1
|
Diab L, Al Kattar S, Oueini N, Hawi J, Chrabieh A, Dosh L, Jurjus R, Leone A, Jurjus A. Syndecan-1: a key player in health and disease. Immunogenetics 2024; 77:9. [PMID: 39688651 DOI: 10.1007/s00251-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target. However, despite its broad involvement in several disease processes, the underlying mechanism contributing to its diverse functions, pathogenesis, and therapeutic uses remains underexplored. Therefore, this review examines the role of SDC-1 in health and disease, focusing on liver pathologies, inflammatory diseases, infectious diseases, and cancer, and sheds light on SDC-1-based therapeutic approaches. Moreover, it delves into the mechanisms through which SDC-1 contributes to these diseases, emphasizing cell-type specific mechanisms. By comprehensively summarizing the significance of SDC-1, its association with several diseases, and its underlying mechanisms of action, the findings of this review could inform future research directions toward the development of targeted therapies and early diagnosis for a multitude of disease entities.
Collapse
Affiliation(s)
- Lara Diab
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sahar Al Kattar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Naim Oueini
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University, Kaslik, Jounieh, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Antoine Chrabieh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Cabarca S, Ili C, Vanegas C, Gil L, Vertel-Morrinson M, Brebi P. Drug resistance biomarkers in ovarian cancer: a bibliometric study from 2017 to 2022. Front Oncol 2024; 14:1450675. [PMID: 39588300 PMCID: PMC11586235 DOI: 10.3389/fonc.2024.1450675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
Background Late diagnosis and patient relapse, mainly due to chemoresistance, are the key reasons for the high mortality rate of ovarian cancer patients. Hence, the search for biomarkers of high predictive value within the phenomenon of chemoresistance is vital. This study performs a bibliometric analysis of the scientific literature concerning biomarkers of drug resistance in ovarian cancer, considering the period from 2017 to 2022. Methods The terms "drug resistance biomarker" and "ovarian cancer" were linked by the Boolean operator "AND". The search was done in PubMed, selecting documents published over the last 5 years (2017-2022), which were analyzed with the open-source tool Bibliometrix developed in the R package. The language of the publications was restricted to English. Several types of papers such as case reports, clinical trials, comparative studies, and original articles were considered. Results A total of 335 scientific articles were analyzed. The United States and China were the leading contributors and established the largest number of scientific collaborations. The Huazhong University of Science and Technology and the University of Texas MD Anderson Cancer Center were the most influential institutions. The Journal of Ovarian Research, International Journal of Molecular Science, and Scientific Reports are among the most relevant journals. The study identified high-profile, relevant thematic niches and important descriptors that indicate topics of interest, including studies on women, cell lines, solid tumors, and gene expression regulation. As well as studies involving middle-aged and adult participants, and those focusing on prognosis evaluation. Descriptors such as "drug resistance," "neoplasm," "genetics," "biomarker," "gene expression profile," and "drug therapy" would indicate new research trends. In addition, we propose that BCL-2, CHRF, SNAIL, miR-363, iASPP, ALDH1, Fzd7, and EZH2 are potential biomarkers of drug resistance. Conclusions This paper contributes to the global analysis of the scientific investigation related to drug resistance biomarkers in ovarian cancer to facilitate further studies and collaborative networks, which may lead to future improvements in therapy for this lethal disease.
Collapse
Affiliation(s)
- Sindy Cabarca
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
| | - Carmen Ili
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carlos Vanegas
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
| | - Laura Gil
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
- Semillero de Investigación (SIMICRO), Departamento de Biología, Facultad de Ciencias Naturales, exactas y de la educación, Universidad del Cauca, Popayán, Colombia
| | - Melba Vertel-Morrinson
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
- Doctorado en Ciencia y Tecnología de Alimentos – Universidad de Córdoba, Montería, Colombia
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
5
|
Zhang Y, Tang L, Liu H, Cheng Y. The Multiple Functions of HB-EGF in Female Reproduction and Related Cancer: Molecular Mechanisms and Targeting Strategies. Reprod Sci 2024; 31:2588-2603. [PMID: 38424408 DOI: 10.1007/s43032-024-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Heparin-binding growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) ligand family which has a crucial role in women's health. However, there is a lack of comprehensive review to summarize the significance of HB-EGF. Therefore, this work first described the expression patterns of HB-EGF in the endometrium and ovary of different species and gestational time. Then, the focus was on exploring how it promotes the successful implantation and regulates the process of decidualization and the function of ovarian granulosa cells as an intermediate molecule. Otherwise, we also focused on the clinical and prognostic significance of HB-EGF in female-related cancers (including ovarian cancer, cervical cancer, and endometrial cancer) and breast cancer. Lastly, the article also summarizes the current drugs targeting HB-EGF in the treatment of ovarian cancer and breast cancer. Overall, these studies found that the expression of HB-EGF in the endometrium is spatiotemporal and species-specific. And it mediates the dialogue between the blastocyst and endometrium, promoting synchronous development of the blastocyst and endometrium as an intermediate molecule. HB-EGF may serve as a potentially valuable prognostic clinical indicator in tumors. And the specific inhibitor of HB-EGF (CRM197) has a certain anti-tumor ability, which can exert synergistic anti-tumor effects with conventional chemotherapy drugs. However, it also suggests that more research is needed in the future to elucidate its specific mechanisms and to accommodate clinical studies with a larger sample size to clarify its clinical value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
6
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Ray U, Thirusangu P, Shridhar V. One more step toward treatment of PARP inhibitor-resistant ovarian cancers. Oncotarget 2023; 14:1034-1035. [PMID: 38147070 PMCID: PMC10750833 DOI: 10.18632/oncotarget.28545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
| | | | - Viji Shridhar
- Correspondence to:Viji Shridhar, Department of Experimental Pathology and Medicine, Mayo Clinic School of Medicine and Science, Rochester, MN 55905, USA email
| |
Collapse
|
8
|
Ray U, Thirusangu P, Jin L, Xiao Y, Pathoulas CL, Staub J, Erskine CL, Dredge K, Hammond E, Block MS, Kaufmann SH, Bakkum-Gamez JN, Shridhar V. PG545 sensitizes ovarian cancer cells to PARP inhibitors through modulation of RAD51-DEK interaction. Oncogene 2023; 42:2725-2736. [PMID: 37550562 PMCID: PMC10491494 DOI: 10.1038/s41388-023-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
PG545 (Pixatimod) is a highly sulfated small molecule known for its ability to inhibit heparanase and disrupt signaling mediated by heparan-binding-growth factors (HB-GF). Previous studies indicated that PG545 inhibits growth factor-mediated signaling in ovarian cancer (OC) to enhance response to chemotherapy. Here we investigated the previously unidentified mechanisms by which PG545 induces DNA damage in OC cells and found that PG545 induces DNA single- and double-strand breaks, reduces RAD51 expression in an autophagy-dependent manner and inhibits homologous recombination repair (HRR). These changes accompanied the ability of PG545 to inhibit endocytosis of the heparan-sulfate proteoglycan interacting DNA repair protein, DEK, leading to DEK sequestration in the tumor microenvironment (TME) and loss of nuclear DEK needed for HRR. As a result, PG545 synergized with poly (ADP-ribose) polymerase inhibitors (PARPis) in OC cell lines in vitro and in 55% of primary cultures of patient-derived ascites samples ex vivo. Moreover, PG545/PARPi synergy was observed in OC cells exhibiting either de novo or acquired resistance to PARPi monotherapy. PG545 in combination with rucaparib also generated increased DNA damage, increased antitumor effects and increased survival of mice bearing HRR proficient OVCAR5 xenografts compared to monotherapy treatment in vivo. Synergistic antitumor activity of the PG545/rucaparib combination was likewise observed in an immunocompetent syngeneic ID8F3 OC model. Collectively, these results suggest that targeting DEK-HSPG interactions in the TME through the use of PG545 may be a novel method of inhibiting DNA repair and sensitizing cells to PARPis.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | - Julie Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Keith Dredge
- Zucero Therapeutics, South Melbourne, VIC, Australia
| | | | | | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Lemech C, Dredge K, Bampton D, Hammond E, Clouston A, Waterhouse NJ, Stanley AC, Leveque-El Mouttie L, Chojnowski GM, Haydon A, Pavlakis N, Burge M, Brown MP, Goldstein D. Phase Ib open-label, multicenter study of pixatimod, an activator of TLR9, in combination with nivolumab in subjects with microsatellite-stable metastatic colorectal cancer, metastatic pancreatic ductal adenocarcinoma and other solid tumors. J Immunother Cancer 2023; 11:jitc-2022-006136. [PMID: 36634920 PMCID: PMC9843174 DOI: 10.1136/jitc-2022-006136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Pixatimod is a unique activator of the Toll-like Receptor 9 pathway. This phase I trial evaluated safety, efficacy and pharmacodynamics of pixatimod and PD-1 inhibitor nivolumab in immunologically cold cancers. METHODS 3+3 dose escalation with microsatellite stable metastatic colorectal cancer (MSS mCRC) and metastatic pancreatic ductal adenocarcinoma (mPDAC) expansion cohorts. Participants received pixatimod once weekly as a 1-hour intravenous infusion plus nivolumab every 2 weeks. Objectives included assessment of safety, antitumor activity, pharmacodynamics, and pharmacokinetic profile. RESULTS Fifty-eight participants started treatment. The maximum tolerated dose of pixatimod was 25 mg in combination with 240 mg nivolumab, which was used in the expansion phases of the study. Twenty-one grade 3-5 treatment-related adverse events were reported in 12 participants (21%); one participant receiving 50 mg pixatimod/nivolumab had a treatment-related grade 5 AE. The grade 3/4 rate in the MSS mCRC cohort (n=33) was 12%. There were no responders in the mPDAC cohort (n=18). In the MSS mCRC cohort, 25 participants were evaluable (initial postbaseline assessment scans >6 weeks); of these, three participants had confirmed partial responses (PR) and eight had stable disease (SD) for at least 9 weeks. Clinical benefit (PR+SD) was associated with lower Pan-Immune-Inflammation Value and plasma IL-6 but increased IP-10 and IP-10/IL-8 ratio. In an MSS mCRC participant with PR as best response, increased infiltration of T cells, dendritic cells, and to a lesser extent NK cells, were evident 5 weeks post-treatment. CONCLUSIONS Pixatimod is well tolerated at 25 mg in combination with nivolumab. The efficacy signal and pharmacodynamic changes in MSS mCRC warrants further investigation. TRIAL REGISTRATION NUMBER NCT05061017.
Collapse
Affiliation(s)
- Charlotte Lemech
- Scientia Clinical Research Ltd, Sydney, New South Wales, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Darryn Bampton
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Edward Hammond
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Andrew Clouston
- Department of Pathology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Nigel J Waterhouse
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amanda C Stanley
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Grace M Chojnowski
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrew Haydon
- Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nick Pavlakis
- Medical Oncology, Genesis Care, North Shore Health Hub, St Leonards, New South Wales, Australia,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Burge
- Medical Oncology, The Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Michael P Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - David Goldstein
- Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
12
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Cai C, Wang X, Fu Q, Chen A. The VEGF expression associated with prognosis in patients with intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. World J Surg Oncol 2022; 20:40. [PMID: 35189920 PMCID: PMC8859901 DOI: 10.1186/s12957-022-02511-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023] Open
Abstract
Abstract
Objective
To systematically evaluate the relationship between vascular endothelial growth factor (VEGF) and prognosis of intrahepatic cholangiocarcinoma by meta-analysis.
Methods
We systematically searched relevant studies in the databases of PubMed, Embase, Cochrane Library, CNKI, Wangfang, and Web of Science, with search dates limited to September 1, 2021. We extracted relevant data, including prognosis and clinicopathological features of patients with different expressions of VEGF in intrahepatic cholangiocarcinoma. The combined hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI) were calculated to evaluate the link strength between VEGF and prognosis of cholangiocarcinoma patients.
Results
A total of 7 eligible studies with 495 patients were included in this meta-analysis. The results showed that the high expression of VEGF was significantly related to poor overall survival (OS) (HR = 1.93, 95% CI 1.52–2.46, P < 0.05) in patients with intrahepatic cholangiocarcinoma. Moreover, high expression of VEGF in tumor tissues associated with lymph node metastasis (LNM) (OR = 6.79, 95% CI 3.93–11.73, P < 0.05) and advanced TNM stage (OR = 4.35, 95% CI 2.34–8.07, P < 0.05) in intrahepatic cholangiocarcinoma. Sensitivity analysis shows that the meta-analysis results are stable and reliable.
Conclusion
The expression of VEGF is related to the OS of patients with intrahepatic cholangiocarcinoma, and the OS of patients with high expression of VEGF is shorter. VEGF may be a novel predictor of intrahepatic cholangiocarcinoma patients.
Trial registration
PROSPERO (CRD42022297443).
Collapse
|
14
|
Chilimoniuk Z, Rocka A, Stefaniak M, Tomczyk Ż, Jasielska F, Madras D, Filip A. Molecular methods for increasing the effectiveness of ovarian cancer treatment: a systematic review. Future Oncol 2022; 18:1627-1650. [PMID: 35129396 DOI: 10.2217/fon-2021-0565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The aim of the current study is to analyze and summarize the latest research on improving therapy in ovarian cancer. Materials & methods: Data analysis was based on a review of publications from 2011 to 2021 in the PubMed database with use of the search terms including 'EGFR ovarian cancer', 'folate receptor inhibitors ovarian cancer', 'VEGF ovarian cancer', 'PDGF ovarian cancer' and 'CTLA-4 ovarian cancer'. Results: 6643 articles were found; 238 clinical trials and randomized control trials were analyzed; 122 studies were rejected due to inconsistency with the topic of the work. Conclusion: Extensive research on the treatment of ovarian cancer increases the chance of developing the most effective therapy suited to the individual needs of the patient.
Collapse
Affiliation(s)
- Zuzanna Chilimoniuk
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Agata Rocka
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Martyna Stefaniak
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Żaklina Tomczyk
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Faustyna Jasielska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Dominika Madras
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| |
Collapse
|
15
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
16
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:97. [PMID: 33722297 PMCID: PMC7962349 DOI: 10.1186/s13046-021-01893-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Cancer occurs in a complex tissue environment, and its progression depends largely on the tumour microenvironment (TME). The TME has a highly complex and comprehensive system accompanied by dynamic changes and special biological characteristics, such as hypoxia, nutrient deficiency, inflammation, immunosuppression and cytokine production. In addition, a large number of cancer-associated biomolecules and signalling pathways are involved in the above bioprocesses. This paper reviews our understanding of the TME and describes its biological and molecular characterization in different stages of cancer development. Furthermore, we discuss in detail the intervention strategies for the critical points of the TME, including chemotherapy, targeted therapy, immunotherapy, natural products from traditional Chinese medicine, combined drug therapy, etc., providing a scientific basis for cancer therapy from the perspective of key molecular targets in the TME.
Collapse
Affiliation(s)
- Haoze Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Molecular Targeting of VEGF with a Suramin Fragment-DOCA Conjugate by Mimicking the Action of Low Molecular Weight Heparins. Biomolecules 2020; 11:biom11010046. [PMID: 33396366 PMCID: PMC7823656 DOI: 10.3390/biom11010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular targeting of growth factors has shown great therapeutic potential in pharmaceutical research due to their roles in pathological conditions. In the present study, we developed a novel suramin fragment and deoxycholic acid conjugate (SFD) that exhibited the potential to bind to the heparin-binding site (HBD) of vascular endothelial growth factor (VEGF) and to inhibit its pathogenic action for the first time. Notably, SFD was optimally designed for binding to the HBD of VEGF using the naphthalenetrisulfonate group, allowing to observe its excellent binding efficacy in a surface plasmon resonance (SPR) study, showing remarkable binding affinity (KD = 3.8 nM) as a small molecule inhibitor. In the tubular formation assay, it was observed that SFD could bind to HBD and exhibit antiangiogenic efficacy by inhibiting VEGF, such as heparins. The cellular treatment of SFD resulted in VEGF-inhibitory effects in human umbilical vein endothelial cells (HUVECs). Therefore, we propose that SFD can be employed as a novel drug candidate to inhibit the pathophysiological action of VEGF in diseases. Consequently, SFD, which has a molecular structure optimized for binding to HBD, is put forward as a new chemical VEGF inhibitor.
Collapse
|
19
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
20
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
21
|
Sulfated glycolipid PG545 induces endoplasmic reticulum stress and augments autophagic flux by enhancing anticancer chemotherapy efficacy in endometrial cancer. Biochem Pharmacol 2020; 178:114003. [PMID: 32360360 DOI: 10.1016/j.bcp.2020.114003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
The sulfated glycolipid PG545 shows promising antitumor activity in various cancers. This study was conducted to explore the effects and the mechanism of PG545 action in endometrial cancer (EC). PG545 exhibited strong synergy as assessed by the Chou-Talalay-Method in vitro when combined with cisplatin, or paclitaxel in both type I (Hec1B) and type II (ARK2) EC cell lines. While PG545 showed antitumor activity as monotherapy, a combination of PG545 with paclitaxel and cisplatin was highly effective in reducing the tumor burden and significantly prolonged survival of both Hec1B and ARK2 xenograft bearing mice. Mechanistically, PG545 elicits ER stress as an early response with resultant induction of autophagy. Our data demonstrated an increase in pERK, Bip/Grp78, IRE1α, Calnexin and CHOP/GADD153 within 6-24 hrs of PG545 treatment in EC cells. In parallel, PG545 also blocked FGF2 and HB-EGF mediated signaling in EC cells. Moreover, melatonin-mediated ER stress inhibition reduced PG545-mediated autophagy and PG545 in combination with cisplatin further heightened this stress response. Collectively these data indicate that PG545 exhibits strong synergistic effects with chemotherapeutics in vitro and showed promising antitumor activity in vivo. Our preclinical data indicates that in future studies PG545 can be a useful adjunct to chemotherapy in endometrial cancer.
Collapse
|
22
|
Koliesnik IO, Kuipers HF, Medina CO, Zihsler S, Liu D, Van Belleghem JD, Bollyky PL. The Heparan Sulfate Mimetic PG545 Modulates T Cell Responses and Prevents Delayed-Type Hypersensitivity. Front Immunol 2020; 11:132. [PMID: 32117279 PMCID: PMC7015948 DOI: 10.3389/fimmu.2020.00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
The heparan sulfate mimetic PG545 (pixatimod) is under evaluation as an inhibitor of angiogenesis and metastasis including in human clinical trials. We have examined the effects of PG545 on lymphocyte phenotypes and function. We report that PG545 treatment suppresses effector T cell activation and polarizes T cells away from Th17 and Th1 and toward Foxp3+ regulatory T cell subsets in vitro and in vivo. Mechanistically, PG545 inhibits Erk1/2 signaling, a pathway known to affect both T cell activation and subset polarization. Interestingly, these effects are also observed in heparanase-deficient T cells, indicating that PG545 has effects that are independent of its role in heparanase inhibition. Consistent with these findings, administration of PG545 in a Th1/Th17-dependent mouse model of a delayed-type hypersensitivity led to reduced footpad inflammation, reduced Th17 memory cells, and an increase in FoxP3+ Treg proliferation. PG545 also promoted Foxp3+ Treg induction by human T cells. Finally, we examined the effects of other heparan sulfate mimetics PI-88 and PG562 on lymphocyte polarization and found that these likewise induced Foxp3+ Treg in vitro but did not reduce Th17 numbers or improve delayed-type hypersensitivity in this model. Together, these data indicate that PG545 is a potent inhibitor of Th1/Th17 effector functions and inducer of FoxP3+ Treg. These findings may inform the adaptation of PG545 for clinical applications including in inflammatory pathologies associated with type IV hypersensitivity responses.
Collapse
Affiliation(s)
- Ievgen O Koliesnik
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Carlos O Medina
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Svenja Zihsler
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Jonas D Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
23
|
Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:365-403. [PMID: 32274718 DOI: 10.1007/978-3-030-34521-1_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Anqi Xiong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:539-565. [PMID: 32274726 DOI: 10.1007/978-3-030-34521-1_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pixatimod is an inhibitor of heparanase, a protein which promotes cancer via its regulation of the extracellular environment by enzymatic cleavage of heparan sulfate (HS) and non-enzymatic signaling. Through its inhibition of heparanase and other HS-binding signaling proteins, pixatimod blocks a number of pro-cancerous processes including cell proliferation, invasion, metastasis, angiogenesis and epithelial-mesenchymal transition. Several laboratories have found that these activities have translated into potent activity using a range of different mouse cancer models, including approximately 30 xenograft and 20 syngeneic models. Analyses of biological samples from these studies have confirmed the heparanase targeting of this agent in vivo and the broad spectrum of anti-cancer effects that heparanase blockade achieves. Pixatimod has been tested in combination with a number of approved anti-cancer drugs demonstrating its clinical potential, including with gemcitabine, paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody. Clinical testing has shown pixatimod to be well tolerated as a monotherapy, and it is currently being investigated in combination with the anti-PD-1 drug nivolumab in a pancreatic cancer phase I trial.
Collapse
|
25
|
Barash U, Lapidot M, Zohar Y, Loomis C, Moreira A, Feld S, Goparaju C, Yang H, Hammond E, Zhang G, Li JP, Ilan N, Nagler A, Pass HI, Vlodavsky I. Involvement of Heparanase in the Pathogenesis of Mesothelioma: Basic Aspects and Clinical Applications. J Natl Cancer Inst 2019; 110:1102-1114. [PMID: 29579286 DOI: 10.1093/jnci/djy032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Background Mammalian cells express a single functional heparanase, an endoglycosidase that cleaves heparan sulfate and thereby promotes tumor metastasis, angiogenesis, and inflammation. Malignant mesothelioma is highly aggressive and has a poor prognosis because of the lack of markers for early diagnosis and resistance to conventional therapies. The purpose of this study was to elucidate the mode of action and biological significance of heparanase in mesothelioma and test the efficacy of heparanase inhibitors in the treatment of this malignancy. Methods The involvement of heparanase in mesothelioma was investigated by applying mouse models of mesothelioma and testing the effect of heparanase gene silencing (n = 18 mice per experiment; two different models) and heparanase inhibitors (ie, PG545, defibrotide; n = 18 per experiment; six different models). Synchronous pleural effusion and plasma samples from patients with mesothelioma (n = 35), other malignancies (12 non-small cell lung cancer, two small cell lung carcinoma, four breast cancer, three gastrointestinal cancers, two lymphomas), and benign effusions (five patients) were collected and analyzed for heparanase content (enzyme-linked immunosorbent assay). Eighty-one mesothelioma biopsies were analyzed by H-Score for the prognostic impact of heparanase using immunohistochemistry. All statistical tests were two-sided. Results Mesothelioma tumor growth, measured by bioluminescence or tumor weight at termination, was markedly attenuated by heparanase gene silencing (P = .02) and by heparanase inhibitors (PG545 and defibrotide; P < .001 and P = .01, respectively). A marked increase in survival of the mesothelioma-bearing mice (P < .001) was recorded. Heparanase inhibitors were more potent in vivo than conventional chemotherapy. Clinically, heparanase levels in patients' pleural effusions could distinguish between malignant and benign effusions, and a heparanase H-score above 90 was associated with reduced patient survival (hazard ratio = 1.89, 95% confidence interval = 1.09 to 3.27, P = .03). Conclusions Our results imply that heparanase is clinically relevant in mesothelioma development. Given these preclinical and clinical data, heparanase appears to be an important mediator of mesothelioma, and heparanase inhibitors are worthy of investigation as a new therapeutic modality in mesothelioma clinical trials.
Collapse
Affiliation(s)
- Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Moshe Lapidot
- Departments of General Thoracic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Yaniv Zohar
- Departments of Pathology Rambam Health Care Campus, Haifa, Israel
| | - Cynthia Loomis
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY
| | - Andre Moreira
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY
| | - Sari Feld
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY
| | - Haining Yang
- University of Hawaii Cancer Center, Honolulu, HI
| | | | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
26
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
27
|
Mayfosh AJ, Baschuk N, Hulett MD. Leukocyte Heparanase: A Double-Edged Sword in Tumor Progression. Front Oncol 2019; 9:331. [PMID: 31110966 PMCID: PMC6501466 DOI: 10.3389/fonc.2019.00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate, a complex glycosaminoglycan found ubiquitously throughout mammalian cells and tissues. Heparanase has been strongly associated with important pathological processes including inflammatory disease and tumor metastasis, through its ability to promote various cellular functions such as cell migration, invasion, adhesion, and cytokine release. A number of cell types express heparanase including leukocytes, cells of the vasculature as well as tumor cells. However, the relative contribution of heparanase from these different cell sources to these processes is poorly defined. It is now well-established that the immune system plays a critical role in shaping tumor progression. Intriguingly, leukocyte-derived heparanase has been shown to either assist or impede tumor progression, depending on the setting. This review covers our current knowledge of heparanase in immune regulation of tumor progression, as well as the potential applications and implications of exploiting or inhibiting heparanase in cancer therapy.
Collapse
Affiliation(s)
- Alyce J Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Nikola Baschuk
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
29
|
Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events. Cells 2018; 7:cells7120236. [PMID: 30487472 PMCID: PMC6316874 DOI: 10.3390/cells7120236] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Heparanase (HPSE) has been defined as a multitasking protein that exhibits a peculiar enzymatic activity towards HS chains but which simultaneously performs other non-enzymatic functions. Through its enzymatic activity, HPSE catalyzes the cutting of the side chains of heparan sulfate (HS) proteoglycans, thus contributing to the remodeling of the extracellular matrix and of the basal membranes. Furthermore, thanks to this activity, HPSE also promotes the release and diffusion of various HS-linked molecules like growth factors, cytokines and enzymes. In addition to being an enzyme, HPSE has been shown to possess the ability to trigger different signaling pathways by interacting with transmembrane proteins. In normal tissue and in physiological conditions, HPSE exhibits only low levels of expression restricted only to keratinocytes, trophoblast, platelets and mast cells and leukocytes. On the contrary, in pathological conditions, such as in tumor progression and metastasis, inflammation and fibrosis, it is overexpressed. With this brief review, we intend to provide an update on the current knowledge about the different role of HPSE protein exerted by its enzymatic and non-enzymatic activity.
Collapse
|
30
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
31
|
Hammond E, Haynes NM, Cullinane C, Brennan TV, Bampton D, Handley P, Karoli T, Lanksheer F, Lin L, Yang Y, Dredge K. Immunomodulatory activities of pixatimod: emerging nonclinical and clinical data, and its potential utility in combination with PD-1 inhibitors. J Immunother Cancer 2018; 6:54. [PMID: 29898788 PMCID: PMC6000956 DOI: 10.1186/s40425-018-0363-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pixatimod (PG545) is a novel clinical-stage immunomodulatory agent capable of inhibiting the infiltration of tumor-associated macrophages (TAMs) yet also stimulate dendritic cells (DCs), leading to activation of natural killer (NK) cells. Preclinically, pixatimod inhibits heparanase (HPSE) which may be associated with its inhibitory effect on TAMs whereas its immunostimulatory activity on DCs is through the MyD88-dependent TLR9 pathway. Pixatimod recently completed a Phase Ia monotherapy trial in advanced cancer patients. METHODS To characterize the safety of pixatimod administered by intravenous (IV) infusion, a one month toxicology study was conducted to support a Phase Ia monotherapy clinical trial. The relative exposure (AUC) of pixatimod across relevant species was determined and the influence of route of administration on the immunomodulatory activity was also evaluated. Finally, the potential utility of pixatimod in combination with PD-1 inhibition was also investigated using the syngeneic 4T1.2 breast cancer model. RESULTS The nonclinical safety profile revealed that the main toxicities associated with pixatimod are elevated cholesterol, triglycerides, APTT, decreased platelets and other changes symptomatic of modulating the immune system such as pyrexia, changes in WBC subsets, inflammatory changes in liver, spleen and kidney. Though adverse events such as fever, elevated cholesterol and triglycerides were reported in the Phase Ia trial, none were considered dose limiting toxicities and the compound was well tolerated up to 100 mg via IV infusion. Exposure (AUC) up to 100 mg was considered proportional with some accumulation upon repeated dosing, a phenomenon also noted in the toxicology study. The immunomodulatory activity of pixatimod was independent of the route of administration and it enhanced the effectiveness of PD-1 inhibition in a poorly immunogenic tumor model. CONCLUSIONS Pixatimod modulates innate immune cells but also enhances T cell infiltration in combination with anti-PD-1 therapy. The safety and PK profile of the compound supports its ongoing development in a Phase Ib study for advanced cancer/pancreatic adenocarcinoma with the checkpoint inhibitor nivolumab (Opdivo®). TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02042781 . First posted: 23 January, 2014 - Retrospectively registered.
Collapse
Affiliation(s)
| | - Nicole M Haynes
- 0000000403978434grid.1055.1Division of Cancer ResearchPeter MacCallum Cancer Centre 3000 Melbourne VIC Australia
- 0000 0001 2179 088Xgrid.1008.9Sir Peter MacCallum Department of OncologyUniversity of Melbourne 3052 Parkville VIC Australia
| | - Carleen Cullinane
- 0000000403978434grid.1055.1Division of Cancer ResearchPeter MacCallum Cancer Centre 3000 Melbourne VIC Australia
- 0000 0001 2179 088Xgrid.1008.9Sir Peter MacCallum Department of OncologyUniversity of Melbourne 3052 Parkville VIC Australia
| | - Todd V Brennan
- 0000000100241216grid.189509.cDepartment of SurgeryDuke University Medical Center 27710 Durham North Carolina USA
| | | | | | - Tomislav Karoli
- Zucero Therapeutics 4076 Brisbane QLD Australia
- Present address: Novasep Kalkstrasse 218 51377 Leverkusen Germany
| | - Fleur Lanksheer
- Progen Pharmaceuticals 4076 Brisbane QLD Australia
- 0000 0000 8831 109Xgrid.266842.cPresent address: School of Humanities and Social ScienceThe University of Newcastle Newcastle NSW Australia
| | - Liwen Lin
- 0000000100241216grid.189509.cDepartment of SurgeryDuke University Medical Center 27710 Durham North Carolina USA
| | - Yiping Yang
- 0000000100241216grid.189509.cDepartments of Medicine and ImmunologyDuke University Medical Center 27710 Durham North Carolina USA
| | | |
Collapse
|
32
|
Szarvas T, Sevcenco S, Módos O, Keresztes D, Nyirády P, Kubik A, Romics M, Kovalszky I, Reis H, Hadaschik B, Shariat SF, Kramer G. Circulating syndecan-1 is associated with chemotherapy-resistance in castration-resistant prostate cancer. Urol Oncol 2018; 36:312.e9-312.e15. [DOI: 10.1016/j.urolonc.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/29/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
|
33
|
Patient derived xenografts (PDX) predict an effective heparanase-based therapy for lung cancer. Oncotarget 2018; 9:19294-19306. [PMID: 29721203 PMCID: PMC5922397 DOI: 10.18632/oncotarget.25022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/17/2018] [Indexed: 01/04/2023] Open
Abstract
Heparanase, the sole heparan sulfate (HS) degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby facilitating cell invasion and regulating the bioavailability of heparin-binding proteins. HS mimicking compounds that inhibit heparanase enzymatic activity were examined in numerous preclinical cancer models. While these studies utilized established tumor cell lines, the current study utilized, for the first time, patient-derived xenografts (PDX) which better resemble the behavior and drug responsiveness of a given cancer patient. We have previously shown that heparanase levels are substantially elevated in lung cancer, correlating with reduced patients survival. Applying patient-derived lung cancer xenografts and a potent inhibitor of heparanase enzymatic activity (PG545) we investigated the significance of heparanase in the pathogenesis of lung cancer. PG545 was highly effective in lung cancer PDX, inhibiting tumor growth in >85% of the cases. Importantly, we show that PG545 was highly effective in PDX that did not respond to conventional chemotherapy (cisplatin) and vice versa. Moreover, we show that spontaneous metastasis to lymph nodes is markedly inhibited by PG545 but not by cisplatin. These results reflect the variability among patients and strongly imply that PG545 can be applied for lung cancer therapy in a personalized manner where conventional chemotherapy fails, thus highlighting the potential benefits of developing anti-heparanase treatment modalities for oncology.
Collapse
|
34
|
Prophylactic Antiheparanase Activity by PG545 Is Antiviral In Vitro and Protects against Ross River Virus Disease in Mice. Antimicrob Agents Chemother 2018; 62:AAC.01959-17. [PMID: 29437628 DOI: 10.1128/aac.01959-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.
Collapse
|
35
|
Dredge K, Brennan TV, Hammond E, Lickliter JD, Lin L, Bampton D, Handley P, Lankesheer F, Morrish G, Yang Y, Brown MP, Millward M. A Phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br J Cancer 2018. [PMID: 29531325 PMCID: PMC5931096 DOI: 10.1038/s41416-018-0006-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background PG545 (pixatimod) is a novel immunomodulatory agent, which has been demonstrated to stimulate innate immune responses against tumours in preclinical cancer models. Methods This Phase I study investigated the safety, tolerability, pharmacokinetics, pharmacodynamics and preliminary efficacy of PG545 monotherapy. Escalating doses of PG545 were administered to patients with advanced solid malignancies as a weekly 1-h intravenous infusion. Results Twenty-three subjects were enrolled across four cohorts (25, 50, 100 and 150 mg). Three dose-limiting toxicities (DLTs)—hypertension (2), epistaxis (1)—occurred in the 150 mg cohort. No DLTs were noted in the 100 mg cohort, which was identified as the maximum-tolerated dose. No objective responses were reported. Best response was stable disease up to 24 weeks, with the disease control rate in evaluable subjects of 38%. Exposure was proportional up to 100 mg and mean half-life was 141 h. The pharmacodynamic data revealed increases in innate immune cell activation, plasma IFNγ, TNFα, IP-10 and MCP-1. Conclusion PG545 demonstrated a tolerable safety profile, proportional PK, evidence of immune cell stimulation and disease control in some subjects. Taken together, these data support the proposed mechanism of action, which represents a promising approach for use in combination with existing therapies.
Collapse
Affiliation(s)
| | - Todd V Brennan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Liwen Lin
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Fleur Lankesheer
- Progen Pharmaceuticals Ltd, Brisbane, QLD, Australia.,School of Humanities and Social Science, The University of Newcastle, Newcastle, NSW, Australia
| | | | - Yiping Yang
- Departments of Medicine and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael P Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital; Centre for Cancer Biology, SA Pathology and University of South Australia; Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael Millward
- Linear Clinical Research; Sir Charles Gairdner Hospital, University of Western Australia, WA, Perth, Australia
| |
Collapse
|
36
|
Cassinelli G, Favini E, Dal Bo L, Tortoreto M, De Maglie M, Dagrada G, Pilotti S, Zunino F, Zaffaroni N, Lanzi C. Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget 2018; 7:47848-47863. [PMID: 27374103 PMCID: PMC5216983 DOI: 10.18632/oncotarget.10292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heparan sulfate (HS) mimic/heparanase inhibitor roneparstat (SST0001) shows antitumor activity in preclinical sarcoma models. We hypothesized that this 100% N-acetylated and glycol-split heparin could interfere with the functions of several receptor tyrosine kinases (RTK) coexpressed in sarcomas and activated by heparin-binding growth factors. Using a phospho-proteomic approach, we investigated the drug effects on RTK activation in human cell lines representative of different sarcoma subtypes. Inhibition of FGF, IGF, ERBB and PDGF receptors by the drug was biochemically and functionally validated. Roneparstat counteracted the autocrine loop induced by the COL1A1/PDGFB fusion oncogene, expressed in a human dermatofibrosarcoma protuberans primary culture and in NIH3T3COL1A1/PDGFB transfectants, inhibiting cell anchorage-independent growth and invasion. In addition, roneparstat inhibited the activation of cell surface PDGFR and PDGFR-associated FAK, likely contributing to the reversion of NIH3T3COL1A1/PDGFB cell transformed and pro-invasive phenotype. Biochemical and histological/immunohistochemical ex vivo analyses confirmed a reduced activation of ERBB4, EGFR, INSR, IGF1R, associated with apoptosis induction and angiogenesis inhibition in a drug-treated Ewing's sarcoma family tumor xenograft. The combination of roneparstat with irinotecan significantly improved the antitumor effect against A204 rhabdoid xenografts resulting in a high rate of complete responses and cures. These findings reveal that roneparstat exerts a multi-target inhibition of RTKs relevant in the pathobiology of different sarcoma subtypes. These effects, likely cooperating with heparanase inhibition, contribute to the antitumor efficacy of the drug. The study supports heparanase/HS axis targeting as a valuable approach in combination therapies of different sarcoma subtypes providing a preclinical rationale for clinical investigation.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica Favini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Dal Bo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella De Maglie
- Department of Veterinary Sciences and Public Health, Università Degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Gianpaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franco Zunino
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
37
|
Dey A, Xiong X, Crim A, Dwivedi SKD, Mustafi SB, Mukherjee P, Cao L, Sydorenko N, Baiazitov R, Moon YC, Dumble M, Davis T, Bhattacharya R. Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Mol Cancer Ther 2018; 17:39-49. [PMID: 29158468 PMCID: PMC5752598 DOI: 10.1158/1535-7163.mct-17-0574] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
BMI-1, also known as a stem cell factor, is frequently upregulated in several malignancies. Elevated expression of BMI-1 correlates with poor prognosis and is therefore considered a viable therapeutic target in a number of malignancies including ovarian cancer. Realizing the immense pathologic significance of BMI-1, small-molecule inhibitors against BMI-1 are recently being developed. In this study, we functionally characterize PTC-028, an orally bioavailable compound that decreases BMI-1 levels by posttranslational modification. We report that PTC-028 treatment selectively inhibits cancer cells in clonal growth and viability assays, whereas normal cells remain unaffected. Mechanistically, hyperphosphorylation-mediated depletion of cellular BMI-1 by PTC-028 coupled with a concurrent temporal decrease in ATP and a compromised mitochondrial redox balance potentiates caspase-dependent apoptosis. In vivo, orally administered PTC-028, as a single agent, exhibits significant antitumor activity comparable with the standard cisplatin/paclitaxel therapy in an orthotopic mouse model of ovarian cancer. Thus, PTC-028 has the potential to be used as an effective therapeutic agent in patients with epithelial ovarian cancer, where treatment options are limited. Mol Cancer Ther; 17(1); 39-49. ©2017 AACR.
Collapse
Affiliation(s)
- Anindya Dey
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xunhao Xiong
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Aleia Crim
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Soumyajit Banerjee Mustafi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Priyabrata Mukherjee
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
38
|
Cassinelli G, Dal Bo L, Favini E, Cominetti D, Pozzi S, Tortoreto M, De Cesare M, Lecis D, Scanziani E, Minoli L, Naggi A, Vlodavsky I, Zaffaroni N, Lanzi C. Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Lett 2017; 415:187-197. [PMID: 29225052 DOI: 10.1016/j.canlet.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/26/2023]
Abstract
Synovial sarcoma (SS) is an aggressive tumor with propensity for lung metastases which significantly impact patients' prognosis. New therapeutic approaches are needed to improve treatment outcome. Targeting the heparanase/heparan sulfate proteoglycan system by heparin derivatives which act as heparanase inhibitors/heparan sulfate mimetics is emerging as a therapeutic approach that can sensitize the tumor response to chemotherapy. We investigated the therapeutic potential of a supersulfated low molecular weight heparin (ssLMWH) in preclinical models of SS. ssLMWH showed a potent anti-heparanase activity, dose-dependently inhibited SS colony growth and cell invasion, and downregulated the activation of receptor tyrosine kinases including IGF1R and IR. The combination of ssLMWH and the IGF1R/IR inhibitor BMS754807 synergistically inhibited proliferation of cells exhibiting IGF1R hyperactivation, also abrogating cell motility and promoting apoptosis in association with PI3K/AKT pathway inhibition. The drug combination strongly enhanced the antitumor effect against the CME-1 model, as compared to single agent treatment, abrogating orthotopic tumor growth and significantly repressing spontaneous lung metastatic dissemination in treated mice. These findings provide a strong preclinical rationale for developing drug regimens combining heparanase inhibitors/HS mimetics with IGF1R antagonists for treatment of metastatic SS.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Glucuronidase/antagonists & inhibitors
- Glucuronidase/metabolism
- Heparin, Low-Molecular-Weight/administration & dosage
- Heparin, Low-Molecular-Weight/metabolism
- Heparin, Low-Molecular-Weight/pharmacology
- Humans
- Mice, SCID
- Neoplasm Metastasis
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Receptor, IGF Type 1
- Receptors, Somatomedin/antagonists & inhibitors
- Receptors, Somatomedin/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/metabolism
- Sarcoma, Synovial/pathology
- Sulfates
- Triazines/administration & dosage
- Triazines/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Denis Cominetti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Sabina Pozzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Michelandrea De Cesare
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Daniele Lecis
- Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, 20133 Milan, Italy
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, P.O. Box 9649, Haifa 31096, Israel
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Cinzia Lanzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
39
|
Govindarajan M. Amphiphilic glycoconjugates as potential anti-cancer chemotherapeutics. Eur J Med Chem 2017; 143:1208-1253. [PMID: 29126728 DOI: 10.1016/j.ejmech.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.
Collapse
Affiliation(s)
- Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States.
| |
Collapse
|
40
|
Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells. Molecules 2017; 22:molecules22101649. [PMID: 28974006 PMCID: PMC6151552 DOI: 10.3390/molecules22101649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/17/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer.
Collapse
|
41
|
Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett 2017; 403:86-97. [DOI: 10.1016/j.canlet.2017.05.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
|
42
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
43
|
Zhang Y, Sun X, Nan N, Cao KX, Ma C, Yang GW, Yu MW, Yang L, Li JP, Wang XM, Zhang GL. Elemene inhibits the migration and invasion of 4T1 murine breast cancer cells via heparanase. Mol Med Rep 2017; 16:794-800. [PMID: 28560389 PMCID: PMC5482194 DOI: 10.3892/mmr.2017.6638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/24/2017] [Indexed: 01/06/2023] Open
Abstract
Elemene (ELE), a natural plant drug extracted from Curcumae Rhizoma, has been widely used for cancer treatment in China for more than 20 years. Although it is reported to be a broad‑spectrum anticancer drug, the mechanism underlying the action of ELE in the treatment of breast cancer remains to be fully elucidated. Heparanase, a mammalian endo‑D‑glucuronidase, is involved in degradation of the extracellular matrix (ECM), and thus promotes tumor progression and metastasis. The downregulation of heparanase can effectively reduce tumor malignant behaviors. In the present study, the inhibitory effects of ELE were evaluated in breast cancer cells using a Cell Counting kit 8 assay. The migratory and invasive capabilities of cancer cells were investigated using a wound healing assay, real‑time cell analysis and a Transwell assay. In addition, western blot analysis was used to assess alterations in the expression levels of key proteins. The present results confirmed the antiproliferative and antimetastatic effects of ELE, using low‑molecular weight heparin (LMWH) as a positive control. In addition, ELE was demonstrated to downregulate the expression of heparanase, and decrease the phosphorylation of extracellular signal‑regulated kinase and AKT. These findings suggested that ELE may be a promising agent targeting heparanase in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xu Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Nan Nan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Cong Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Lin Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jin-Ping Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
44
|
Roy D, Mondal S, Khurana A, Jung DB, Hoffmann R, He X, Kalogera E, Dierks T, Hammond E, Dredge K, Shridhar V. Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer. Sci Rep 2017; 7:41977. [PMID: 28169314 PMCID: PMC5294412 DOI: 10.1038/srep41977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Defective autophagy and deranged metabolic pathways are common in cancer; pharmacologic targeting of these two pathways could provide a viable therapeutic option. However, how these pathways are regulated by limited availability of growth factors is still unknown. Our study shows that HSulf-1 (endosulfatase), a known tumor suppressor which attenuates heparin sulfate binding growth factor signaling, also regulates interplay between autophagy and lipogenesis. Silencing of HSulf-1 in OV202 and TOV2223 cells (ovarian cancer cell lines) resulted in increased lipid droplets (LDs), reduced autophagic vacuoles (AVs) and less LC3B puncta. In contrast, HSulf-1 proficient cells exhibit more AVs and reduced LDs. Increased LDs in HSulf-1 depleted cells was associated with increased ERK mediated cPLA2S505 phosphorylation. Conversely, HSulf-1 expression in SKOV3 cells reduced the number of LDs and increased the number of AVs compared to vector controls. Furthermore, pharmacological (AACOCF3) and ShRNA mediated downregulation of cPLA2 resulted in reduced LDs, and increased autophagy. Finally, in vivo experiment using OV202 Sh1 derived xenograft show that AACOCF3 treatment effectively attenuated tumor growth and LD biogenesis. Collectively, these results show a reciprocal regulation of autophagy and lipid biogenesis by HSulf-1 in ovarian cancer.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Deok-Beom Jung
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robert Hoffmann
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | | | - Keith Dredge
- Zucero Therapeutics. Brisbane, Queensland, Australia
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
O'Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, Lewczuk P, Posner H, Hall J, Johnson L, Fong YL, Luthman J, Jeromin A, Batrla-Utermann R, Villarreal A, Britton G, Snyder PJ, Henriksen K, Grammas P, Gupta V, Martins R, Hampel H. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 2017; 13:45-58. [PMID: 27870940 PMCID: PMC5218961 DOI: 10.1016/j.jalz.2016.09.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state of the art. In addition, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and toward clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional handoff model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA
| | - Simone Lista
- AXA Research Fund and UPMC Chair, Paris, France; Department de Neurologie, Institut de la Memorie et de la Maladie d'Alzheimer (IM2A) et Institut du Cerveau et du la Moelle epiniere (ICM), Hospital de la Pitie-Salpetriere, Sorbonne Universites, Universite Pierre et Marie Curie, Paris, France
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gotenburg, Molndal, Sweden; UCL Institute of Neurology, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | - James Hall
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yiu-Lian Fong
- Johnson & Johnson, London Innovation Center, London, UK
| | - Johan Luthman
- Neuroscience Clinical Development, Clinical Neuroscience Eisai, Woodcliff Lake, NJ, USA
| | | | | | - Alcibiades Villarreal
- Centro de Neurociencias y Unidad de Investigacion Clinica, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Ciudad del Saber, Panama, Panama
| | - Gabrielle Britton
- Centro de Neurociencias y Unidad de Investigacion Clinica, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Ciudad del Saber, Panama, Panama
| | - Peter J Snyder
- Department of Neurology, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kim Henriksen
- Neurodegenerative Diseases, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Paula Grammas
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, RI, USA
| | - Veer Gupta
- Faculty of Health, Engineering and Sciences, Center of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ralph Martins
- Faculty of Health, Engineering and Sciences, Center of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Harald Hampel
- AXA Research Fund and UPMC Chair, Paris, France; Department de Neurologie, Institut de la Memorie et de la Maladie d'Alzheimer (IM2A) et Institut du Cerveau et du la Moelle epiniere (ICM), Hospital de la Pitie-Salpetriere, Sorbonne Universites, Universite Pierre et Marie Curie, Paris, France
| |
Collapse
|
46
|
Ramani VC, Zhan F, He J, Barbieri P, Noseda A, Tricot G, Sanderson RD. Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget 2016; 7:1598-607. [PMID: 26624982 PMCID: PMC4811483 DOI: 10.18632/oncotarget.6408] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
In most myeloma patients, even after several rounds of intensive therapy, drug resistant tumor cells survive and proliferate aggressively leading to relapse. In the present study, gene expression profiling of tumor cells isolated from myeloma patients after sequential rounds of chemotherapy, revealed for the first time that heparanase, a potent promoter of myeloma growth and progression, was elevated in myeloma cells that survived therapy. Based on this clinical data, we hypothesized that heparanase was involved in myeloma resistance to drug therapy. In several survival and viability assays, elevated heparanase expression promoted resistance of myeloma tumor cells to chemotherapy. Mechanistically, this enhanced survival was due to heparanase-mediated ERK signaling. Importantly, use of the heparanase inhibitor Roneparstat in combination with chemotherapy clearly diminished the growth of disseminated myeloma tumors in vivo. Moreover, use of Roneparstat either during or after chemotherapy diminished regrowth of myeloma tumors in vivo following therapy. These results provide compelling evidence that heparanase is a promising, novel target for overcoming myeloma resistance to therapy and that targeting heparanase has the potential to prevent relapse in myeloma and possibly other cancers.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jianbo He
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paola Barbieri
- Sigma-tau Research Switzerland S.A., Mendrisio, Switzerland
| | | | - Guido Tricot
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
47
|
Abstract
Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.
Collapse
Affiliation(s)
- Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
48
|
Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016; 29:54-75. [PMID: 27912844 DOI: 10.1016/j.drup.2016.10.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Preeti Singh
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Lilach Gutter-Kapon
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ralph D Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
49
|
Mondal S, Roy D, Camacho-Pereira J, Khurana A, Chini E, Yang L, Baddour J, Stilles K, Padmabandu S, Leung S, Kalloger S, Gilks B, Lowe V, Dierks T, Hammond E, Dredge K, Nagrath D, Shridhar V. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget 2016; 6:33705-19. [PMID: 26378042 PMCID: PMC4741796 DOI: 10.18632/oncotarget.5605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1, a known putative tumor suppressor, is a negative regulator of glycolysis. Silencing of HSulf-1 expression in OV202 cell line increased glucose uptake and lactate production by upregulating glycolytic genes such as Glut1, HKII, LDHA, as well as metabolites. Conversely, HSulf-1 overexpression in TOV21G cells resulted in the down regulation of glycolytic enzymes and reduced glycolytic phenotype, supporting the role of HSulf-1 loss in enhanced aerobic glycolysis. HSulf-1 deficiency mediated glycolytic enhancement also resulted in increased inhibitory phosphorylation of pyruvate dehydrogenase (PDH) thus blocking the entry of glucose flux into TCA cycle. Consistent with this, metabolomic and isotope tracer analysis showed reduced glucose flux into TCA cycle. Moreover, HSulf-1 loss is associated with lower oxygen consumption rate (OCR) and impaired mitochondrial function. Mechanistically, lack of HSulf-1 promotes c-Myc induction through HB-EGF-mediated p-ERK activation. Pharmacological inhibition of c-Myc reduced HB-EGF induced glycolytic enzymes implicating a major role of c-Myc in loss of HSulf-1 mediated altered glycolytic pathway in OVCA. Similarly, PG545 treatment, an agent that binds to heparan binding growth factors and sequesters growth factors away from their ligand also blocked HB-EGF signaling and reduced glucose uptake in vivo in HSulf-1 deficient cells.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Juliana Camacho-Pereira
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eduardo Chini
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lifeng Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Joelle Baddour
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Katherine Stilles
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Seth Padmabandu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Sam Leung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steve Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Val Lowe
- Department of Nuclear Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Edward Hammond
- Progen Pharmaceuticals Ltd, Brisbane, Queensland, Australia
| | - Keith Dredge
- Progen Pharmaceuticals Ltd, Brisbane, Queensland, Australia
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
50
|
Wang C, Wang R, Zhou K, Wang S, Wang J, Shi H, Dou Y, Yang D, Chang L, Shi X, Liu Y, Xu X, Zhang X, Ke Y, Liu H. JD enhances the anti-tumour effects of low-dose paclitaxel on gastric cancer MKN45 cells both in vitro and in vivo. Cancer Chemother Pharmacol 2016; 78:971-982. [PMID: 27620208 DOI: 10.1007/s00280-016-3149-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Gastric cancer is the third most common cause of cancer mortality worldwide, and paclitaxel (PTX) is one of the most widely used traditional drugs in gastric cancer therapy. However, the response to traditional therapy is limited by acquired chemo-resistance and side effects. Here, we establish a newly designed combination therapy consisting of a compound that is a structural variant of oridonin, i.e. Jesridonin (JD), and low-dose PTX for gastric cancer cells (MKN45) to investigate whether the anti-tumour activity of low-dose PTX could be enhanced when combined with JD. METHODS The interaction of JD and low-dose PTX was detected in MKN45 cells using the median-effect analysis method. The synergistic effect on cell viability and apoptosis was measured by MTT assay, colony formation assay, transient transfection, flow cytometry and Western blotting. The synergistic in vivo effect of JD plus low-dose PTX was evaluated in nude mouse xenograft models using H&E and TUNEL staining and Western blotting. RESULTS JD plus low-dose PTX showed a synergistic effect, as the combination indexes were less than 1. Additionally, a synergistic anti-proliferative and pro-apoptotic effect was detected for the combination of JD and low-dose PTX. The apoptotic mechanism induced by JD plus PTX revealed that the combination therapy synergistically activated the mitochondrial pathway. CONCLUSION Our findings suggest that JD enhances the anti-tumour effect of low-dose PTX on gastric carcinoma cancer cells in both vitro and in vivo, accompanied by activation of the mitochondrial pathway, which may present a more effective therapeutic strategy in gastric cancer treatment.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ran Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Kairui Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Saiqi Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongge Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinhui Dou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongxiao Yang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Liming Chang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoli Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ying Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaowei Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiujuan Zhang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|