1
|
Fernandes J, Veldhoen M, Ferreira C. Tissue-resident memory T cells: Harnessing their properties against infection for cancer treatment. Bioessays 2024; 46:e2400119. [PMID: 39258352 DOI: 10.1002/bies.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
We have rapidly gained insights into the presence and function of T lymphocytes in non-lymphoid tissues, the tissue-resident memory T (TRM) cells. The central pillar of adaptive immunity has been expanded from classic central memory T cells giving rise to progeny upon reinfection and effector memory cells circulating through the blood and patrolling the tissues to include TRM cells that reside and migrate inside solid organs and tissues. Their development and maintenance have been studied in detail, providing exciting clues on how their unique properties used to fight infections may benefit therapies against solid tumors. We provide an overview of CD8 TRM cells and the properties that make them of interest for vaccination and cancer therapies.
Collapse
Affiliation(s)
- João Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Lubuela G, Beaufrère A, Albuquerque M, Pignollet C, Nicolle R, Lesurtel M, Bouattour M, Cros J, Paradis V. Prognostic impact of the tumour microenvironment in intrahepatic cholangiocarcinoma: identification of a peritumoural fibro-immune interface. Virchows Arch 2024:10.1007/s00428-024-03922-5. [PMID: 39242455 DOI: 10.1007/s00428-024-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) is complex and plays a role in prognosis and resistance to treatments. We aimed to decipher the iCCA TME phenotype using multiplex sequential immunohistochemistry (MS-IHC) to investigate which cell types and their spatial location may affect its prognosis. This was a retrospective study of 109 iCCA resected samples. For all cases, we used an open-source software to analyse a panel of markers (αSMA, FAP, CD8, CD163) by MS-IHC for characterize the different TME cells and their location. RNA sequencing was performed to determine the main iCCA transcriptomic classes. The association of the TME composition with overall survival (OS) was assessed by univariate and multivariate analyses. A high proportion of activated fibroblasts (FAP +) was significantly associated with poor OS (HR = 2.33, 95%CI = 1.43-3.81, p = 0.001). CD8 T lymphocytes excluded from the epithelial compartment were significantly associated with worse OS (HR = 1.86, 95% CI = 1.07-3.22, p = 0.014). The combination of a high proportion of FAP + fibroblasts and CD8 T lymphocytes excluded from the epithelial compartment, observed in 21 cases (19%), was significantly associated with poor OS on univariate (HR = 2.49, 95% CI = 1.44-4.28, p = 0.001) and multivariate analyses (HR = 2.77, 95% CI = 1.56-4.92, p < 0.001). In these cases, CD8 T lymphocytes were predominantly located at the tumour/non-tumour interface (19/21, 90%), and an association with the transcriptomic inflammatory stroma class was observed (10/21, 48%). Our results confirm the TME prognostic role in iCCA, highlighting the impact in the process of spatial heterogeneity, especially cell colocalization of immune and fibroblastic cells creating a peritumoural fibro-immune interface.
Collapse
Affiliation(s)
- Gwladys Lubuela
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Aurélie Beaufrère
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France.
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France.
| | - Miguel Albuquerque
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Camille Pignollet
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Mickael Lesurtel
- AP-HP.Nord, Department of HPB Surgery & Liver Transplantation, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Mohamed Bouattour
- AP-HP.Nord, Liver Cancer Unit, DMU DIGEST, Beaujon Hospital, Clichy, France
| | - Jérôme Cros
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| |
Collapse
|
3
|
Eerkens AL, Brummel K, Vledder A, Paijens ST, Requesens M, Loiero D, van Rooij N, Plat A, Haan FJ, Klok P, Yigit R, Roelofsen T, de Lange NM, Klomp R, Church D, Ter Elst A, Wardenaar R, Spierings D, Foijer F, Koelzer VH, Bosse T, Bart J, Jalving M, Reyners AKL, de Bruyn M, Nijman HW. Neoadjuvant immune checkpoint blockade in women with mismatch repair deficient endometrial cancer: a phase I study. Nat Commun 2024; 15:7695. [PMID: 39227583 PMCID: PMC11372054 DOI: 10.1038/s41467-024-52098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Neoadjuvant immune checkpoint blockade (ICB) has shown unprecedented activity in mismatch repair deficient (MMRd) colorectal cancers, but its effectiveness in MMRd endometrial cancer (EC) remains unknown. In this investigator-driven, phase I, feasibility study (NCT04262089), 10 women with MMRd EC of any grade, planned for primary surgery, received two cycles of neoadjuvant pembrolizumab (200 mg IV) every three weeks. A pathologic response (primary objective) was observed in 5/10 patients, with 2 patients showing a major pathologic response. No patient achieved a complete pathologic response. A partial radiologic response (secondary objective) was observed in 3/10 patients, 5/10 patients had stable disease and 2/10 patients were non-evaluable on magnetic resonance imaging. All patients completed treatment without severe toxicity (exploratory objective). At median duration of follow-up of 22.5 months, two non-responders experienced disease recurrence. In-depth analysis of the loco-regional and systemic immune response (predefined exploratory objective) showed that monoclonal T cell expansion significantly correlated with treatment response. Tumour-draining lymph nodes displayed clonal overlap with intra-tumoural T cell expansion. All pre-specified endpoints, efficacy in terms of pathologic response as primary endpoint, radiologic response as secondary outcome and safety and tolerability as exploratory endpoint, were reached. Neoadjuvant ICB with pembrolizumab proved safe and induced pathologic, radiologic, and immunologic responses in MMRd EC, warranting further exploration of extended neoadjuvant treatment.
Collapse
Affiliation(s)
- Anneke L Eerkens
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Koen Brummel
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Annegé Vledder
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sterre T Paijens
- Department of Radiotherapy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marta Requesens
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dominik Loiero
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nienke van Rooij
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris-Jan Haan
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Patty Klok
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Refika Yigit
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thijs Roelofsen
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Rie Klomp
- Department of Obstetrics and Gynaecology, Treant, Emmen, The Netherlands
| | - David Church
- Welcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arja Ter Elst
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Diana Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Viktor Hendrik Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Bart
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Hans W Nijman
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
5
|
Grau Bejar JF, Yaniz Galende E, Zeng Q, Genestie C, Rouleau E, de Bruyn M, Klein C, Le Formal A, Edmond E, Moreau M, Plat A, Gouy S, Maulard A, Pautier P, Michels J, Oaknin A, Colomba-Blameble E, Leary A. Immune predictors of response to immune checkpoint inhibitors in mismatch repair-deficient endometrial cancer. J Immunother Cancer 2024; 12:e009143. [PMID: 38955419 PMCID: PMC11218029 DOI: 10.1136/jitc-2024-009143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with mismatch repair-deficient (MMRd) endometrial cancer (EC) can derive great benefit from immune checkpoint inhibitors (ICI). However not all responses and predictors of primary resistance are lacking. METHODS We compared the immune tumor microenvironment of MMRd EC ICI-responders (Rs) and ICI non-responders (NRs), using spatial multiplexed immune profiling and unsupervised hierarchical clustering analysis. RESULTS Overall, NRs exhibited drastically lower CD8+, absent terminally differentiated T cells, lack of mature tertiary lymphoid structures and dendritic cells, as well as loss of human leukocyte antigen class I. However, no single marker could predict R versus NR with confidence. Clustering analysis identified a combination of four immune features that demonstrated that accurately predicted ICI response, with a discriminative power of 92%. Finally, 80% of NRs lacked programmed death-ligand 1, however, 60% exhibited another actionable immune checkpoint (T-cell immunoglobulin and mucin containing protein-3, indoleamine 2,3-dioxygenase 1, or lymphocyte activation gene 3). CONCLUSIONS These findings underscore the potential of immune tumor microenvironment features for identifying patients with MMRd EC and primary resistance to ICI who should be oriented towards trials testing novel immunotherapeutic combinations.
Collapse
Affiliation(s)
- Juan Francisco Grau Bejar
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elisa Yaniz Galende
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | | | - Etienne Rouleau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Marco de Bruyn
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Christophe Klein
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | - Audrey Le Formal
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elodie Edmond
- Experimental and Translational Pathology Platform (PETRA), AMMICa Inserm US23/UAR CNRS 3655, Gustave Roussy Institute, Villejuif, France
| | - Maëva Moreau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Annechien Plat
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Sebastien Gouy
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Amandine Maulard
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Patricia Pautier
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Judith Michels
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Ana Oaknin
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emeline Colomba-Blameble
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Alexandra Leary
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
6
|
Volinsky-Fremond S, Horeweg N, Andani S, Barkey Wolf J, Lafarge MW, de Kroon CD, Ørtoft G, Høgdall E, Dijkstra J, Jobsen JJ, Lutgens LCHW, Powell ME, Mileshkin LR, Mackay H, Leary A, Katsaros D, Nijman HW, de Boer SM, Nout RA, de Bruyn M, Church D, Smit VTHBM, Creutzberg CL, Koelzer VH, Bosse T. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat Med 2024; 30:1962-1973. [PMID: 38789645 PMCID: PMC11271412 DOI: 10.1038/s41591-024-02993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal (n = 353) and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC.
Collapse
Affiliation(s)
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sonali Andani
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jurriaan Barkey Wolf
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maxime W Lafarge
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Cor D de Kroon
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gitte Ørtoft
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | | | - Melanie E Powell
- Department of Clinical Oncology, Barts Health NHS Trust, London, UK
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Helen Mackay
- Department of Medical Oncology and Hematology, Odette Cancer Center Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Alexandra Leary
- Department Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Dionyssios Katsaros
- Department of Surgical Sciences, Gynecologic Oncology, Città della Salute and S Anna Hospital, University of Turin, Turin, Italy
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Beumer-Chuwonpad A, Behr FM, van Alphen FPJ, Kragten NAM, Hoogendijk AJ, van den Biggelaar M, van Gisbergen KPJM. Intestinal tissue-resident memory T cells maintain distinct identity from circulating memory T cells after in vitro restimulation. Eur J Immunol 2024; 54:e2350873. [PMID: 38501878 DOI: 10.1002/eji.202350873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.
Collapse
MESH Headings
- Animals
- Memory T Cells/immunology
- Immunologic Memory/immunology
- Mice
- Listeria monocytogenes/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Integrin alpha Chains/metabolism
- Mice, Inbred C57BL
- Listeriosis/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytokines/metabolism
- Cytokines/immunology
- Lymphocyte Activation/immunology
- Lymphocytic choriomeningitis virus/immunology
- Intestinal Mucosa/immunology
- CD8-Positive T-Lymphocytes/immunology
- Intestine, Small/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Floris P J van Alphen
- Department of Research Facilities, Sanquin Research and Laboratory Services, Amsterdam, the Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | | | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, the Netherlands
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
8
|
Chan R, Aphivatanasiri C, Poon IK, Tsang JY, Ni Y, Lacambra M, Li J, Lee C, Tse GM. Spatial Distribution and Densities of CD103+ and FoxP3+ Tumor Infiltrating Lymphocytes by Digital Analysis for Outcome Prediction in Breast Cancer. Oncologist 2024; 29:e299-e308. [PMID: 37491001 PMCID: PMC10911924 DOI: 10.1093/oncolo/oyad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/23/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The evaluation of tumor-infiltrating lymphocytes (TILs) for breast cancer prognosis is now established. However, the clinical value for their spatial distributions of specific immune subsets, namely CD103+ tissue-resident memory T cells FoxP3+ regulatory T ells, have not been thoroughly examined. METHOD Representative whole sections of breast cancers were subjected to CD103 and FoxP3 double staining. Their density, ratio, and spatial features were analyzed in tumor area and tumor-stromal interface. Their associations with clinicopathological parameters and patient's prognosis were analyzed. RESULTS CD103 TILs were closer to tumor nests than FoxP3 TILs in the tumor-stromal interface. Their densities were associated with high-grade disease, TNBC, and stromal TILs. High stromal FoxP3 (sFoxP3) TILs and close proximity of sCD103 TILs to tumor were independently associated with better survival at multivariate analysis. Subgroup analysis showed the high FoxP3 TILs density associated better survival was seen in HER2-OE and TNBC subtypes while the proximity of CD103 TILs to tumor nests associated better survival was seen in luminal cancers. CONCLUSION The prognostic impact of CD103 and FoxP3 TILs in breast cancer depends on their spatial localization. High sFoxP3 TIL density and the lower distance of CD103 TILs from the tumor nests had independent favorable prognostic values.
Collapse
Affiliation(s)
- Ronald Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | | | - Ivan K Poon
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Yunbi Ni
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Maribel Lacambra
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Joshua Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Conrad Lee
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| |
Collapse
|
9
|
Fang J, Lei J, He B, Wu Y, Chen P, Sun Z, Wu N, Huang Y, Wei P, Yin L, Chen Y. Decoding the transcriptional heterogeneity, differentiation lineage, clinical significance in tissue-resident memory CD8 T cell of the small intestine by single-cell analysis. J Transl Med 2024; 22:203. [PMID: 38403590 PMCID: PMC10895748 DOI: 10.1186/s12967-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 02/27/2024] Open
Abstract
Resident memory T (Trm) cells which are specifically located in non-lymphoid tissues showed distinct phenotypes and functions compared to circulating memory T cells and were vital for the initiation of robust immune response within tissues. However, the heterogeneity in the transcriptional features, development pathways, and cancer response of Trm cells in the small intestine was not demonstrated. Here, we integrated scRNA-seq and scTCR-seq data pan-tissue T cells to explore the heterogeneity of Trm cells and their development pathways. Trm were enriched in tissue-specific immune response and those in the DUO specially interacted with B cells via TNF and MHC-I signatures. T cell lineage analyses demonstrated that Trm might be derived from the T_CD4/CD8 subset within the same organ or migrated from spleen and mesenteric lymph nodes. We compared the immune repertoire of Trm among organs and implied that clonotypes in both DUO and ILE were less expanded and hydrophilic TRB CDR3s were enriched in the DUO. We further demonstrated that Trm in the intestine infiltrated the colorectal cancer and several effector molecules were highly expressed. Finally, the TCGA dataset of colorectal cancer implied that the infiltration of Trm from the DUO and the ILE was beneficial for overall survival and the response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, 530004, China
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Jiang F, Mao M, Jiang S, Jiao Y, Cao D, Xiang Y. PD-1 and TIGIT coexpressing CD8 + CD103 + tissue-resident memory cells in endometrial cancer as potential targets for immunotherapy. Int Immunopharmacol 2024; 127:111381. [PMID: 38150880 DOI: 10.1016/j.intimp.2023.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Immunotherapy has shown promise in treating various cancers; however, its efficacy in endometrial cancer (EC) remains suboptimal owing to the complex dynamics of the tumour immune microenvironment. This study focuses on exploring the potential of targeting the programmed cell death protein 1 gene (PD-1) and the T cell Immunoreceptor with Ig and ITIM domains gene (TIGIT) coexpressing tissue-resident memory cells in EC. METHODS A comprehensive approach, utilizing RNA sequencing, single-cell RNA sequencing, mass cytometry, and flow cytometry, was employed to analyse the expression patterns of PD-1 and TIGIT in the EC tumor environment and to characterize the phenotypic properties of tumor-infiltrating lymphocytes (TILs), particularly tissue-resident memory (TRM) cells. Additionally, in vitro cell experiments were conducted to assess the functional impact of PD-1 and TIGIT blockade on T-cell activity. RESULTS Our analysis identified a significant co-expression of PD-1 and TIGIT in TRM cells within the EC tumor microenvironment. These TRM cells displayed an exhausted phenotype with impaired cytotoxicity, enhanced proliferative capacity, and diminished cytotoxic activity. In vitro T-cell assays showed that a dual blockade of PD-1 and TIGIT more effectively restored T-cell functionality compared to single blockade, suggesting enhanced therapeutic potential. CONCLUSIONS TRM cells co-expressing PD-1 and TIGIT represent potential targets for EC immunotherapy. Dual immune checkpoint blockade targeting PD-1 and TIGIT may offer an effective therapeutic strategy for EC, providing valuable insights for the development of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Mingyi Mao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Shiyang Jiang
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Jiao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongyan Cao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China.
| |
Collapse
|
11
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
12
|
Zhang C, Wang M, Wu Y. Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype. Front Oncol 2023; 13:1278863. [PMID: 37927462 PMCID: PMC10622971 DOI: 10.3389/fonc.2023.1278863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Endometrial cancer (EC) is one of the three most prevalent gynecological tumors affecting women and is the most prevalent gynecological malignancy in the developed world. Its incidence is rapidly increasing worldwide, mostly affecting postmenopausal women, whereas recently its prevalence has increased in younger people. EC is an immune gene disease and many studies have shown that the tumor-immunosuppressive microenvironment plays an important role in cancer progression. In recent years, findings regarding the immunosuppressive tumor microenvironment (ITME) of EC have included immune evasion mechanisms and immunotherapy, which are mostly immune checkpoint inhibitors (ICI) for EC. Recently studies on the ITME of different molecular types of EC have found that different molecular types may have different ITME. With the research on the immune microenvironment of EC, a new immunophenotype classification based on the immune microenvironment has been carried out in recent years. However, the impact of the ITME on EC remains unclear, and the immunophenotype of EC remains limited to the research stage. Our review describes recent findings regarding the ITME features of different EC molecular types. The advent of immunotherapy has brought hope for improved efficacy and prognosis in patients with advanced or recurrent EC. The efficacy and safety of ICIs combination therapy remains the focus of future research.
Collapse
Affiliation(s)
- Chong Zhang
- Departments of Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, China
| | - Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
13
|
Mittra S, Harding SM, Kaech SM. Memory T Cells in the Immunoprevention of Cancer: A Switch from Therapeutic to Prophylactic Approaches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:907-916. [PMID: 37669503 PMCID: PMC10491418 DOI: 10.4049/jimmunol.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 09/07/2023]
Abstract
Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.
Collapse
Affiliation(s)
- Siddhesh Mittra
- University of Toronto Schools, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane M. Harding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Immunology, University of Toronto; Toronto, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
15
|
Kisovar A, Becker CM, Granne I, Southcombe JH. The role of CD8+ T cells in endometriosis: a systematic review. Front Immunol 2023; 14:1225639. [PMID: 37497226 PMCID: PMC10366819 DOI: 10.3389/fimmu.2023.1225639] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Endometriosis is a chronic disease affecting 6-10% of women of reproductive age. It is an important cause of infertility and chronic pelvic pain with poorly understood aetiology. CD8+ T (CD8 T) cells were shown to be linked to infertility and chronic pain and play a significant role in lesion clearance in other pathologies, yet their function in endometriosis is unknown. We systematically evaluated the literature on the CD8 T in peripheral blood and endometriosis-associated tissues to determine the current understanding of their pathophysiological and clinical relevance in the disease and associated conditions (e.g. infertility and pelvic pain). Methods Four databases were searched (MEDLINE, EMBASE, Web of Science, CINAHL), from database inception until September 2022, for papers written in the English language with database-specific relevant terms/free-text terms from two categories: CD8 T cells and endometriosis. We included peer-reviewed papers investigating CD8 T cells in peripheral blood and endometriosis-associated tissues of patients with surgically confirmed endometriosis between menarche and menopause, and animal models with oestrous cycles. Studies enrolling participants with other gynaecological pathologies (except uterine fibroids and tubal factor infertility used as controls), cancer, immune diseases, or taking immune or hormonal therapy were excluded. Results 28 published case-control studies and gene set analyses investigating CD8 T cells in endometriosis were included. Data consistently indicate that CD8 T cells are enriched in endometriotic lesions in comparison to eutopic endometrium, with no differences in peripheral blood CD8 T populations between patients and healthy controls. Evidence on CD8 T cells in peritoneal fluid and eutopic endometrium is conflicting. CD8 T cell cytotoxicity was increased in the menstrual effluent of patients, and genomic analyses have shown a clear trend of enriched CD8 T effector memory cells in the eutopic endometrium of patients. Conclusion Literature on CD8 T cells in endometriosis-associated tissues is inconsistent. Increased CD8 T levels are found in endometriotic lesions, however, their activation potential is understudied in all relevant tissues. Future research should focus on identifying clinically relevant phenotypes to support the development of non-invasive diagnostic and treatment strategies. Systematic Review Registration PROSPERO identifier CRD42021233304.
Collapse
Affiliation(s)
| | | | | | - Jennifer H. Southcombe
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Jung IY, Noguera-Ortega E, Bartoszek R, Collins SM, Williams E, Davis M, Jadlowsky JK, Plesa G, Siegel DL, Chew A, Levine BL, Berger SL, Moon EK, Albelda SM, Fraietta JA. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep Med 2023; 4:101053. [PMID: 37224816 PMCID: PMC10313923 DOI: 10.1016/j.xcrm.2023.101053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Chimeric antigen receptor (CAR) T cells demonstrate remarkable success in treating hematological malignancies, but their effectiveness in non-hematopoietic cancers remains limited. This study proposes enhancing CAR T cell function and localization in solid tumors by modifying the epigenome governing tissue-residency adaptation and early memory differentiation. We identify that a key factor in human tissue-resident memory CAR T cell (CAR-TRM) formation is activation in the presence of the pleotropic cytokine, transforming growth factor β (TGF-β), which enforces a core program of both "stemness" and sustained tissue residency by mediating chromatin remodeling and concurrent transcriptional changes. This approach leads to a practical and clinically actionable in vitro production method for engineering peripheral blood T cells into a large number of "stem-like" CAR-TRM cells resistant to tumor-associated dysfunction, possessing an enhanced ability to accumulate in situ and rapidly eliminate cancer cells for more effective immunotherapy.
Collapse
Affiliation(s)
- In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra M Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Williams
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan Davis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, Yan Y. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res 2023; 190:106733. [PMID: 36931541 DOI: 10.1016/j.phrs.2023.106733] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Natural compounds are widely used to prevent and treat various diseases due to their antioxidant and anti-inflammatory effects. As a kind of promising natural compound, plant-derived exosome-like nanoparticles (PELNs) are extracted from multivesicular bodies of various edible plants, including vegetables, foods, and fruits, and mainly regulate the cellular immune response to pathogen attacks. Moreover, PELNs could remarkably interfere with the dynamic imbalance between pro-inflammatory and anti-inflammatory effects, facilitating to maintain the homeostasis of cellular immune microenvironment. PELNs may serve as a better alternative to animal-derived exosomes (ADEs) owing to their widespread sources, cost-effectiveness, and easy accessibility. PELNs can mediate interspecies communication by transferring various cargoes such as proteins, lipids, and nucleic acids from plant cells to mammalian cells. This review summarizes the biogenesis, composition, and classification of exosomes; the common separation, purification, and characterization methods of PELNs, the potential advantages of PELNs over ADEs; and the anti-inflammatory and immunomodulatory functions of PELNs in various diseases including colitis, cancer, and inflammation-associated metabolic diseases. Additionally, the future perspectives of PELNs and the challenges associated with their clinical application are discussed.
Collapse
Affiliation(s)
- Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
18
|
Yang C, Qian Q, Zhao Y, Huang B, Chen R, Gong Q, Ji H, Wang C, Xia L, You Z, Zhang J, Chen X. Fibrinogen-like protein 1 promotes liver-resident memory T-cell exhaustion in hepatocellular carcinoma. Front Immunol 2023; 14:1112672. [PMID: 36993960 PMCID: PMC10040674 DOI: 10.3389/fimmu.2023.1112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Background and aimsThe key role of tissue-resident memory T (TRM) cells in the immune regulation of hepatocellular carcinoma (HCC) has been investigated and reported, but the regulatory mechanism of tumor microenvironment on TRM cells is still unclear. Lymphocyte activating gene 3 (LAG-3) is a promising next-generation immune checkpoint that is continuously expressed due to persistent antigen exposure in the tumor microenvironment. Fibrinogen-like protein 1 (FGL1) is a classical ligand of LAG-3 and can promote T cell exhaustion in tumors. Here, we excavated the effect of FGL1-LAG3 regulatory axis on TRM cells in HCC.MethodsThe function and phenotype of intrahepatic CD8+ TRM cells in 35 HCC patients were analyzed using multicolor flow cytometry. Using a tissue microarray of 80 HCC patients, we performed the prognosis analysis. Moreover, we investigated the suppressive effect of FGL1 on CD8+ TRM cells both in in vitro induction model and in vivo orthotopic HCC mouse model.ResultsThere was an increase in LAG3 expression in CD8+ TRM cells in end-stage HCC; moreover, FGL1 levels were negatively correlated with CD103 expression and related to poor outcomes in HCC. Patients with high CD8+ TRM cell proportions have better outcomes, and FGL1-LAG3 binding could lead to the exhaustion of CD8+ TRM cells in tumors, indicating its potential as a target for immune checkpoint therapy of HCC. Increased FGL1 expression in HCC may result in CD8+ TRM cell exhaustion, causing tumor immune escape.ConclusionsWe identified CD8+TRM cells as a potential immunotherapeutic target and reported the effect of FGL1-LAG3 binding on CD8+ TRM cell function in HCC.
Collapse
Affiliation(s)
- Changjie Yang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilin Chen
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyu Gong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ji
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| | - Xiaosong Chen
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| |
Collapse
|
19
|
Virassamy B, Caramia F, Savas P, Sant S, Wang J, Christo SN, Byrne A, Clarke K, Brown E, Teo ZL, von Scheidt B, Freestone D, Gandolfo LC, Weber K, Teply-Szymanski J, Li R, Luen SJ, Denkert C, Loibl S, Lucas O, Swanton C, Speed TP, Darcy PK, Neeson PJ, Mackay LK, Loi S. Intratumoral CD8 + T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell 2023; 41:585-601.e8. [PMID: 36827978 DOI: 10.1016/j.ccell.2023.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.
Collapse
Affiliation(s)
- Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Franco Caramia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sneha Sant
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jianan Wang
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ann Byrne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Emmaline Brown
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Zhi Ling Teo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca von Scheidt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karsten Weber
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Julia Teply-Szymanski
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Ran Li
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carsten Denkert
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Sibylle Loibl
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Olivia Lucas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Paul J Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Brummel K, Eerkens AL, de Bruyn M, Nijman HW. Tumour-infiltrating lymphocytes: from prognosis to treatment selection. Br J Cancer 2023; 128:451-458. [PMID: 36564565 PMCID: PMC9938191 DOI: 10.1038/s41416-022-02119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity. Accordingly, the presence of TILs contains prognostic and predictive value. In 2011, we performed a systematic review and meta-analysis on the prognostic value of TILs across cancer types. Since then, the advent of immune checkpoint blockade (ICB) has renewed interest in the analysis of TILs. In this review, we first describe how our understanding of the prognostic value of TIL has changed over the last decade. New insights on novel TIL subsets are discussed and give a broader view on the prognostic effect of TILs in cancer. Apart from prognostic value, evidence on the predictive significance of TILs in the immune therapy era are discussed, as well as new techniques, such as machine learning that strive to incorporate these predictive capacities within clinical trials.
Collapse
Affiliation(s)
- Koen Brummel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Anneke L Eerkens
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Marco de Bruyn
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Hans W Nijman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands.
| |
Collapse
|
21
|
Palomero J, Panisello C, Lozano-Rabella M, Tirtakasuma R, Díaz-Gómez J, Grases D, Pasamar H, Arregui L, Dorca Duch E, Guerra Fernández E, Vivancos A, de Andrea CE, Melero I, Ponce J, Vidal A, Piulats JM, Matias-Guiu X, Gros A. Biomarkers of tumor-reactive CD4 + and CD8 + TILs associate with improved prognosis in endometrial cancer. J Immunother Cancer 2022; 10:jitc-2022-005443. [PMID: 36581331 PMCID: PMC9806064 DOI: 10.1136/jitc-2022-005443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite the growing interest in immunotherapeutic interventions for endometrial cancer (EC), the prevalence, phenotype, specificity and prognostic value of tumor infiltrating lymphocytes (TILs) in this tumor type remains unclear. METHODS To better understand the role of TILs in EC, we analyzed the phenotypic traits of CD8+ and CD4+ EC-resident T cells from 47 primary tumors by high-dimensional flow cytometry. In addition, CD8+ and CD4+ TIL subpopulations were isolated based on the differential expression of programmed cell death protein-1 (PD-1) (negative, dim and high) and CD39 (positive or negative) by fluorescence activated cell sorting (FACS), expanded in vitro, and screened for autologous tumor recognition. We further investigated whether phenotypic markers preferentially expressed on CD8+ and CD4+ tumor-reactive TIL subsets were associated with the four distinct molecular subtypes of EC, tumor mutational burden and patient survival. RESULTS We found that CD8+TILs expressing high levels of PD-1 (PD-1hi) co-expressed CD39, TIM-3, HLA-DR and CXCL13, as compared with TILs lacking or displaying intermediate levels of PD-1 expression (PD-1- and PD-1dim, respectively). Autologous tumor reactivity of sorted and in vitro expanded CD8+ TILs demonstrated that the CD8+PD-1dimCD39+ and PD-1hiCD39+ T cell subsets both contained tumor-reactive TILs and that a higher level of PD-1 expression was associated with increased CD39 and a superior frequency of tumor reactivity. With respect to CD4+ T conventional (Tconv) TILs, co-expression of inhibitory and activation markers was more apparent on PD-1hi compared with PD-1- or PD-1dim T cells, and in fact, it was the CD4+PD-1hi subpopulation that accumulated the antitumor T cells irrespective of CD39 expression. Most importantly, detection of CD8+PD-1hiCD39+ and CD4+PD-1hi tumor-reactive T-cell subsets, but also markers specifically expressed by these subpopulations of TILs, that is, PD-1hi, CD39, CXCL13 and CD103 by CD8+ TILs and PD-1hi and CXCL13 by CD4+ Tconv TILs, correlated with prolonged survival of patients with EC. CONCLUSIONS Our results demonstrate that EC are frequently infiltrated by tumor-reactive TILs, and that expression of PD-1hi and CD39 or PD-1hi can be used to select and expand CD8+ and CD4+ tumor-reactive TILs, respectively. In addition, biomarkers preferentially expressed on tumor-reactive TILs, rather than the frequency of CD3+, CD8+ and CD4+ lymphocytes, hold prognostic value suggesting their protective role in antitumor immunity.
Collapse
Affiliation(s)
- Jara Palomero
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Panisello
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Lozano-Rabella
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricky Tirtakasuma
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Judit Díaz-Gómez
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniela Grases
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Helena Pasamar
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Arregui
- HUB-ICO-IDIBELL Biobank, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Eduard Dorca Duch
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Ana Vivancos
- Cancer Genomics, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlos E de Andrea
- Pathology, Clinica Universidad de Navarra, Pamplona, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain,Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research IDISNA, Pamplona, Spain
| | - Jordi Ponce
- Department of Gynaecology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - August Vidal
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Josep Maria Piulats
- Medical Oncology, Catalan Institute of Oncology (ICO), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Spain
| | - Xavier Matias-Guiu
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain,Pathology, Arnau de Vilanova University Hospital, University of LLeida, IRBLLEIDA, Lleida, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
22
|
Kol A, Fan X, Wazynska MA, van Duijnhoven SM, Giesen D, Plat A, Van Eenennaam H, Elsinga PH, Nijman HW, de Bruyn M. Development of 89Zr-anti-CD103 PET imaging for non-invasive assessment of cancer reactive T cell infiltration. J Immunother Cancer 2022; 10:jitc-2022-004877. [PMID: 36600560 PMCID: PMC9723959 DOI: 10.1136/jitc-2022-004877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE CD103, an integrin specifically expressed on the surface of cancer-reactive T cells, is significantly increased during successful immunotherapy across human malignancies. In this study, we describe the generation and zirconium-89 (89Zr) radiolabeling of monoclonal antibody (mAb) clones that specifically recognize human CD103 for non-invasive immune positron-emission tomography (PET) imaging of T cell infiltration as potential biomarker for effective anticancer immune responses. EXPERIMENTAL DESIGN First, to determine the feasibility of anti-CD103 immuno-PET to visualize CD103-positive cells at physiologically and clinically relevant target densities, we developed an 89Zr-anti-murine CD103 PET tracer. Healthy, non-tumor bearing C57BL/6 mice underwent serial PET imaging after intravenous injection, followed by ex vivo biodistribution. Tracer specificity and macroscopic tissue distribution were studied using autoradiography combined with CD103 immunohistochemistry. Next, we generated and screened six unique mAbs that specifically target human CD103 positive cells. Optimal candidates were selected for 89Zr-anti-human CD103 PET development. Nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103 expressing Chinese hamster ovary (CHO) or CHO wild-type xenografts were injected with 89Zr-anti-human CD103 mAbs and underwent serial PET imaging, followed by ex vivo biodistribution. RESULTS 89Zr-anti-murine CD103 PET imaging identified CD103-positive tissues at clinically relevant target densities. For human anti-human CD103 PET development two clones were selected based on strong binding to the CD103+ CD8+ T cell subpopulation in ovarian cancer tumor digests, non-overlapping binding epitopes and differential CD103 blocking properties. In vivo, both 89Zr-anti-human CD103 tracers showed high target-to-background ratios, high target site selectivity and a high sensitivity in human CD103 positive xenografts. CONCLUSION CD103 immuno-PET tracers visualize CD103 T cells at relevant densities and are suitable for future non-invasive assessment of cancer reactive T cell infiltration.
Collapse
Affiliation(s)
- Arjan Kol
- Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xiaoyu Fan
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marta A. Wazynska
- Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Danique Giesen
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annechien Plat
- Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Philip H. Elsinga
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W. Nijman
- Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
López‐Janeiro Á, Villalba‐Esparza M, Brizzi ME, Jiménez‐Sánchez D, Ruz‐Caracuel I, Kadioglu E, Masetto I, Goubert V, Garcia‐Ros D, Melero I, Peláez‐García A, Hardisson D, de Andrea CE. The association between the tumor immune microenvironments and clinical outcome in low-grade, early-stage endometrial cancer patients. J Pathol 2022; 258:426-436. [PMID: 36169332 PMCID: PMC9828119 DOI: 10.1002/path.6012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
Abstract
Endometrial tumors show substantial heterogeneity in their immune microenvironment. This heterogeneity could be used to improve the accuracy of current outcome prediction tools. We assessed the immune microenvironment of 235 patients diagnosed with low-grade, early-stage endometrial cancer. Multiplex quantitative immunofluorescence was carried out to measure CD8, CD68, FOXP3, PD-1, and PD-L1 markers, as well as cytokeratin (CK), on tissue microarrays. Clustering results revealed five robust immune response patterns, each associated with specific immune populations, cell phenotypes, and cell spatial clustering. Most samples (69%) belonged to the immune-desert subtype, characterized by low immune cell densities. Tumor-infiltrating lymphocyte (TIL)-rich samples (4%) displayed high CD8+ T-cell infiltration, as well as a high percentage of CD8/PD-1+ cells. Immune-exclusion samples (19%) displayed the lowest CD8+ infiltration combined with high PD-L1 expression levels in CK+ tumor cells. In addition, they demonstrated high tumor cell spatial clustering as well as increased spatial proximity of CD8+ /PD-1+ and CK/PD-L1+ cells. FOXP3 and macrophage-rich phenotypes (3% and 4% of total samples) displayed relatively high levels of FOXP3+ regulatory T-cells and CD68+ macrophages, respectively. These phenotypes correlated with clinical outcomes, with immune-exclusion tumors showing an association with tumor relapse. When compared with prediction models built using routine pathological variables, models optimized with immune variables showed increased outcome prediction capacity (AUC = 0.89 versus 0.78) and stratification potential. The improved prediction capacity was independent of mismatch repair protein status and adjuvant radiotherapy treatment. Further, immunofluorescence results could be partially recapitulated using single-marker immunohistochemistry (IHC) performed on whole tissue sections. TIL-rich tumors demonstrated increased CD8+ T-cells by IHC, while immune-exclusion tumors displayed a lack of CD8+ T-cells and frequent expression of PD-L1 in tumor cells. Our results demonstrate the capability of the immune microenvironment to improve standard prediction tools in low-grade, early-stage endometrial carcinomas. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Álvaro López‐Janeiro
- Department of PathologyHospital Universitario La Paz, IdiPAZMadridSpain,Present address:
Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | - María Villalba‐Esparza
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | | | - Daniel Jiménez‐Sánchez
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | | | | | | | | | - David Garcia‐Ros
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | - Ignacio Melero
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain,Department of Immunology and ImmunotherapyClínica Universidad de NavarraPamplonaSpain,Program of Immunology and ImmunotherapyCIMA Universidad de NavarraPamplonaSpain
| | - Alberto Peláez‐García
- Molecular Pathology and Therapeutic Targets GroupLa Paz University Hospital (IdiPAZ)MadridSpain
| | - David Hardisson
- Department of PathologyHospital Universitario La Paz, IdiPAZMadridSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain,Molecular Pathology and Therapeutic Targets GroupLa Paz University Hospital (IdiPAZ)MadridSpain,Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
24
|
Plunkett KR, Armitage JD, Inderjeeth AJ, McDonnell AM, Waithman J, Lau PKH. Tissue-resident memory T cells in the era of (Neo) adjuvant melanoma management. Front Immunol 2022; 13:1048758. [PMID: 36466880 PMCID: PMC9709277 DOI: 10.3389/fimmu.2022.1048758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 10/10/2023] Open
Abstract
Tissue-resident memory T (TRM) cells have emerged as key players in the immune control of melanoma. These specialized cells are identified by expression of tissue retention markers such as CD69, CD103 and CD49a with downregulation of egress molecules such as Sphingosine-1-Phosphate Receptor-1 (S1PR1) and the lymphoid homing receptor, CD62L. TRM have been shown to be integral in controlling infections such as herpes simplex virus (HSV), lymphocytic choriomeningitis virus (LCMV) and influenza. More recently, robust pre-clinical models have also demonstrated TRM are able to maintain melanoma in a dormant state without progression to macroscopic disease reminiscent of their ability to control viral infections. The discovery of the role these cells play in anti-melanoma immunity has coincided with the advent of immune checkpoint inhibitor (ICI) therapy which has revolutionized the treatment of cancers. ICIs that target programmed death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have led to substantial improvements in outcomes for patients with metastatic melanoma and have been rapidly employed to reduce recurrences in the resected stage III setting. While ICIs mediate anti-tumor activity via CD8+ T cells, the specific subsets that facilitate this response is unclear. TRM invariably exhibit high expression of immune checkpoints such as PD-1, CTLA-4 and lymphocyte activating gene-3 (LAG-3) which strongly implicates this CD8+ T cell subset as a crucial mediator of ICI activity. In this review, we present pre-clinical and translational studies that highlight the critical role of TRM in both immune control of primary melanoma and as a key CD8+ T cell subset that mediates anti-tumor activity of ICIs for the treatment of melanoma.
Collapse
Affiliation(s)
- Kai R. Plunkett
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jesse D. Armitage
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | | | - Alison M. McDonnell
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Peter K. H. Lau
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
25
|
Ge W, Dong Y, Deng Y, Chen L, Chen J, Liu M, Wu J, Wang W, Ma X. Potential biomarkers: Identifying powerful tumor specific T cells in adoptive cellular therapy. Front Immunol 2022; 13:1003626. [PMID: 36451828 PMCID: PMC9702804 DOI: 10.3389/fimmu.2022.1003626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific T cells (TSTs) are essential components for the success of personalized tumor-infiltrating lymphocyte (TIL)-based adoptive cellular therapy (ACT). Therefore, the selection of a common biomarker for screening TSTs in different tumor types, followed by ex vivo expansion to clinical number levels can generate the greatest therapeutic effect. However, studies on shared biomarkers for TSTs have not been realized yet. The present review summarizes the similarities and differences of a number of biomarkers for TSTs in several tumor types studied in the last 5 years, and the advantages of combining biomarkers. In addition, the review discusses the possible shortcomings of current biomarkers and highlights strategies to identify TSTs accurately using intercellular interactions. Finally, the development of TSTs in personalized TIL-based ACT for broader clinical applications is explored.
Collapse
Affiliation(s)
- Wu Ge
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuqian Dong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lujuan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Muqi Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Marín-Jiménez JA, García-Mulero S, Matías-Guiu X, Piulats JM. Facts and Hopes in Immunotherapy of Endometrial Cancer. Clin Cancer Res 2022; 28:4849-4860. [PMID: 35789264 DOI: 10.1158/1078-0432.ccr-21-1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy with checkpoint inhibitors has changed the paradigm of treatment for many tumors, and endometrial carcinoma is not an exception. Approved treatment options are pembrolizumab or dostarlimab for mismatch repair deficient tumors, pembrolizumab for tumors with high mutational load, and, more recently, pembrolizumab/lenvatinib for all patients with endometrial cancer. Endometrial cancer is a heterogeneous disease with distinct molecular subtypes and different prognoses. Differences between molecular subgroups regarding antigenicity and immunogenicity should be relevant to develop more tailored immunotherapeutic approaches. In this review, we aim to summarize and discuss the current evidence-Facts, and future opportunities-Hopes-of immunotherapy for endometrial cancer, focusing on relevant molecular and tumor microenvironment features of The Cancer Genome Atlas endometrial cancer subtypes.
Collapse
Affiliation(s)
- Juan A Marín-Jiménez
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Xavier Matías-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova - IRBLLEIDA, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| | - Josep M Piulats
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| |
Collapse
|
27
|
Notarbartolo S, Abrignani S. Human T lymphocytes at tumor sites. Semin Immunopathol 2022; 44:883-901. [PMID: 36385379 PMCID: PMC9668216 DOI: 10.1007/s00281-022-00970-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
CD4+ and CD8+ T lymphocytes mediate most of the adaptive immune response against tumors. Naïve T lymphocytes specific for tumor antigens are primed in lymph nodes by dendritic cells. Upon activation, antigen-specific T cells proliferate and differentiate into effector cells that migrate out of peripheral blood into tumor sites in an attempt to eliminate cancer cells. After accomplishing their function, most effector T cells die in the tissue, while a small fraction of antigen-specific T cells persist as long-lived memory cells, circulating between peripheral blood and lymphoid tissues, to generate enhanced immune responses when re-encountering the same antigen. A subset of memory T cells, called resident memory T (TRM) cells, stably resides in non-lymphoid peripheral tissues and may provide rapid immunity independently of T cells recruited from blood. Being adapted to the tissue microenvironment, TRM cells are potentially endowed with the best features to protect against the reemergence of cancer cells. However, when tumors give clinical manifestation, it means that tumor cells have evaded immune surveillance, including that of TRM cells. Here, we review the current knowledge as to how TRM cells are generated during an immune response and then maintained in non-lymphoid tissues. We then focus on what is known about the role of CD4+ and CD8+ TRM cells in antitumor immunity and their possible contribution to the efficacy of immunotherapy. Finally, we highlight some open questions in the field and discuss how new technologies may help in addressing them.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
28
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Jiang F, Jiao Y, Yang K, Mao M, Yu M, Cao D, Xiang Y. Single-Cell Profiling of the Immune Atlas of Tumor-Infiltrating Lymphocytes in Endometrial Carcinoma. Cancers (Basel) 2022; 14:4311. [PMID: 36077846 PMCID: PMC9455014 DOI: 10.3390/cancers14174311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial carcinoma (EC) is a gynecological malignancy with a high incidence; however, thorough studies on tumor-infiltrating lymphocyte (TIL) populations in EC are lacking. We aimed to map the immune atlas of TILs in type I EC via single-cell RNA sequencing (scRNA-seq), mass cytometry and flow cytometry analysis. We found that natural killer (NK) cells and CD8+ T lymphocytes were the major components of TILs in EC patients. We first identified three transcriptionally distinct NK cell subsets, which are likely to possess diverse anti-tumor functions. Additionally, CD103+ cells substantially contributed to the CD8+ T cell population. The signature gene expression of CD103+ CD8+ T cells indicated the tissue residency, immunological memory, and exhaustion properties of this cell subset, which were defined as tissue-resident memory T cells (TRM cells). Moreover, based on scRNA-seq and mass cytometry analysis, we first identified the intrinsic heterogeneity of CD103+ CD8+ T cells that were thought to have a distinct cytotoxicity, cell adhesion and exhaustion status functions. Collectively, distinct subsets of NK cells were found and might shed light on future investigations. CD103+ CD8+ T cell population may be an important immunotherapeutic target in EC and targeting this cell population with combined immunosuppressive therapy might improve the efficacy of immunotherapy for EC.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Yuhao Jiao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Kun Yang
- Department of Dermatology, Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mingyi Mao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Mei Yu
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Dongyan Cao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Yang Xiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| |
Collapse
|
30
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
31
|
Parga-Vidal L, van Aalderen MC, Stark R, van Gisbergen KPJM. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 2022; 18:209-223. [PMID: 35079143 DOI: 10.1038/s41581-021-00525-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Huang Y, Zhou L, Zhang H, Zhang L, Xi X, Sun Y. BMDCs induce the generation of the CD103+CD8+ tissue-resident memory T cell subtype, which amplifies local tumor control in the genital tract. Cell Immunol 2022; 374:104502. [DOI: 10.1016/j.cellimm.2022.104502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
33
|
Wei W, Ding Y, He J, Wu J. Association of CD103+ T cell infiltration with overall survival in solid tumors of the digestive duct and its potential in anti-PD-1 treatment: A review and meta-analysis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:127-135. [PMID: 35352706 DOI: 10.5507/bp.2022.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
We looked into the most recent studies of digestive tumor patients and performed a meta-analysis to explore the association of CD103+ T cell infiltration with overall survival (OS) in solid tumors of the digestive duct. Major databases were searched. The hazard ratios (HR) and 95% confidence intervals (CI) for overall survival were extracted and pooled. A total of 1915 patients from 11 cohorts were included into the present meta-analysis. The pooled HR was 0.64 (95% CI: 0.42-0.96, P=0.03), suggesting that high CD103+ T cell infiltration is associated with better prognosis. Yet significant heterogeneity was revealed and located in the subgroup of CD4+CD103+ T cells. The pooled result indicated that CD103+ T cell infiltration in solid tumors of the digestive duct may possess predictive value for prognosis. Preclinical studies suggested that CD103+ T cell infiltration could predict response to anti-PD-1/PD-L1 treatment.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yun Ding
- Department of Radiotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiajia He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
34
|
Engineering T cells to survive and thrive in the hostile tumor microenvironment. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Mendiola M, Pellinen T, Ramon-Patino JL, Berjon A, Bruck O, Heredia-Soto V, Turkki R, Escudero J, Hemmes A, Garcia de la Calle LE, Crespo R, Gallego A, Hernandez A, Feliu J, Redondo A. Prognostic implications of tumor-infiltrating T cells in early-stage endometrial cancer. Mod Pathol 2022; 35:256-265. [PMID: 34642425 DOI: 10.1038/s41379-021-00930-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Patients with endometrial cancer differ in terms of the extent of T-cell infiltration; however, the association between T-cell subpopulations and patient outcomes remains unexplored. We characterized 285 early-stage endometrial carcinoma samples for T-cell infiltrates in a tissue microarray format using multiplex fluorescent immunohistochemistry. The proportion of T cells and their subpopulations were associated with clinicopathological features and relapse-free survival outcomes. CD3+ CD4+ infiltrates were more abundant in the patients with higher grade or non-endometrioid histology. Cytotoxic T cells (CD25+, PD-1+, and PD-L1+) were strongly associated with longer relapse-free survival. Moreover, CD3+ PD-1+ stromal cells were independent of other immune T-cell populations and clinicopathological factors in predicting relapses. Patients with high stromal T-cell fraction of CD3+ PD-1+ cells were associated with a 5-year relapse-free survival rate of 93.7% compared to 79.0% in patients with low CD3+ PD-1+ fraction. Moreover, in patients classically linked to a favorable outcome (such as endometrioid subtype and low-grade tumors), the stromal CD3+ PD-1+ T-cell fraction remained prognostically significant. This study supports that T-cell infiltrates play a significant prognostic role in early-stage endometrial carcinoma. Specifically, CD3+ PD-1+ stromal cells emerge as a promising novel prognostic biomarker.
Collapse
Affiliation(s)
- Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jorge L Ramon-Patino
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.,Department of Medical Oncology, Hospital Universitario Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Alberto Berjon
- Department of Pathology, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar Bruck
- Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Victoria Heredia-Soto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Riku Turkki
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.,AstraZeneca, Gothenburg, Sweden
| | - Javier Escudero
- Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Roberto Crespo
- Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Alejandro Gallego
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.,Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Alicia Hernandez
- Department of Gynecology, Hospital Universitario La Paz, Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jaime Feliu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.,Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Cátedra UAM-ANGEM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andres Redondo
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain. .,Translational Oncology Research Laboratory, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain. .,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain. .,Cátedra UAM-ANGEM, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
36
|
Tissue-resident immunity in the female and male reproductive tract. Semin Immunopathol 2022; 44:785-799. [PMID: 35488095 PMCID: PMC9053558 DOI: 10.1007/s00281-022-00934-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The conception of how the immune system is organized has been significantly challenged over the last years. It became evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune cells continuously reside in tissues until being reactivated, e.g., by a recurring pathogen or other stimuli. Consequently, the concept of tissue-resident immunity has emerged, and substantial evidence is now available to support its pivotal function in maintaining tissue homeostasis, sensing challenges and providing antimicrobial protection. Surprisingly, insights on tissue-resident immunity in the barrier tissues of the female reproductive tract are sparse and only slowly emerging. The need for protection from vaginal and amniotic infections, the uniqueness of periodic tissue shedding and renewal of the endometrial barrier tissue, and the demand for a tailored decidual immune adaptation during pregnancy highlight that tissue-resident immunity may play a crucial role in distinct compartments of the female reproductive tract. This review accentuates the characteristics of tissue-resident immune cells in the vagina, endometrium, and the decidua during pregnancy and discusses their functional role in modulating the risk for infertility, pregnancy complications, infections, or cancer. We here also review data published to date on tissue-resident immunity in the male reproductive organs, which is still a largely uncharted territory.
Collapse
|
37
|
Hoffmann JC, Schön MP. Integrin α E(CD103)β 7 in Epithelial Cancer. Cancers (Basel) 2021; 13:6211. [PMID: 34944831 PMCID: PMC8699740 DOI: 10.3390/cancers13246211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Interactions of both the innate and the adaptive immune system with tumors are complex and often influence courses and therapeutic treatments in unanticipated ways. Based on the concept that CD8+T cells can mediate important antitumor effects, several therapies now aim to amplify their specific activity. A subpopulation of CD8+ tissue-resident T lymphocytes that express the αE(CD103)β7 integrin has raised particular interest. This receptor presumably contributes to the recruitment and retention of tumor-infiltrating immune cells through interaction with its ligand, E-cadherin. It appears to have regulatory functions and is thought to be a component of some immunological synapses. In TGF-rich environments, the αE(CD103)β7/E-cadherin-interaction enhances the binding strength between tumor cells and infiltrating T lymphocytes. This activity facilitates the release of lytic granule contents and cytokines as well as further immune responses and the killing of target cells. Expression of αE(CD103)β7 in some tumors is associated with a rather favorable prognosis, perhaps with the notable exception of squamous cell carcinoma of the skin. Although epithelial skin tumors are by far the most common tumors of fair-skinned people, there have been very few studies on the distribution of αE(CD103)β7 expressing cells in these neoplasms. Given this background, we describe here that αE(CD103)β7 is scarcely present in basal cell carcinomas, but much more abundant in squamous cell carcinomas with heterogeneous distribution. Notwithstanding a substantial number of studies, the role of αE(CD103)β7 in the tumor context is still far from clear. Here, we summarize the essential current knowledge on αE(CD103)β7 and outline that it is worthwhile to further explore this intriguing receptor with regard to the pathophysiology, therapy, and prognosis of solid tumors.
Collapse
Affiliation(s)
- Johanna C. Hoffmann
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
38
|
Naqvi A, MacKintosh ML, Derbyshire AE, Tsakiroglou AM, Walker TDJ, McVey RJ, Bolton J, Fergie M, Bagley S, Ashton G, Pemberton PW, Syed AA, Ammori BJ, Byers R, Crosbie EJ. The impact of obesity and bariatric surgery on the immune microenvironment of the endometrium. Int J Obes (Lond) 2021; 46:605-612. [PMID: 34857870 PMCID: PMC8872994 DOI: 10.1038/s41366-021-01027-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The incidence of endometrial cancer is rising in parallel with the obesity epidemic. Obesity increases endometrial cancer risk and weight loss is protective, but the underlying mechanisms are incompletely understood. We hypothesise that the immune microenvironment may influence susceptibility to malignant transformation in the endometrium. The aim of this study was to measure the impact of obesity and weight loss on the immunological landscape of the endometrium. METHODS We conducted a prospective cohort study of women with class III obesity (body mass index, BMI ≥ 40 kg/m2) undergoing bariatric surgery or medically-supervised low-calorie diet. We collected blood and endometrial samples at baseline, and two and 12 months after weight loss intervention. Serum was analysed for inflammatory markers CRP, IL-6 and TNF-α. Multiplex immunofluorescence was used to simultaneously identify cells positive for immune markers CD68, CD56, CD3, CD8, FOXP3 and PD-1 in formalin-fixed paraffin-embedded endometrial tissue sections. Kruskal-Wallis tests were used to determine whether changes in inflammatory and immune biomarkers were associated with weight loss. RESULTS Forty-three women with matched serum and tissue samples at all three time points were included in the analysis. Their median age and BMI were 44 years and 52 kg/m2, respectively. Weight loss at 12 months was greater in women who received bariatric surgery (n = 37, median 63.3 kg) than low-calorie diet (n = 6, median 12.8 kg). There were significant reductions in serum CRP (p = 3.62 × 10-6, r = 0.570) and IL-6 (p = 0.0003, r = 0.459), but not TNF-α levels, with weight loss. Tissue immune cell densities were unchanged except for CD8+ cells, which increased significantly with weight loss (p = 0.0097, r = -0.323). Tissue CD3+ cell density correlated negatively with systemic IL-6 levels (p = 0.0376; r = -0.318). CONCLUSION Weight loss is associated with reduced systemic inflammation and a recruitment of protective immune cell types to the endometrium, supporting the concept that immune surveillance may play a role in endometrial cancer prevention.
Collapse
Affiliation(s)
- Anie Naqvi
- The University of Manchester Medical School, Oxford Road, Manchester, M13 9PL, UK
| | - Michelle L MacKintosh
- Division of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - Abigail E Derbyshire
- Division of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - Anna-Maria Tsakiroglou
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Thomas D J Walker
- Gynaecological Oncology Research Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Rhona J McVey
- Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - James Bolton
- Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - Martin Fergie
- Division of Informatics, Imaging & Data Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Steven Bagley
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Garry Ashton
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Philip W Pemberton
- Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - Akheel A Syed
- Department of Obesity Medicine, Diabetes & Endocrinology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Stott Lane, Salford, M6 8HD, UK.,Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Basil J Ammori
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Surgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Stott Lane, Salford, M6 8HD, UK
| | - Richard Byers
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.,Department of Pathology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK
| | - Emma J Crosbie
- Division of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9WL, UK. .,Gynaecological Oncology Research Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
39
|
Park SL, Mackay LK. Decoding Tissue-Residency: Programming and Potential of Frontline Memory T Cells. Cold Spring Harb Perspect Biol 2021; 13:a037960. [PMID: 33753406 PMCID: PMC8485744 DOI: 10.1101/cshperspect.a037960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Memory T-cell responses are partitioned between the blood, secondary lymphoid organs, and nonlymphoid tissues. Tissue-resident memory T (Trm) cells are a population of immune cells that remain permanently in tissues without recirculating in blood. These nonrecirculating cells serve as a principal node in the anamnestic response to invading pathogens and developing malignancies. Here, we contemplate how T-cell tissue residency is defined and shapes protective immunity in the steady state and in the context of disease. We review the properties and heterogeneity of Trm cells, highlight the critical roles these cells play in maintaining tissue homeostasis and eliciting immune pathology, and explore how they might be exploited to treat disease.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Laura K Mackay
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
40
|
Park HS, Jeon Y, Lee H, Lee H, Kim YA, Park IA, Bang WS, Lee M, Cho YJ, Kim J, Gong G, Lee HJ. Phenotypic Differences of CD103+ Tissue-Resident Memory T Cells Associated with Various Cancers. Pathobiology 2021; 89:116-126. [PMID: 34592745 DOI: 10.1159/000518972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The presence and clinical importance of tissue-resident memory T (TRM) cells have been recently described in association with various cancer types. However, the frequency and the traditional naïve-effector-memory phenotypic characteristics of TRM cells are largely unknown. METHODS We analyzed single-cell populations of colorectal cancer (CC, n = 18), stomach cancer (SC, n = 13), renal cell carcinoma (RCC, n = 19), and breast cancer (BC, n = 16) by dissociation of tumor tissue with collagenase/hyaluronidase. We investigated populations of naïve, effector, and memory T and TRM cells by flow cytometry. RESULTS Among CD8- cells, CC was associated with a significantly higher proportion of CD103+ T cells than other tumor types (p < 0.001). Among CD8+ cells, CC and SC were associated with higher CD103+ T-cell proportions than RCC and BC (p < 0.001). Significantly more CD8+ than CD8- cells expressed CD103 (p < 0.001). In association with SC, RCC, and BC, CD8+ T cells had a similar T-cell phenotype composition pattern: fewer effector T cells and more memory-type T cells among CD103+ cells compared with CD103- cells (p < 0.05). Tumors with higher proportion of CD103+ cells had no specific clinicopathologic characteristics than those with lower proportion of CD103+ cells. CONCLUSION TRM cell abundance and phenotypes varied among CC, SC, RCC, and BC. Further studies regarding the functional differences of TRM associated with various tumors are warranted.
Collapse
Affiliation(s)
- Hye Seon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yeonjin Jeon
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Heejae Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Ae Kim
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - In Ah Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Seon Bang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Miseon Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young Jin Cho
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jihyeong Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
41
|
Dornieden T, Sattler A, Pascual-Reguant A, Ruhm AH, Thiel LG, Bergmann YS, Thole LML, Köhler R, Kühl AA, Hauser AE, Boral S, Friedersdorff F, Kotsch K. Signatures and Specificity of Tissue-Resident Lymphocytes Identified in Human Renal Peritumor and Tumor Tissue. J Am Soc Nephrol 2021; 32:2223-2241. [PMID: 34074699 PMCID: PMC8729844 DOI: 10.1681/asn.2020101528] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells are known to be important for the first line of defense in mucosa-associated tissues. However, the composition, localization, effector function, and specificity of TRM cells in the human kidney and their relevance for renal pathology have not been investigated. METHODS Lymphocytes derived from blood, renal peritumor samples, and tumor samples were phenotypically and functionally assessed by applying flow cytometry and highly advanced histology (multi-epitope ligand cartography) methods. RESULTS CD69+CD103+CD8+ TRM cells in kidneys display an inflammatory profile reflected by enhanced IL-2, IL-17, and TNFα production, and their frequencies correlate with increasing age and kidney function. We further identified mucosa-associated invariant T and CD56dim and CD56bright natural killer cells likewise expressing CD69 and CD103, the latter significantly enriched in renal tumor tissues. CD8+ TRM cell frequencies were not elevated in kidney tumor tissue, but they coexpressed PD-1 and TOX and produced granzyme B. Tumor-derived CD8+ TRM cells from patients with metastases were functionally impaired. Both CD69+CD103-CD4+ and CD69+CD103-CD8+ TRM cells form distinct clusters in tumor tissues in proximity to antigen-presenting cells. Finally, EBV, CMV, BKV, and influenza antigen-specific CD8+ T cells were enriched in the effector memory T cell population in the kidney. CONCLUSIONS Our data provide an extensive overview of TRM cells' phenotypes and functions in the human kidney for the first time, pointing toward their potential relevance in kidney transplantation and kidney disease.
Collapse
Affiliation(s)
- Theresa Dornieden
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Annkathrin Helena Ruhm
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lion Gabriel Thiel
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yasmin Samira Bergmann
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Köhler
- German Rheumatism Research Centre Berlin, Leibniz Institute, Berlin, Germany
| | - Anja Andrea Kühl
- iPath.Berlin—Immunopathology for Experimental Models, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja Erika Hauser
- German Rheumatism Research Centre Berlin, Leibniz Institute, Berlin, Germany,Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sengül Boral
- Department of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Friedersdorff
- Department of Urology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
The Potential of Tissue-Resident Memory T Cells for Adoptive Immunotherapy against Cancer. Cells 2021; 10:cells10092234. [PMID: 34571883 PMCID: PMC8465847 DOI: 10.3390/cells10092234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T cells (TRM) comprise an important memory T cell subset that mediates local protection upon pathogen re-encounter. TRM populations preferentially localize at entry sites of pathogens, including epithelia of the skin, lungs and intestine, but have also been observed in secondary lymphoid tissue, brain, liver and kidney. More recently, memory T cells characterized as TRM have also been identified in tumors, including but not limited to melanoma, lung carcinoma, cervical carcinoma, gastric carcinoma and ovarian carcinoma. The presence of these memory T cells has been strongly associated with favorable clinical outcomes, which has generated an interest in targeting TRM cells to improve immunotherapy of cancer patients. Nevertheless, intratumoral TRM have also been found to express checkpoint inhibitory receptors, such as PD-1 and LAG-3. Triggering of such inhibitory receptors could induce dysfunction, often referred to as exhaustion, which may limit the effectiveness of TRM in countering tumor growth. A better understanding of the differentiation and function of TRM in tumor settings is crucial to deploy these memory T cells in future treatment options of cancer patients. The purpose of this review is to provide the current status of an important cancer immunotherapy known as TIL therapy, insight into the role of TRM in the context of antitumor immunity, and the challenges and opportunities to exploit these cells for TIL therapy to ultimately improve cancer treatment.
Collapse
|
43
|
Dijkgraaf FE, Kok L, Schumacher TNM. Formation of Tissue-Resident CD8 + T-Cell Memory. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038117. [PMID: 33685935 PMCID: PMC8327830 DOI: 10.1101/cshperspect.a038117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resident memory CD8+ T (Trm) cells permanently reside in nonlymphoid tissues where they act as a first line of defense against recurrent pathogens. How and when antigen-inexperienced CD8+ T cells differentiate into Trm has been a topic of major interest, as knowledge on how to steer this process may be exploited in the development of vaccines and anticancer therapies. Here, we first review the current understanding of the early signals that CD8+ T cells receive before they have entered the tissue and that govern their capacity to develop into tissue-resident memory T cells. Subsequently, we discuss the tissue-derived factors that promote Trm maturation in situ. Combined, these data sketch a model in which a subset of responding T cells develops a heightened capacity to respond to local cues present in the tissue microenvironment, which thereby imprints their ability to contribute to the tissue-resident memory CD8+ T-cell pool that provide local control against pathogens.
Collapse
Affiliation(s)
- Feline E Dijkgraaf
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Lianne Kok
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| |
Collapse
|
44
|
Hartl C, Finke J, Hasselblatt P, Kreisel W, Schmitt-Graeff A. Diagnostic and therapeutic challenge of unclassifiable enteropathies with increased intraepithelial CD103 + CD8 + T lymphocytes: a single center case series. Scand J Gastroenterol 2021; 56:889-898. [PMID: 34057863 DOI: 10.1080/00365521.2021.1931958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Chronic diarrhea, villous atrophy and/or increased intraepithelial T-lymphocytes (IEL) occur in many inflammatory disorders including celiac disease (CD). However, a definite diagnosis is difficult to make in some patients despite an extensive diagnostic work-up. Clinical outcomes and histological phenotypes of such patients we refer to as unclassifiable enteropathy (UEP) remain unclear. MATERIAL AND METHODS We performed a retrospective single-center analysis of patients with chronic diarrhea, weight loss and increased IEL. Patients with defined etiologies including infections, CD, drugs, immunodeficiencies or neoplasms were excluded. Clinical and histologic/immunophenotypic parameters were analyzed. RESULTS Nine patients with UEP were identified. Small intestinal damage ranged from minor villous abnormalities to complete atrophy while all patients displayed high numbers of CD103+ CD8+ IELs. In contrast to CD, these CD8+ T cells were not confined to the surface epithelium, but also infiltrated the crypts. Additional histological features included apoptotic crypt epithelial cells and mixed inflammatory infiltrates in the tunica propria. Involvement of other segments of the gastrointestinal tract was observed in 7/9 patients. A clonal intestinal T-cell lymphoproliferative disorder developed in 2 patients, one of which had a fatal disease course. The majority of patients responded to corticosteroids, while response to immunosuppressive medications yielded heterogeneous results. CONCLUSIONS We report a patient population with 'difficult-to-classify' enteropathies characterized by various degrees of villous atrophy and strongly increased intraepithelial CD103+ CD8+ T cells in the small intestine which harbor an increased risk for T-cell lymphoproliferative disorders. Clinical course, histology, and response to immunosuppressive therapy all suggest an autoimmune pathogenesis.
Collapse
Affiliation(s)
- Christina Hartl
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Kreisel
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
45
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
46
|
Kol A, Lubbers JM, Terwindt ALJ, Workel HH, Plat A, Wisman GBA, Bart J, Nijman HW, De Bruyn M. Combined STING levels and CD103+ T cell infiltration have significant prognostic implications for patients with cervical cancer. Oncoimmunology 2021; 10:1936391. [PMID: 34178428 PMCID: PMC8205031 DOI: 10.1080/2162402x.2021.1936391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.
Collapse
Affiliation(s)
- Arjan Kol
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Joyce M Lubbers
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Anouk L J Terwindt
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Hagma H Workel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Annechien Plat
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - G Bea A Wisman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Joost Bart
- University of Groningen, University Medical Center Groningen, Department of Pathology, The Netherlands
| | - Hans W Nijman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Marco De Bruyn
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| |
Collapse
|
47
|
Paijens ST, Vledder A, Loiero D, Duiker EW, Bart J, Hendriks AM, Jalving M, Workel HH, Hollema H, Werner N, Plat A, Wisman GBA, Yigit R, Arts H, Kruse AJ, de Lange N, Koelzer VH, de Bruyn M, Nijman HW. Prognostic image-based quantification of CD8CD103 T cell subsets in high-grade serous ovarian cancer patients. Oncoimmunology 2021; 10:1935104. [PMID: 34123576 PMCID: PMC8183551 DOI: 10.1080/2162402x.2021.1935104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022] Open
Abstract
CD103-positive tissue resident memory-like CD8+ T cells (CD8CD103 TRM) are associated with improved prognosis across malignancies, including high-grade serous ovarian cancer (HGSOC). However, whether quantification of CD8, CD103 or both is required to improve existing survival prediction and whether all HGSOC patients or only specific subgroups of patients benefit from infiltration, remains unclear. To address this question, we applied image-based quantification of CD8 and CD103 multiplex immunohistochemistry in the intratumoral and stromal compartments of 268 advanced-stage HGSOC patients from two independent clinical institutions. Infiltration of CD8CD103 immune cell subsets was independent of clinicopathological factors. Our results suggest CD8CD103 TRM quantification as a superior method for prognostication compared to single CD8 or CD103 quantification. A survival benefit of CD8CD103 TRM was observed only in patients treated with primary cytoreductive surgery. Moreover, survival benefit in this group was limited to patients with no macroscopic tumor lesions after surgery. This approach provides novel insights into prognostic stratification of HGSOC patients and may contribute to personalized treatment strategies in the future.
Collapse
Affiliation(s)
- S. T. Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A. Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D. Loiero
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - E. W. Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J. Bart
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A. M. Hendriks
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M. Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. H. Workel
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Hollema
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - N. Werner
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A. Plat
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G. B. A. Wisman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R. Yigit
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Arts
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A. J. Kruse
- Department of Obstetrics and Gynecology, Isala Hospital Zwolle, Zwolle, The Netherlands
| | - N.M. de Lange
- Department of Obstetrics and Gynecology, Isala Hospital Zwolle, Zwolle, The Netherlands
| | - V. H. Koelzer
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - M. de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. W. Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Marceaux C, Weeden CE, Gordon CL, Asselin-Labat ML. Holding our breath: the promise of tissue-resident memory T cells in lung cancer. Transl Lung Cancer Res 2021; 10:2819-2829. [PMID: 34295680 PMCID: PMC8264348 DOI: 10.21037/tlcr-20-819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
T cell memory is critical in controlling infection and plays an important role in anti-tumor responses in solid cancers. While effector memory and central memory T cells circulate and patrol non-lymphoid and lymphoid organs respectively, tissue resident memory T cells (TRM) permanently reside in tissues and provide local protective immune responses. In a number of solid tumors, tumor-specific T cell memory responses likely play an important role in keeping tumors in check, limiting cancer cell dissemination and reducing risk of relapse. In non-small cell lung cancer (NSCLC), a subset of tumor infiltrating lymphocytes (TILs) display phenotypic and functional characteristics associated with lung TRM (TRM-like TILs), including the expression of tissue-specific homing molecules and immune exhaustion markers. High infiltration of TRM-like TILs correlates with better survival outcomes for lung cancer patients, indicating that TRM-like TILs may contribute to anti-tumor responses. However, a number of TRM-like TILs do not display tumor specificity and the exact role of TRM-like TILs in mediating anti-tumor response in lung cancer is unclear. Here we review the characteristics of TRM-like TILs in lung cancer, the role these cells play in mediating anti-tumor immunity and the therapeutic implications of TRM-like TILs in the use and development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Claire Marceaux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Clare E Weeden
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Cancer Early Detection and Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
49
|
Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, Gupta S, Vanderbilt C, Purohit TA, Liu M, Kansler E, Nixon BG, Chen YB, Makarov V, Blum KA, Attalla K, Weng S, Salmans ML, Golkaram M, Liu L, Zhang S, Vijayaraghavan R, Pawlowski T, Reuter V, Carlo MI, Voss MH, Coleman J, Russo P, Motzer RJ, Li MO, Leslie CS, Chan TA, Hakimi AA. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 2021; 39:662-677.e6. [PMID: 33861994 PMCID: PMC8268947 DOI: 10.1016/j.ccell.2021.03.007] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.
Collapse
Affiliation(s)
- Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lynda Vuong
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Diego Chowell
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyle A Blum
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrollis Attalla
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stanley Weng
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Li Liu
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shile Zhang
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | | | | | - Victor Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - A Ari Hakimi
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
50
|
Wang T, Chen B, Meng T, Liu Z, Wu W. Identification and immunoprofiling of key prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Bioengineered 2021; 12:1555-1575. [PMID: 33955820 PMCID: PMC8806269 DOI: 10.1080/21655979.2021.1918538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME) is involved in the occurrence and development of hepatocellular carcinoma (HCC), and immune cells in the TME have been implicated in its progression and treatment. However, the association of genes involved in the TME with HCC prognosis remains unclear. Thus, in this study, we obtained transcriptomic and clinicopathological data of patients with HCC from The Cancer Genome Atlas to identify key genes in TME associated with HCC prognosis. Stromal and immune cell scores were calculated using the ESTIMATE method, and differentially expressed genes (DEGs) were determined. We identified 830 DEGs, which were further subjected to survival analyses and functional enrichment analysis. Next, we identified prognostic TME-associated DEGs, established a protein-protein interaction (PPI) network, and performed Cox analysis.Consequently, four key prognostic genes (CXCL5, CXCL8, IL18RAP, and TREM2) associated with TME, were identified, in which CXCL5 and IL18RAP may be potential independent prognostic factors. Age, clinical stage, N stage, and risk score were also determined as significant prognostic variables. CIBERSORT was used to predict the constitution and relative content of the immune cells, wherein M0 macrophages were the most closely related to the key genes. In conclusion, CXCL5, CXCL8, IL18RAP, and TREM2 were associated with HCC prognosis and were important for immune cell invasion into the TME. Additionally, IL18RAP expression may contribute toward favorable prognosis in patients with HCC. Consequently, these genes may serve as potential biomarkers and immunotherapeutic targets for HCC.
Collapse
Affiliation(s)
- Tianbing Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bang Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Liu
- Department of General Surgery, Anhui NO.2 Provinicial People's Hospital, Hefei, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of General Surgery, Anhui NO.2 Provinicial People's Hospital, Hefei, China
| |
Collapse
|