide. Clear cell renal cell carcinoma is the most frequent type of renal cancer. Even in patients diagnosed at an early stage, characteristics of disease progression remain heterogeneous. Up-to-date molecular classifications stratify the ccRCC samples into two clusters. We analyzed gene expression in 23 T1 or T3 ccRCC samples. Unsupervised clustering divided this group into three clusters, two of them contained pure T1 or T3 samples while one contained a mixed group. We defined a group of 36 genes that discriminate the mixed cluster. This gene set could be associated with tumor classification into a higher stage and it contained significant number of genes coding for molecular transporters, channel and transmembrane proteins. External data from TCGA used to test our findings confirmed that the expression levels of those 36 genes varied significantly between T1 and T3 tumors. In conclusion, we found a clustering pattern of gene expression, informative for heterogeneity among T1 and T3 tumors of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Agnieszka M Borys
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gołąbek
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Bełch
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Klimkowska
- Chair of Pathomorphology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Julita Machlowska
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Chłosta
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Chair of Pathomorphology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
32
|
Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3. Nat Commun 2019; 10:2266. [PMID: 31118463 PMCID: PMC6531468 DOI: 10.1038/s41467-019-09769-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
How multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We establish an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology. This approach identifies the RNA-binding specificity and RNP topology of IMP3, involving all six RBDs and a cluster of up to five distinct and appropriately spaced CA-rich and GGC-core RNA elements, covering a >100 nucleotide-long target RNA region. Our generally applicable approach explains both specificity and flexibility of IMP3-RNA recognition, allows the prediction of IMP3 targets, and provides a paradigm for the function of multivalent interactions with multidomain RNA-binding proteins in gene regulation.
Collapse
|
33
|
Xu W, Sheng Y, Guo Y, Huang Z, Huang Y, Wen D, Liu CY, Cui L, Yang Y, Du P. Increased IGF2BP3 expression promotes the aggressive phenotypes of colorectal cancer cells in vitro and vivo. J Cell Physiol 2019; 234:18466-18479. [PMID: 30895618 DOI: 10.1002/jcp.28483] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
Previous literatures reported insulin-like growth factor-2 messenger RNA-binding protein 3 (IGF2BP3) is a poor prognostic marker for colorectal cancer (CRC) patients. However, basic research on the effect and biological role of IGF2BP3 in CRC was still scare. Real-time quantitative polymerase chain reaction and western blot analysis were used to examine IGF2BP3 expression level in tumors and paired normal tissues from CRC patients. Tissue microarrays with 192 CRC patients were subjected to immunohistochemical staining to analyze the prognostic value of IGF2BP3. Proliferation assays, migration assays, and xenograft tumor formation in nude mice were performed to assess the biological role of IGF2BP3 in CRC cells. IGF2BP3 expression was significantly upregulated in tumor tissues compared with the matched normal tissues both in messenger RNA and protein level and was associated with worse prognosis. IGF2BP3 knockdown made cell cycle arrest to impair the proliferation ability of CRC cells and further inhibited the xenograft tumor growth in nude mice, also inhibited the migration ability of CRC cells via inducing epithelial-mesenchymal transition. Therefore, the research demonstrated that increased IGF2BP3 expression promoted the aggressive phenotypes of CRC cells. Targeted IGF2BP3 could be a novel and effective gene therapy for CRC patients to make a better prognosis.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell, Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuegui Guo
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Zhenyu Huang
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yiji Huang
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Dongpeng Wen
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Long Cui
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yili Yang
- Center for Systems Medicine, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Peng Du
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Colorectal Cancer Research Center, Shanghai, China
| |
Collapse
|
34
|
Gao Z, Zhang D, Duan Y, Yan L, Fan Y, Fang Z, Liu Z. A five-gene signature predicts overall survival of patients with papillary renal cell carcinoma. PLoS One 2019; 14:e0211491. [PMID: 30822312 PMCID: PMC6396926 DOI: 10.1371/journal.pone.0211491] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background The present study aims to investigate the gene expression changes in papillary renal cell carcinoma(pRCC) and screen several genes and associated pathways of papillary renal cell carcinoma progression. Methods The papillary renal cell carcinoma RNA sequencing (RNA-seq) data set was downloaded from TCGA (The Cancer Genome Atlas). We identified the differentially expressed mRNAs between cancer and normal tissues and performed annotation of differentially expressed mRNAs to figure out the functions and pathways they were enriched in. Then, we constructed a risk score that relied on the 5-mRNA. The optimal value for the patients’classification risk level was identified by ROC analysis. The relationship between mRNA expression and prognosis of papillary renal cell carcinoma was evaluated by univariate Cox regression model. The 5-mRNA based risk score was validated in both complete set and testing set. Result In general, the 5-mRNA (CCNB2, IGF2BP3, KIF18A, PTTG1, and BUB1) were identified and validated, which can predict papillary renal cell carcinoma patient survival. This study revealed the 5-mRNA expression profile and the potential function of a single mRNA as a prognostic target for papillary renal cell carcinoma. Conclusion In addition, these findings may have significant implications for potential treatments options and prognosis for patients with papillary renal cell carcinoma.
Collapse
Affiliation(s)
- Ze Gao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dong Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Duan
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail: (ZF); (ZL)
| | - Zhaoxu Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School of Nursing, Shandong University, Jinan, Shandong, China
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (ZF); (ZL)
| |
Collapse
|
35
|
Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol Biol Rep 2018; 46:1477-1486. [PMID: 30535551 DOI: 10.1007/s11033-018-4528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers in Western society with a poor prognosis in patients with advanced disease. Targeted therapy is of increasing interest and already, targeted hormone treatment for breast and prostate cancer has improved survival. The aim of this literature review is to summarise the role of hormones in CRC prognosis and treatment. A literature review of all human and animal in vivo and in vitro studies in the last 20 years, which assessed the role of hormones in CRC treatment or prognosis, was carried out. The hormones described in this review have been subdivided according to their secretion origin. Most of the studies are based on in vitro or animal models. The main findings point to adipokines, insulin and the insulin growth factor axis as key players in the link between obesity, type 2 diabetes mellitus and a subset of CRC. Gut-derived hormones, especially uroguanylin and guanylin are being increasingly investigated as therapeutic targets, with promising results. Using hormones as prognostic and therapeutic markers in CRC is still in the preliminary stages for only a fraction of the hormones affecting the GIT. In light of the increasing interest in tailoring treatment strategies, hormones are an important area of focus in the future of CRC management.
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College, London, UK. .,Department of Surgery and Cancer, Imperial College London, Royal Marsden Hospital, Fulham Road & Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | | | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
36
|
Mancarella C, Pasello M, Ventura S, Grilli A, Calzolari L, Toracchio L, Lollini PL, Donati DM, Picci P, Ferrari S, Scotlandi K. Insulin-Like Growth Factor 2 mRNA-Binding Protein 3 is a Novel Post-Transcriptional Regulator of Ewing Sarcoma Malignancy. Clin Cancer Res 2018; 24:3704-3716. [DOI: 10.1158/1078-0432.ccr-17-2602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
|
37
|
Burdelski C, Jakani-Karimi N, Jacobsen F, Möller-Koop C, Minner S, Simon R, Sauter G, Steurer S, Clauditz TS, Wilczak W. IMP3 overexpression occurs in various important cancer types and is linked to aggressive tumor features: A tissue microarray study on 8,877 human cancers and normal tissues. Oncol Rep 2017; 39:3-12. [PMID: 29115542 PMCID: PMC5783598 DOI: 10.3892/or.2017.6072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/24/2017] [Indexed: 12/11/2022] Open
Abstract
IMP3 is an RNA binding protein required for ribosomal RNA processing, which has been suggested to be a prognostic marker in a large variety of human types of cancer. However, available data on the prevalence of IMP3 expression are largely discrepant. To systematically investigate the epidemiology and clinical relevance of IMP3 expression in human cancers we employed a two-step tissue microarrays (TMAs) approach. First, a normal tissue TMA and a multi-tumor TMA were analyzed for immunohistochemically detectable expression of IMP3 in 76 different normal tissue types and 3889 cancer samples from 95 different tumor categories. In a second step, we searched for associations between IMP3 expression and tumor phenotype and patient prognosis in TMAs containing 697 urinary bladder cancers, 1711 colon cancers, 343 esophageal adenocarcinomas, 251 esophageal squamous cell cancers, 673 lung cancers), 275 pancreatic cancers and 230 stomach cancers. In normal tissues, unequivocal IMP3 expression was found in placenta, lymphocytes and some types of glandular epithelial cells. In cancers, at least one case with weak expression could be found in 76 out of 95 (80%) different tumor types and 64 entities (67%) had at least one tumor with strong positivity. IMP3 expression was most frequently found in testicular cancer (including 71% seminomas and 96% non-seminomas), neuroblastoma (88%), and squamous cell cancer of various origins. Significant associations were found between IMP3 and adverse tumor features in esophageal adenocarcinomas and cancers of the urinary bladder, lung, stomach, and pancreas. In summary, IMP3 was frequently expressed in many different tumor types, and was typically associated with aggressive tumor features.
Collapse
Affiliation(s)
- Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg‑Eppendorf, Hamburg, Germany
| | - Nilofar Jakani-Karimi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Huang X, Wei Q, Liu J, Niu H, Xiao G, Liu L. Analysis of IMP3 expression in primary tumor and stromal cells in patients with colorectal cancer. Oncol Lett 2017; 14:7304-7310. [PMID: 29344167 PMCID: PMC5755212 DOI: 10.3892/ol.2017.7161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022] Open
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IMP3) is an oncofetal protein upregulated in tumor cells during carcinogenesis. The aim of the present study was to investigate the expression status of IMP3 in colorectal cancer (CRC) tissues and its clinical significance. Immunostaining was performed in 130 CRC samples, the association of IMP3 expression with clinicopathological characteristics was assessed and 58 patients were selected for survival analysis. To the best of our knowledge, the present study describes for the first time the expression of IMP3 in tumor stromal components of CRC. Stromal expression of IMP3 was detected in 24/130 (18.5%) CRC tissue specimens and was associated with tumor-node-metastasis (TNM) stage (stage III–IV, P=0.003), lymph node metastasis (P=0.006), lympho-vascular invasion (P=0.003), tumor border (P=0.013). Tumoral expression of IMP3 was detected in 94/130 (72.3%) of CRC specimens and was associated with T classification (T3-T4, P=0.027), tumor-node-metastasis (TNM) stage (stage III–IV, P=0.011), lymph node metastasis (P=0.048), tumor budding (>10 buds, P=0.005). Further study indicated that patients with IMP3 expressed in tumor cells and tumor stroma tend to have poorer overall survival rates (P=0.02 and P=0.06, respectively). Moreover, tumoral expression of IMP3 and TNM stage were identified to be independent prognostic factors in CRC. IMP3 was not only expressed in tumor cells but also in stroma cells. Stromal expression of IMP3 was associated with lymph node metastasis and advanced tumor TNM stage. Moreover, the survival analysis indicated that there is a significant association between IMP3 expression in tumor cells and a poorer overall survival rate in patients with CRC. The expression of IMP3 maybe a predicted factor for CRC patient.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongling Niu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Gang Xiao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
39
|
Zhao W, Lu D, Liu L, Cai J, Zhou Y, Yang Y, Zhang Y, Zhang J. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) promotes lung tumorigenesis via attenuating p53 stability. Oncotarget 2017; 8:93672-93687. [PMID: 29212181 PMCID: PMC5706827 DOI: 10.18632/oncotarget.21280] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/13/2017] [Indexed: 01/10/2023] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3/IMP3/KOC), initially identified as an RNA-binding protein, is highly expressed in embryonic tissues and a variety of cancers. Previously, our group reported that IGF2BP3 may serve as a potential diagnostic marker for lung cancer. However, little is known about the function of IGF2BP3 in lung cancer development. Here we demonstrate that IGF2BP3 expression was markedly increased in lung cancer tissues compared to normal tissues at both mRNA and protein levels. Overexpression of IGF2BP3 in lung cancer cells promoted cell proliferation, tumor migration and invasion in vitro and in vivo, whereas knockdown of IGF2BP3 exhibited opposite effects. Notably IGF2BP3 was directly associated with a deubiquitinase Ubiquitin specific peptidase 10 (USP10) and attenuated its function in stabilizing p53 protein. Silencing IGF2BP3 expression in lung cancer cells consistently increased the half-life and protein level of p53 and induced G0/G1 arrest. Thus, our data together demonstrate that IGF2BP3 promotes lung tumorigenesis via attenuating p53 protein stability.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China.,Present address: Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Liang Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Juan Cai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Ying Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| |
Collapse
|
40
|
Zhang J, Ji Q, Jiao C, Ren L, Zhao Y, Chen Y, Shi R, Feng Y. IGF2BP3 as a potential tissue marker for the diagnosis of esophageal high-grade intraepithelial neoplasia. Onco Targets Ther 2017; 10:3861-3866. [PMID: 28814885 PMCID: PMC5546816 DOI: 10.2147/ott.s141179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The clinical significance of insulin-like growth factor-II mRNA-binding protein-3 (IGF2BP3) in esophageal high-grade intraepithelial neoplasia (HGIN) is not clear. This study was designed to characterize the expression of IGF2BP3 in HGIN. Patients and methods IGF2BP3 expression was evaluated by Western blot analyses in 12 cases and by immunohistochemistry (IHC) in 112 cases. The associations between IGF2BP3 expression in HGIN and the clinicopathological parameters were examined. Results Moderate to strong IGF2BP3 expression was present in HGIN samples. Using IHC, it was found that IGF2BP3 was positive in 68 (60.71%) cases. Intense IHC of IGF2BP3 in HGIN was associated with a deeper lesion depth, and the lesion depth was the only predictor of the positive expression of IGF2BP3. Conclusion Our results suggested that IGF2BP3 may be a supplementary tissue marker for preoperative diagnosis of HGIN.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing
| | - Qing Ji
- Department of Emergency, Jingjiang People's Hospital, Jingjiang
| | - Chunhua Jiao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University
| | - Lihua Ren
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ye Zhao
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yanfang Chen
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yadong Feng
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Nishihara R, Glass K, Mima K, Hamada T, Nowak JA, Qian ZR, Kraft P, Giovannucci EL, Fuchs CS, Chan AT, Quackenbush J, Ogino S, Onnela JP. Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics 2017. [PMID: 28623901 PMCID: PMC5474023 DOI: 10.1186/s12859-017-1718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal carcinoma evolves through a multitude of molecular events including somatic mutations, epigenetic alterations, and aberrant protein expression, influenced by host immune reactions. One way to interrogate the complex carcinogenic process and interactions between aberrant events is to model a biomarker correlation network. Such a network analysis integrates multidimensional tumor biomarker data to identify key molecular events and pathways that are central to an underlying biological process. Due to embryological, physiological, and microbial differences, proximal and distal colorectal cancers have distinct sets of molecular pathological signatures. Given these differences, we hypothesized that a biomarker correlation network might vary by tumor location. Results We performed network analyses of 54 biomarkers, including major mutational events, microsatellite instability (MSI), epigenetic features, protein expression status, and immune reactions using data from 1380 colorectal cancer cases: 690 cases with proximal colon cancer and 690 cases with distal colorectal cancer matched by age and sex. Edges were defined by statistically significant correlations between biomarkers using Spearman correlation analyses. We found that the proximal colon cancer network formed a denser network (total number of edges, n = 173) than the distal colorectal cancer network (n = 95) (P < 0.0001 in permutation tests). The value of the average clustering coefficient was 0.50 in the proximal colon cancer network and 0.30 in the distal colorectal cancer network, indicating the greater clustering tendency of the proximal colon cancer network. In particular, MSI was a key hub, highly connected with other biomarkers in proximal colon cancer, but not in distal colorectal cancer. Among patients with non-MSI-high cancer, BRAF mutation status emerged as a distinct marker with higher connectivity in the network of proximal colon cancer, but not in distal colorectal cancer. Conclusion In proximal colon cancer, tumor biomarkers tended to be correlated with each other, and MSI and BRAF mutation functioned as key molecular characteristics during the carcinogenesis. Our findings highlight the importance of considering multiple correlated pathways for therapeutic targets especially in proximal colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1718-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiko Nishihara
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
42
|
Chen L, Xie Y, Li X, Gu L, Gao Y, Tang L, Chen J, Zhang X. Prognostic value of high IMP3 expression in solid tumors: a meta-analysis. Onco Targets Ther 2017; 10:2849-2863. [PMID: 28652767 PMCID: PMC5476767 DOI: 10.2147/ott.s128810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Accumulated studies have investigated the prognostic role of insulin-like growth factor II mRNA-binding protein 3 (IMP3) in various cancers, but inconsistent and controversial results were obtained. Therefore, we performed a systematic review and meta-analysis to investigate the potential value of IMP3 in the prognostic prediction of human solid tumors. MATERIALS AND METHODS A systematic literature search in the electronic databases PubMed, Embase, Web of Science, and Cochrane library (updated to April 2016) was conducted to identify eligible studies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for survival outcomes were calculated and gathered using STATA 12.0 software. RESULTS A total of 53 studies containing 8,937 patients with solid tumors were included in this meta-analysis. High IMP3 expression was significantly associated with worse overall survival (OS) of solid tumors (HR =2.08, 95% CI: 1.80-2.42, P<0.001). Similar results were observed in cancer-specific survival (CSS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS), and metastasis-free survival (MFS). Further subgroup analysis stratified by tumor type showed that elevated IMP3 expression was associated with poor OS in renal cell carcinoma (RCC), lung cancer, oral cancer, urothelial carcinoma, hepatocellular carcinoma (HCC), colorectal cancer, pancreatic cancer, gastric cancer, and intrahepatic cholangiocarcinoma (ICC). CONCLUSION The current evidence suggests that high IMP3 expression is associated with poor prognosis in most solid tumors. IMP3 is a potential valuable prognostic factor and might serve as a promising biomarker to guide clinical decisions in human solid tumors.
Collapse
Affiliation(s)
- Luyao Chen
- Department of Urology, Chinese PLA General Hospital, Beijing.,Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang
| | - Yongpeng Xie
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xintao Li
- Department of Urology, Chinese PLA General Hospital, Beijing
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospital, Beijing
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospital, Beijing
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospital, Beijing
| | - Jianwen Chen
- Department of Urology, Chinese PLA General Hospital, Beijing
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing
| |
Collapse
|
43
|
Wei Q, Zhou H, Zhong L, Shi L, Liu J, Yang Q, Zhao T. IMP3 expression in biopsy specimens as a diagnostic biomarker for colorectal cancer. Hum Pathol 2017; 64:137-144. [PMID: 28412210 DOI: 10.1016/j.humpath.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/04/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
No single biological marker is used in routine diagnosis of colorectal cancer (CRC) in endoscopic biopsies. IMP3 is a good independent prognostic biomarker for CRC. However, the expression of IMP3 in hyperplastic polyp (HP) and adenoma has not yet been studied. Moreover, no studies have established the diagnostic value of IMP3 in biopsies. This study aims to assess IMP3 expression in HP, adenoma, and CRC in resection specimens and to investigate its value in diagnosis of CRC in biopsies. A total of 1328 specimens (633 of polypectomy, 395 surgical resections, 300 biopsies) were retrospectively analyzed. IMP3 expression was observed in 0 of 197 (0%) normal tissues, 0 of 130 (0%) HPs, 14 of 504 (2.8%) adenomas, and 139 of 197 (70.6%) CRCs. IMP3 was found to be overexpressed in CRC compared with adenoma (P<.001). Among the 300 biopsies, 56 were diagnosed as adenoma, and 244 were CRCs. Of the 56 adenoma cases, 22 (39.3%) were confirmed, whereas 34 (60.7%) were diagnosed as CRC in resection specimens. All 244 CRC biopsies were confirmed by resection specimens. IMP3-positive expression was observed in 204 of 300 (68.0%) biopsies, including in 22 of 56 (39.3%) adenomas and 182 of 244 (74.6%) CRCs. All IMP3-positive expressions in the biopsies were finally diagnosed as CRC. Our findings demonstrated that IMP3 is a reliable marker for the diagnosis of CRC in endoscopic biopsies.
Collapse
Affiliation(s)
- Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hui Zhou
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ling Zhong
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Liyin Shi
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qiao Yang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Tong Zhao
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
44
|
Zhou Y, Huang T, Siu HL, Wong CC, Dong Y, Wu F, Zhang B, Wu WKK, Cheng ASL, Yu J, To KF, Kang W. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis. Mol Cancer 2017; 16:77. [PMID: 28399871 PMCID: PMC5387209 DOI: 10.1186/s12943-017-0647-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Background Gastric cancer (GC) is one of the frequent causes of cancer-related death in eastern Asian population. IGF2BP2 lists in the top rank up-regulated genes in GC, but its functional role is unclear. Method The expression of IGF2BP3 in GC cell lines and primary samples was examined by qRT-PCR and Western blot. The biological role of IGF2BP3 was revealed by a series of functional in vitro studies. Its regulation by microRNAs (miRNAs) was predicted by TargetScan and confirmed by luciferase assays and rescue experiments. Results IGF2BP3 ranked the No.1 of the up-regulated genes by expression microarray analysis in GC cell lines. The expression level of IGF2BP3 was observed in GC tissues comparing with non-tumorous gastric epitheliums. The up-regulated IGF2BP3 expression was associated with poor disease specific survival. IGF2BP3 knockdown significantly inhibited cell proliferation and invasion. Apart from copy number gain, IGF2BP3 has been confirmed to be negatively regulated by tumor-suppressive miRNA, namely miR-34a. The expression of miR-34a showed negative correlation with IGF2BP3 mRNA expression in primary GC samples and more importantly, re-overexpression of IGF2BP3 rescued the inhibitory effect of miR-34a. Conclusion We compressively revealed the oncogenic role of IGF2BP3 in gastric tumorigenesis and confirmed its activation is partly due to the silence of miR-34a. Our findings identified useful prognostic biomarker and provided clinical translational potential. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0647-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Sir Y.K. Pao Cancer Center, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Sir Y.K. Pao Cancer Center, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Ho Lam Siu
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chi Chun Wong
- Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Yujuan Dong
- Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Bin Zhang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, People's Republic of China
| | - William K K Wu
- Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred S L Cheng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Sir Y.K. Pao Cancer Center, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Sir Y.K. Pao Cancer Center, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
45
|
THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer. Proc Natl Acad Sci U S A 2017; 114:2307-2312. [PMID: 28193878 DOI: 10.1073/pnas.1614265114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thyroid cancer development is driven by known point mutations or gene fusions found in ∼90% of cases, whereas driver mutations in the remaining tumors are unknown. The insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays an important role in cancer, yet the mechanisms of its activation in cancer cells remain poorly understood. Using whole-transcriptome and whole-genome analyses, we identified a recurrent fusion between the thyroid adenoma-associated (THADA) gene on chromosome 2 and the LOC389473 gene on chromosome 7 located 12 kb upstream of the IGF2BP3 gene. We show that THADA fusion to LOC389473 and other regions in the vicinity does not result in the formation of a chimeric protein but instead leads to strong overexpression of the full-length IGF2BP3 mRNA and protein, increased IGF2 translation and IGF1 receptor (IGF1R) signaling via PI3K and MAPK cascades, and promotion of cell proliferation, invasion, and transformation. THADA fusions and IGF2BP3 overexpression are found in ∼5% of thyroid cancers that lack any other driver mutations. We also find that strong IGF2BP3 overexpression via gene fusion, amplification, or other mechanisms occurs in 5 to 15% of several other cancer types. Finally, we provide in vitro and in vivo evidence that growth of IGF2BP3-driven cells and tumors may be blocked by IGF1R inhibition, raising the possibility that IGF2BP3 overexpression in cancer cells may predict an anti-IGF1R benefit.
Collapse
|
46
|
Mori M, Funakoshi T, Kameyama K, Kawakami Y, Sato E, Nakayama E, Amagai M, Tanese K. Lack of XAGE-1b and NY-ESO-1 in metastatic lymph nodes may predict the potential survival of stage III melanoma patients. J Dermatol 2017; 44:671-680. [PMID: 28105694 DOI: 10.1111/1346-8138.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
The cancer-testis antigens (CTA) are a large family of tumor-associated antigens expressed by a variety of cancer cells and primitive germ cells of the adult testis and placenta. These tumor-restricted expressing patterns suggest that CTA would be ideal targets for tumor-specific immunotherapy. XAGE-1 is a CTA that was originally identified by computer-based screening, and four transcription variants, XAGE-1a, -1b, -1c and -1d, have been characterized to date. Although the presence of XAGE-1 transcripts has been reported in various cancers, the expression of XAGE-1b in melanoma has not been fully characterized. In this study, we performed immunohistochemical staining of XAGE-1b together with NY-ESO-1, a well-known CTA, in 113 melanoma samples obtained from 84 patients and evaluated their expression in tumor cells. The effects of expression on tumor progression and patient prognosis were analyzed. Both XAGE-1b and NY-ESO-1 were expressed at high levels in lymph node metastasis and skin metastasis samples compared with the primary site (P < 0.01 in XAGE-1b and P < 0.05 in NY-ESO-1). In a subgroup analysis of 22 patients with stage III lymph node metastasis, overall survival was significantly higher in the XAGE-1b and NY-ESO-1 double-negative group than in the other groups (P < 0.05). These results suggest that lack of XAGE-1b and NY-ESO-1 expression could have a positive influence on clinical outcome in patients with melanoma.
Collapse
Affiliation(s)
- Mariko Mori
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, Tokyo, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Townsend MK, Aschard H, De Vivo I, Michels KB, Kraft P. Genomics, Telomere Length, Epigenetics, and Metabolomics in the Nurses' Health Studies. Am J Public Health 2016; 106:1663-8. [PMID: 27459442 DOI: 10.2105/ajph.2016.303344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To review the contribution of the Nurses' Health Study (NHS) and NHS II to genomics, epigenetics, and metabolomics research. METHODS We performed a narrative review of the publications of the NHS and NHS II between 1990 and 2016 based on biospecimens, including blood and tumor tissue, collected from participants. RESULTS The NHS has contributed to the discovery of genetic loci influencing more than 45 complex human phenotypes, including cancers, diabetes, cardiovascular disease, reproductive characteristics, and anthropometric traits. The combination of genomewide genotype data with extensive exposure and lifestyle data has enabled the evaluation of gene-environment interactions. Furthermore, data suggest that longer telomere length increases risk of cancers not related to smoking, and that modifiable factors (e.g., diet) may have an impact on telomere length. "Omics" research in the NHS continues to expand, with epigenetics and metabolomics becoming greater areas of focus. CONCLUSIONS The combination of prospective biomarker data and broad exposure information has enabled the NHS to participate in a variety of "omics" research, contributing to understanding of the epidemiology and biology of multiple complex diseases.
Collapse
Affiliation(s)
- Mary K Townsend
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Hugues Aschard
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Immaculata De Vivo
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Karin B Michels
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Peter Kraft
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| |
Collapse
|
48
|
Li M, Zhang L, Ge C, Chen L, Fang T, Li H, Tian H, Liu J, Chen T, Jiang G, Xie H, Cui Y, Yao M, Li J. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma. Oncotarget 2016; 6:25149-60. [PMID: 26327240 PMCID: PMC4694821 DOI: 10.18632/oncotarget.4438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Meng Li
- School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijuan Chen
- School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Fang
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong People's Hospital, Qi Dong, Jiangsu Province, China
| | - Guoping Jiang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Xie
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Guangxi Medical University, Nanning, China
| | - Ming Yao
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Dai L, Tsay JCJ, Li J, Yie TA, Munger JS, Pass H, Rom WN, Zhang Y, Tan EM, Zhang JY. Autoantibodies against tumor-associated antigens in the early detection of lung cancer. Lung Cancer 2016; 99:172-9. [PMID: 27565936 DOI: 10.1016/j.lungcan.2016.07.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Autoantibodies against tumor-associated antigens (TAAs) identified in patients with advanced lung cancer may be detected in subjects with early lung cancer or even predate the diagnosis. The purpose of this study is to address the temporal relationship between lung cancer development and serum autoantibody response. MATERIALS AND METHODS Two cohorts of patients with newly diagnosed lung cancer were included. The first cohort included 90 sera from patients with lung cancer (Stages I-III) and 89 normal control sera. In the second cohort, 93 serial serum samples from 25 patients with CT-scan screen-detected stage I lung cancer were collected before the diagnosis of lung cancer (average 32 months) and 56 controls were matched on age, gender, and smoking. Autoantibody levels were measured by immunoassay. RESULTS Measurement of autoantibodies against seven TAAs (14-3-3ζ, c-Myc, MDM2, NPM1, p16, p53 and cyclin B1) individually could discriminate lung cancer patients from normal individuals in the first cohort and the area under curve (AUC) was 0.863 based on a panel of seven autoantibodies, with sensitivity of 68.9% and specificity of 79.5%. Autoantibodies in serial pre-diagnostic serum samples against the same panel of seven TAAs were detected prior to lung cancer diagnosis with sensitivity of 76.0% and specificity of 73.2% (AUC) (95%CI): 0.885 (0.797-0.973)). Elevated autoantibody levels could be detected greater than four years prior to lung cancer diagnosis. CONCLUSION A panel of seven TAAs may enhance the early detection of lung cancer, consistent with a humoral immune response to TAAs that can be detected months to years prior to the diagnosis.
Collapse
Affiliation(s)
- Liping Dai
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; Henan Academy of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ting-An Yie
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Eng M Tan
- The Scripps Research Institute, San Diego, CA 92037, USA
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; Henan Academy of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
50
|
IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC. Cell Rep 2016; 15:1876-83. [PMID: 27210763 DOI: 10.1016/j.celrep.2016.04.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 02/08/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions.
Collapse
|