1
|
Shanshan W, Hongying M, Jingjing F, Rui Y. Metformin and buparlisib synergistically induce apoptosis of non-small lung cancer (NSCLC) cells via Akt/FoxO3a/Puma axis. Toxicol In Vitro 2024; 97:105801. [PMID: 38479708 DOI: 10.1016/j.tiv.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a global health issue lacking effective treatments. Buparlisib is a pan-PI3K inhibitor that shows promising clinical results in treating NSCLC. However, chemoresistance is inevitable and hampers the application of buparlisib. Studies show that a combination of phytochemicals and chemotherapeutics enhances its effectiveness. Here, we evaluated the role of metformin, an agent with multiple pharmacological properties, in enhancing the anti-tumour activities of buparlisib against NSCLC cells. Our results showed that metformin and buparlisib synergistically inhibited cell viability, migration, and invasion of NSCLC cells. In addition, co-treatment of metformin and buparlisib also induced cell cycle arrest and cell death in NSCLC cells. Mechanistically, metformin and buparlisib repressed Mcl-1 and upregulated Puma in NSCLC cells in a p53-independent manner. Moreover, they inhibited the PI3K/Akt signalling pathway, leading to activation of the FoxO3a/Puma signalling in NSCLC cells. Our findings suggest that combined treatment of metformin and buparlisib might provide a promising strategy for treating NSCLC.
Collapse
Affiliation(s)
- Wang Shanshan
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Ma Hongying
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Fang Jingjing
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Yu Rui
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315020, China.
| |
Collapse
|
2
|
Chung C, Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2024:10781552241242684. [PMID: 38576390 DOI: 10.1177/10781552241242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Since the publication of the original work in 2014, significant progress has been made in the characterization of genomic alterations that drive oncogenic addiction of nonsmall cell lung cancer (NSCLC) and how the immune system can leverage non-oncogenic pathways to modulate therapeutic outcomes. This update evaluates and validates the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in NSCLC. DATA SOURCES We performed a literature search from January 2015 to October 2023 using the keywords non-small cell lung cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, circulating tumor DNA, predictive and prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION We identified, reviewed, and evaluated relevant clinical trials, meta-analyses, seminal articles, and published clinical practice guidelines in the English language. DATA SYNTHESIS Regulatory-approved targeted therapies include those somatic gene alterations of EGFR ("classic" mutations, exon 20 insertion, and rare EGFR mutations), ALK, ROS1, BRAF V600, RET, MET, NTRK, HER2, and KRAS G12C. Data for immunotherapy and circulating tumor DNA in next-generation sequencing are considered emerging, whereas the predictive role for PIK3CA gene mutation is insufficient. CONCLUSIONS Advances in sequencing and other genomic technologies have led to identifying novel oncogenic drivers, novel resistance mechanisms, and co-occurring mutations that characterize NSCLC, creating further therapeutic opportunities. The benefits associated with immunotherapy in the perioperative setting hold initial promise, with their long-term results awaiting.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
4
|
Ghezzi C, Perez S, Ryan K, Wong A, Chen BY, Damoiseaux R, Clark PM. Early Reduction of Glucose Consumption Is a Biomarker of Kinase Inhibitor Efficacy Which Can Be Reversed with GLUT1 Overexpression in Lung Cancer Cells. Mol Imaging Biol 2023; 25:541-553. [PMID: 36284040 PMCID: PMC10732700 DOI: 10.1007/s11307-022-01782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Small molecule inhibitors that target oncogenic driver kinases are an important class of therapies for non-small cell lung cancer (NSCLC) and other malignancies. However, these therapies are not without their challenges. Each inhibitor works on only a subset of patients, the pharmacokinetics of these inhibitors is variable, and these inhibitors are associated with significant side effects. Many of these inhibitors lack non-invasive biomarkers to confirm pharmacodynamic efficacy, and our understanding of how these inhibitors block cancer cell growth remains incomplete. Limited clinical studies suggest that early (< 2 weeks after start of therapy) changes in tumor glucose consumption, measured by [18F]FDG PET imaging, can predict therapeutic efficacy, but the scope of this strategy and functional relevance of this inhibition of glucose consumption remains understudied. Here we demonstrate that early inhibition of glucose consumption as can be measured clinically with [18F]FDG PET is a consistent phenotype of efficacious targeted kinase inhibitors and is necessary for the subsequent inhibition of growth across models of NSCLC. METHODS We tested nine NSCLC cell lines (A549, H1129, H1734, H1993, H2228, H3122, H460, HCC827, and PC9 cells) and ten targeted therapies (afatinib, buparlisib, ceritinib, cabozantinib, crizotinib, dovitinib, erlotinib, ponatinib, trametinib, and vemurafenib) across concentrations ranging from 1.6 nM to 5 µM to evaluate whether these inhibitors block glucose consumption at 24-h post-drug treatment and cell growth at 72-h post-drug treatment. We overexpressed the facilitative glucose transporter SLC2A1 (GLUT1) to test the functional connection between blocked glucose consumption and cell growth after treatment with a kinase inhibitor. A subset of these inhibitors and cell lines were studied in vivo. RESULTS Across the nine NSCLC cell lines, ten targeted therapies, and a range of inhibitor concentrations, whether a kinase inhibitor blocked glucose consumption at 24-h post-drug treatment strongly correlated with whether that inhibitor blocked cell growth at 72-h post-drug treatment in cell culture. These results were confirmed in vivo with [18F]FDG PET imaging. GLUT1 overexpression blocked the kinase inhibitors from limiting glucose consumption and cell growth. CONCLUSIONS Our results demonstrate that the early inhibition of lung cancer glucose consumption in response to a kinase inhibitor is a strong biomarker of and is often required for the subsequent inhibition of cell growth. Early inhibition of glucose consumption may provide complementary information to other biomarkers in determining whether a drug will effectively limit tumor growth.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefani Perez
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaitlin Ryan
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alicia Wong
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter M Clark
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
6
|
Bourigault P, Skwarski M, Macpherson RE, Higgins GS, McGowan DR. Timing of hypoxia PET/CT imaging after 18F-fluoromisonidazole injection in non-small cell lung cancer patients. Sci Rep 2022; 12:21746. [PMID: 36526815 PMCID: PMC9758119 DOI: 10.1038/s41598-022-26199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Positron emission tomography (PET)/computed tomography (CT) using the radiotracer 18F-Fluoromisonidazole (FMISO) has been widely employed to image tumour hypoxia and is of interest to help develop novel hypoxia modifiers and guide radiation treatment planning. Yet, the optimal post-injection (p.i.) timing of hypoxic imaging remains questionable. Therefore, we investigated the correlation between hypoxia-related quantitative values in FMISO-PET acquired at 2 and 4 h p.i. in patients with non-small cell lung cancer (NSCLC). Patients with resectable NSCLC participated in the ATOM clinical trial (NCT02628080) which investigated the hypoxia modifying effects of atovaquone. Two-hour and four-hour FMISO PET/CT images acquired at baseline and pre-surgery visits (n = 58) were compared. Cohort 1 (n = 14) received atovaquone treatment, while cohort 2 (n = 15) did not. Spearman's rank correlation coefficients (ρ) assessed the relationship between hypoxia-related metrics, including standardised uptake value (SUV), tumour-to-blood ratio (TBR), and tumour hypoxic volume (HV) defined by voxels with TBR ≥ 1.4. As the primary imaging-related trial endpoint used to evaluate the action of atovaquone on tumour hypoxia in patients with NSCLC was change in tumour HV from baseline, this was also assessed in patients (n = 20) with sufficient baseline 2- and 4-h scan HV to reliably measure change (predefined as ≥ 1.5 mL). Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. In tumours overall, strong correlation (P < 0.001) was observed for SUVmax ρ = 0.87, SUVmean ρ = 0.91, TBRmax ρ = 0.83 and TBRmean ρ = 0.81 between 2- and 4-h scans. Tumour HV was moderately correlated (P < 0.001) with ρ = 0.69 between 2- and 4-h scans. Yet, in tumour subregions, the correlation of HV decreased from the centre ρ = 0.71 to the edge ρ = 0.45 (P < 0.001). SUV, TBR, and HV values were consistently higher on 4-h scans than on 2-h scans, indicating better tracer-to-background contrast. For instance, for TBRmax, the mean, median, and interquartile range were 1.9, 1.7, and 1.6-2.0 2-h p.i., and 2.6, 2.4, and 2.0-3.0 4-h p.i., respectively. Our results support that FMISO-PET scans should be performed at 4 h p.i. to evaluate tumour hypoxia in NSCLC.Trial registration: ClinicalTrials.gov, NCT02628080. Registered 11/12/2015, https://clinicaltrials.gov/ct2/show/NCT02628080 .
Collapse
Affiliation(s)
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
7
|
King L, Bernaitis N, Christie D, Chess-Williams R, Sellers D, McDermott C, Dare W, Anoopkumar-Dukie S. Drivers of Radioresistance in Prostate Cancer. J Clin Med 2022; 11:jcm11195637. [PMID: 36233505 PMCID: PMC9573022 DOI: 10.3390/jcm11195637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer worldwide. Radiotherapy remains one of the first-line treatments in localised disease and may be used as monotherapy or in combination with other treatments such as androgen deprivation therapy or radical prostatectomy. Despite advancements in delivery methods and techniques, radiotherapy has been unable to totally overcome radioresistance resulting in treatment failure or recurrence of previously treated PCa. Various factors have been linked to the development of tumour radioresistance including abnormal tumour vasculature, oxygen depletion, glucose and energy deprivation, changes in gene expression and proteome alterations. Understanding the biological mechanisms behind radioresistance is essential in the development of therapies that are able to produce both initial and sustained response to radiotherapy. This review will investigate the different biological mechanisms utilised by PCa tumours to drive radioresistance.
Collapse
Affiliation(s)
- Liam King
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Nijole Bernaitis
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
| | - David Christie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- GenesisCare, Gold Coast, QLD 4224, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Russ Chess-Williams
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Donna Sellers
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Catherine McDermott
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Wendy Dare
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Correspondence: ; Tel.: +61-(0)-7-5552-7725
| |
Collapse
|
8
|
Fabian A, Domschikowski J, Letsch A, Schmalz C, Freitag-Wolf S, Dunst J, Krug D. Use and Reporting of Patient-Reported Outcomes in Trials of Palliative Radiotherapy: A Systematic Review. JAMA Netw Open 2022; 5:e2231930. [PMID: 36136335 PMCID: PMC9500555 DOI: 10.1001/jamanetworkopen.2022.31930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IMPORTANCE Approximately 50% of all patients with cancer have an indication for radiotherapy, and approximately 50% of radiotherapy is delivered with palliative intent, with the aim of alleviating symptoms. Symptoms are best assessed by patient-reported outcomes (PROs), yet their reliable interpretation requires adequate reporting in publications. OBJECTIVE To investigate the use and reporting of PROs in clinical trials of palliative radiotherapy. EVIDENCE REVIEW This preregistered systematic review searched PubMed/Medline, EMBASE, and the Cochrane Center Register of Controlled Trials for clinical trials of palliative radiotherapy published from 1990 to 2020. Key eligibility criteria were palliative setting, palliative radiotherapy as treatment modality, and clinical trial design (per National Institutes of Health definition). Two authors independently assessed eligibility. Trial characteristics were extracted and standard of PRO reporting was assessed in adherence to the Consolidated Standards of Reporting Trials (CONSORT) PRO extension. The association of the year of publication with the use of PROs was assessed by logistic regression. Factors associated with higher CONSORT-PRO adherence were analyzed by multiple regression. This study is reported following the PRISMA guidelines. FINDINGS Among 7377 records screened, 225 published clinical trials representing 24 281 patients were eligible. Of these, 45 trials (20%) used a PRO as a primary end point and 71 trials (31%) used a PRO as a secondary end point. The most prevalent PRO measures were the Numeric Rating Scale/Visual Analogue Scale (38 trials), European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire C30 (32 trials), and trial-specific unvalidated measures (25 trials). A more recent year of publication was significantly associated with a higher chance of PROs as a secondary end point (odds ratio [OR], 1.04 [95% CI, 1.00-1.07]; P = .03) but not as primary end point. Adherence to CONSORT-PRO was poor or moderate for most items. Mean (SD) adherence to the extension adherence score was 46.2% (19.6%) for trials with PROs as primary end point and 31.8% (19.8%) for trials with PROs as a secondary end point. PROs as a primary end point (regression coefficient, 9.755 [95% CI, 2.270-17.240]; P = .01), brachytherapy as radiotherapy modality (regression coefficient, 16.795 [95% CI, 5.840-27.751]; P = .003), and larger sample size (regression coefficient, 0.028 [95% CI, 0.006-0.049]; P = .01) were significantly associated with better PRO reporting per extension adherence score. CONCLUSIONS AND RELEVANCE In this systematic review of palliative radiotherapy trials, the use and reporting of PROs had room for improvement for future trials, preferably with PROs as a primary end point.
Collapse
Affiliation(s)
- Alexander Fabian
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Justus Domschikowski
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Letsch
- Department of Haematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claudia Schmalz
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Juergen Dunst
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Seol MY, Choi SH, Yoon HI. Combining radiation with PI3K isoform-selective inhibitor administration increases radiosensitivity and suppresses tumor growth in non-small cell lung cancer. JOURNAL OF RADIATION RESEARCH 2022; 63:591-601. [PMID: 35536306 PMCID: PMC9303607 DOI: 10.1093/jrr/rrac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant lung tumor with a dismal prognosis. The activation of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is common in many tumor types including NSCLC, which results in radioresistance and changes in the tumor microenvironment. Although pan-PI3K inhibitors have been tested in clinical trials to overcome radioresistance, concerns regarding their excessive side effects led to the consideration of selective inhibition of PI3K isoforms. In this study, we assessed whether combining radiation with the administration of the PI3K isoform-selective inhibitors reduces radioresistance and tumor growth in NSCLC. Inhibition of the PI3K/AKT pathway enhanced radiosensitivity substantially, and PI3K-α inhibitor showed superior radiosensitizing effect similar to PI3K pan-inhibitor, both in vitro and in vivo. Additionally, a significant increase in DNA double-strand breaks (DSB) and a decrease in migration ability were observed. Our study revealed that combining radiation and the PI3K-α isoform improved radiosensitivity that resulted in a significant delay in tumor growth and improved survival rate.
Collapse
Affiliation(s)
- Mi Youn Seol
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, 16995, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Krarup MMK, Fischer BM, Christensen TN. New PET Tracers: Current Knowledge and Perspectives in Lung Cancer. Semin Nucl Med 2022; 52:781-796. [PMID: 35752465 DOI: 10.1053/j.semnuclmed.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
PET/CT with the tracer 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) has improved diagnostic imaging in cancer and is routinely used for diagnosing, staging and treatment planning in lung cancer patients. However, pitfalls of [18F]FDG-PET/CT limit the use in specific settings. Additionally, lung cancer is still the leading cause of cancer associated death and has high risk of recurrence after curative treatment. These circumstances have led to the continuous search for more sensitive and specific PET tracers to optimize lung cancer diagnosis, staging, treatment planning and evaluation. The objective of this review is to present and discuss current knowledge and perspectives of new PET tracers for use in lung cancer. A literature search was performed on PubMed and clinicaltrials.gov, limited to the past decade, excluding case reports, preclinical studies and studies on established tracers such as [18F]FDG and DOTATE. The most relevant papers from the search were evaluated. Several tracers have been developed targeting specific tumor characteristics and hallmarks of cancer. A small number of tracers have been studied extensively and evaluated head-to-head with [18F]FDG-PET/CT, whereas others need further investigation and validation in larger clinical trials. At this moment, none of the tracers can replace [18F]FDG-PET/CT. However, they might serve as supplementary imaging methods to provide more knowledge about biological tumor characteristics and visualize intra- and inter-tumoral heterogeneity.
Collapse
Affiliation(s)
- Marie M K Krarup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark.
| | - Barbara M Fischer
- Department of Clinical Medicine, Faculty of Health, Univeristy of Copenhagen (UCPH), Copenhagen, Denmark; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tine N Christensen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Meattini I, Livi L, Lorito N, Becherini C, Bacci M, Visani L, Fozza A, Belgioia L, Loi M, Mangoni M, Lambertini M, Morandi A. Integrating radiation therapy with targeted treatments for breast cancer: from bench to bedside. Cancer Treat Rev 2022; 108:102417. [PMID: 35623219 DOI: 10.1016/j.ctrv.2022.102417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
12
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Fagone E, Fruciano M, Gili E, Sambataro G, Vancheri C. Developing PI3K Inhibitors for Respiratory Diseases. Curr Top Microbiol Immunol 2022; 436:437-466. [DOI: 10.1007/978-3-031-06566-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Bourigault P, Skwarski M, Macpherson RE, Higgins GS, McGowan DR. Investigation of atovaquone-induced spatial changes in tumour hypoxia assessed by hypoxia PET/CT in non-small cell lung cancer patients. EJNMMI Res 2021; 11:130. [PMID: 34964932 PMCID: PMC8716680 DOI: 10.1186/s13550-021-00871-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumour hypoxia promotes an aggressive tumour phenotype and enhances resistance to anticancer treatments. Following the recent observation that the mitochondrial inhibitor atovaquone increases tumour oxygenation in NSCLC, we sought to assess whether atovaquone affects tumour subregions differently depending on their level of hypoxia. METHODS Patients with resectable NSCLC participated in the ATOM trial (NCT02628080). Cohort 1 (n = 15) received atovaquone treatment, whilst cohort 2 (n = 15) did not. Hypoxia-related metrics, including change in mean tumour-to-blood ratio, tumour hypoxic volume, and fraction of hypoxic voxels, were assessed using hypoxia PET imaging. Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. RESULTS Atovaquone-induced reduction in tumour hypoxia mostly occurred in the inner and outer tumour subregions, and to a lesser extent in the centre subregion. Atovaquone did not seem to act in the edge subregion, which was the only tumour subregion that was non-hypoxic at baseline. Notably, the most intensely hypoxic tumour voxels, and therefore the most radiobiologically resistant areas, were subject to the most pronounced decrease in hypoxia in the different subregions. CONCLUSIONS This study provides insights into the action of atovaquone in tumour subregions that help to better understand its role as a novel tumour radiosensitiser. TRIAL REGISTRATION ClinicalTrials.gov, NCT0262808. Registered 11th December 2015, https://clinicaltrials.gov/ct2/show/NCT02628080.
Collapse
Affiliation(s)
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
15
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 491] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
17
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
19
|
Skwarski M, McGowan DR, Belcher E, Di Chiara F, Stavroulias D, McCole M, Derham JL, Chu KY, Teoh E, Chauhan J, O'Reilly D, Harris BHL, Macklin PS, Bull JA, Green M, Rodriguez-Berriguete G, Prevo R, Folkes LK, Campo L, Ferencz P, Croal PL, Flight H, Qi C, Holmes J, O'Connor JPB, Gleeson FV, McKenna WG, Harris AL, Bulte D, Buffa FM, Macpherson RE, Higgins GS. Mitochondrial Inhibitor Atovaquone Increases Tumor Oxygenation and Inhibits Hypoxic Gene Expression in Patients with Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 27:2459-2469. [PMID: 33597271 PMCID: PMC7611473 DOI: 10.1158/1078-0432.ccr-20-4128] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Accepted: 02/11/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.
Collapse
Affiliation(s)
- Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Radiation Physics and Protection, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Elizabeth Belcher
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Francesco Di Chiara
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Dionisios Stavroulias
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Mark McCole
- Department of Cellular Pathology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Jennifer L Derham
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Kwun-Ye Chu
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Eugene Teoh
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research Oxford, University of Oxford, Oxford, England, United Kingdom
| | - Dawn O'Reilly
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, England, United Kingdom
| | - Marcus Green
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | | | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Lisa K Folkes
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Petra Ferencz
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Paula L Croal
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Helen Flight
- Oncology Clinical Trials Office, Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Cathy Qi
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - Jane Holmes
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, England, United Kingdom
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - W Gillies McKenna
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Daniel Bulte
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom.
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| |
Collapse
|
20
|
High in vitro and in vivo synergistic activity between mTORC1 and PLK1 inhibition in adenocarcinoma NSCLC. Oncotarget 2021; 12:859-872. [PMID: 33889306 PMCID: PMC8057272 DOI: 10.18632/oncotarget.27930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Significant rational is available for specific targeting of PI3K/AKT/mTOR pathway in the treatment of non-small cell lung cancer (NSCLC). However, almost all clinical trials that have evaluated Pi3K pathway-based monotherapies/combinations did not observe an improvement of patient’s outcome. The aim of our study was therefore to define combination of treatment based on the determination of predictive markers of resistance to the mTORC1 inhibitor RAD001/Everolimus. An in vivo study showed high efficacy of RAD001 in NSCLC Patient-Derived Xenografts (PDXs). When looking at biomarkers of resistance by RT-PCR study, three genes were found to be highly expressed in resistant tumors, i.e., PLK1, CXCR4, and AXL. We have then focused our study on the combination of RAD001 + Volasertib, a PLK1 inhibitor, and observed a high antitumor activity of the combination in comparison to each monotherapy; similarly, a clear synergistic effect between the two compounds was found in an in vitro study. Pharmacodynamics study demonstrated that this synergy was due to (1) tumor vascularization decrease, increase of the HIF1 protein expression and decrease of the intracellular pH, and (2) decrease of the Carbonic Anhydrase 9 (CAIX) protein that could not correct intracellular acidosis. In conclusion, all these preclinical data strongly suggest that the inhibition of mTORC1 and PLK1 proteins may be a promising therapeutic approach for NSCLC patients.
Collapse
|
21
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
22
|
Sun Y, Wang Z, Qiu S, Wang R. Therapeutic strategies of different HPV status in Head and Neck Squamous Cell Carcinoma. Int J Biol Sci 2021; 17:1104-1118. [PMID: 33867833 PMCID: PMC8040311 DOI: 10.7150/ijbs.58077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the different biological behaviors, individual therapy is necessary and urgently required to deduce the therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status in HNSCC.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365001, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, P.R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
23
|
Targeting rare and non-canonical driver variants in NSCLC - An uncharted clinical field. Lung Cancer 2021; 154:131-141. [PMID: 33667718 DOI: 10.1016/j.lungcan.2021.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Implementation of tyrosine kinase inhibitors (TKI) and other targeted therapies was a main advance in thoracic oncology with survival gains ranging from several months to years for non-small-cell lung cancer (NSCLC) patients. High-throughput comprehensive molecular profiling is of key importance to identify patients that can potentially benefit from these novel treatments. MATERIAL AND METHODS Next-generation sequencing (NGS) was performed on 4500 consecutive formalin-fixed, paraffin-embedded specimens of advanced NSCLC (n = 4172 patients) after automated extraction of DNA and RNA for parallel detection of mutations and gene fusions, respectively. RESULTS AND CONCLUSION Besides the 24.9 % (n = 1040) of cases eligible for approved targeted therapies based on the presence of canonical alterations in EGFR exons 18-21, BRAF, ROS1, ALK, NTRK, and RET, an additional n = 1260 patients (30.2 %) displayed rare or non-canonical mutations in EGFR (n = 748), BRAF (n = 135), ERBB2 (n = 30), KIT (n = 32), PIK3CA (n = 221), and CTNNB1 (n = 94), for which targeted therapies could also be potentially effective. A systematic literature search in conjunction with in silico evaluation identified n = 232 (5.5 %) patients, for which a trial of targeted treatment would be warranted according to available evidence (NCT level 1, i.e. published data showing efficacy in the same tumor entity). In conclusion, a sizeable fraction of NSCLC patients harbors rare or non-canonical alterations that may be associated with clinical benefit from currently available targeted drugs. Systematic identification and individualized management of these cases can expand applicability of precision oncology in NSCLC and extend clinical gain from established molecular targets. These results can also inform clinical trials.
Collapse
|
24
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
25
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
26
|
Cao L, Niu Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol Med 2020; 17:293-306. [PMID: 32587770 PMCID: PMC7309458 DOI: 10.20892/j.issn.2095-3941.2019.0465] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a complex and malignant breast cancer subtype that lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), thereby making therapeutic targeting difficult. TNBC is generally considered to have high malignancy and poor prognosis. However, patients diagnosed with certain rare histomorphologic subtypes of TNBC have better prognosis than those diagnosed with typical triple negative breast cancer. In addition, with the discovery and development of novel treatment targets such as the androgen receptor (AR), PI3K/AKT/mTOR and AMPK signaling pathways, as well as emerging immunotherapies, the therapeutic options for TNBC are increasing. In this paper, we review the literature on various histological types of TNBC and focus on newly developed therapeutic strategies that target and potentially affect molecular pathways or emerging oncogenes, thus providing a basis for future tailored therapies focused on the mutational aspects of TNBC.
Collapse
Affiliation(s)
- Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yun Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
27
|
Window of opportunity clinical trial designs to study cancer metabolism. Br J Cancer 2019; 122:45-51. [PMID: 31819180 PMCID: PMC6964681 DOI: 10.1038/s41416-019-0621-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Window of opportunity trials exploit the ‘window’ of time after cancer diagnosis, typically prior to initiation of cancer therapy. In recent years this study design has become a more regular feature of drug development, as this ‘window’ provides an opportunity to carry out a thorough pharmacodynamic assessment of a therapy of interest in tumours that are unperturbed by prior treatment. Many of the first window trials interrogated the bioactivity of drugs being repurposed for cancer treatment, in particular the anti-mitochondrial agent, metformin. In this review, we describe examples of window study designs that have been used to assess drugs that target cancer metabolism with a focus on metformin. In addition, we discuss how window studies may aid the development of molecular metabolic cancer imaging.
Collapse
|
28
|
Kobialka P, Graupera M. Revisiting PI3-kinase signalling in angiogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H125-H134. [PMID: 32923964 PMCID: PMC7439845 DOI: 10.1530/vb-19-0025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the third position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together, this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front Oncol 2019; 9:1044. [PMID: 31681582 PMCID: PMC6798878 DOI: 10.3389/fonc.2019.01044] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Acquired resistance inevitably limits the curative effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to break such a bottleneck becomes a pressing problem in cancer treatment. The epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological changes in various aspects of malignancies, notably drug resistance. Progress in delineating the nature of this process offers an opportunity to develop clinical therapeutics to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance, with a focus on NSCLC, and raise the question of what therapeutic strategies along this line should be pursued to optimize the efficacy in clinical practice.
Collapse
Affiliation(s)
- Xuan Zhu
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, China
| | - Ling Liu
- Department of College of Stomatology, China Medical University, Shenyang, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
30
|
McGowan DR, Skwarski M, Higgins GS. Reply to 'The use of buparlisib as a radiosensitiser: What about toxicity?'. Eur J Cancer 2019; 119:196-197. [PMID: 31427118 DOI: 10.1016/j.ejca.2019.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
31
|
The use of buparlisib as a radiosentisiser: What about toxicity? Eur J Cancer 2019; 119:194-195. [DOI: 10.1016/j.ejca.2019.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/20/2022]
|