1
|
Monberg MJ, Keefe S, Karantza V, Tryfonidis K, Toker S, Mejia J, Orlowski R, Haiderali A, Prabhu VS, Aktan G. A Narrative Review of the Clinical, Humanistic, and Economic Value of Pembrolizumab-Based Immunotherapy for the Treatment of Breast and Gynecologic Cancers. Oncol Ther 2024:10.1007/s40487-024-00308-0. [PMID: 39453600 DOI: 10.1007/s40487-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Breast and gynecologic cancers are common across the world and are associated with substantial societal and economic burden. Pembrolizumab was among the first immune checkpoint inhibitors targeting programmed cell death protein 1 to be approved for the treatment of patients with triple-negative breast cancer, cervical cancer, and endometrial cancer. Recent clinical trials have established pembrolizumab regimens as a standard of care treatment for these tumor types. Clinical data are further supported by patient-reported outcome, cost-effectiveness, and real-world evidence. Pembrolizumab monotherapy and combination regimens do not negatively influence health-related quality of life and are cost-effective relative to comparators. Ongoing phase 3 studies with pembrolizumab will expand the current understanding of its use in breast and gynecologic cancers. Several of these studies are in patients with early-stage disease with the hope of curing patients. The main objective of this review is to summarize the clinical, humanistic, and economic value of pembrolizumab in these settings and to describe the future challenges for patients, caregivers, clinicians, and payers.
Collapse
Affiliation(s)
| | - Steve Keefe
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | | | - Sarper Toker
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | - Jaime Mejia
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Amin Haiderali
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Gursel Aktan
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
2
|
Mao J, Li HM, Huang Z. Comprehensive analysis of the expression and prognosis for cyclin-dependent protein kinase family in osteosarcoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39357043 DOI: 10.1080/15257770.2024.2410957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Cyclin-dependent protein kinases (CDKs) have been suggested as prospective therapeutic targets because they control processes vital to the survival and growth of cancer cells. However, research on the varied CDK expression profiles and prognostic factors in osteosarcoma is still lacking. METHODS The osteosarcoma microRNA (GSE65071) and gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database (GSE42352). A substantial variation in prognosis was discovered in CDKs using the TARGET database. Cytoscape was used to construct the miRNAs-CDKs network, and functional and pathway enrichment analyses were completed. It was looked at how immune checkpoint genes, m6A-related genes, and CDKs interact. RESULTS In patients with osteosarcoma compared to normal samples, CDK1-5, CDK18, CDK16, and CDK17 gene expression levels were considerably greater, whereas CDK7-9, CDK11B, CDK16, and CDK20 gene expression levels were significantly lower. Patients with osteosarcoma who had low CDK3 and 18 gene levels or high CDK6, 9 gene levels were predicted to have a favorable prognosis and a long-life expectancy. Immune checkpoint genes, m6A-related gene expression, and CDKs expression all showed some connection. Finally, a network of crucial CDKs and miRNAs was constructed. CONCLUSION According to our research, CDK3, 6, 9, and 18 have been identified as possible therapeutic targets for osteosarcoma, and CDKs may have a role in controlling m6A mutations in tumor cells as well as immune checkpoint regulation.
Collapse
Affiliation(s)
- Jianshui Mao
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Zhidan Huang
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
3
|
Kobayashi T, Nishimura M, Hosonaga M, Kizawa R, Kawai S, Aoyama Y, Ozaki Y, Fukada I, Hara F, Takano T, Ueno T. Absolute lymphocyte count predicts efficacy of palbociclib in patients with metastatic luminal breast cancer. BMC Cancer 2024; 24:1156. [PMID: 39289642 PMCID: PMC11409475 DOI: 10.1186/s12885-024-12941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Absolute lymphocyte count (ALC) is a predictive and prognostic factor for various tumor types, including breast cancer. Palbociclib is a CDK4/6 inhibitor widely used for the treatment of metastatic estrogen receptor (ER)-positive, HER2-negative breast cancer. However, predictive biomarkers of the efficacy of palbociclib remain unelucidated. We conducted a retrospective study to examine the predictive value of the baseline ALC in patients treated with palbociclib. METHODS The medical records of patients with ER-positive, HER2-negative breast cancer treated with palbociclib plus hormonal therapy between December 2017 and December 2021 were analyzed retrospectively. The cutoff value of ALC was set at 1800 cells/μL at the initiation of palbociclib treatment. The clinical benefit rate (CBR) was defined as the rate of complete or partial response or stable disease for at least 6 months. Progression-free survival (PFS) rates were estimated using the Kaplan-Meier method and compared using the log-rank test. Univariate and multivariate analyses were performed using Cox proportional hazards regression. RESULTS All of the 202 patients were women, with a median age of 59 years and a performance status (PS) of ≤ 2. The median numbers of lines of chemotherapy and endocrine therapy before palbociclib treatment were 0 (range, 0-9) and 1 (range, 0-7), respectively. Fifty-one patients had liver metastases. Forty-six patients tested negative for progesterone receptor (PgR) expression. The median follow-up time was 9.1 months. The CBR was significantly higher in the ALC-high group than in the ALC-low group (79% vs. 60%; P = 0.018). The median PFS was significantly longer in the ALC-high group than in the ALC-low group (26.8 months vs. 8.4 moths, respectively; P = 0.000013). ALC, age, PS, PgR status, prior chemotherapy, prior endocrine therapy, and liver metastasis were entered into the multivariate analysis. ALC was identified as an independent factor for PFS (P = 0.00085), along with liver metastasis (P = 0.0020), PS (P = 0.026), and prior endocrine therapy (P = 0.019). CONCLUSION ALC can serve as a predictor of palbociclib efficacy in patients with metastatic ER-positive, HER2-negative breast cancer.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Meiko Nishimura
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Mari Hosonaga
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Rika Kizawa
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Saori Kawai
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yosuke Aoyama
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yukinori Ozaki
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Ippei Fukada
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Fumikata Hara
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Toshimi Takano
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Takayuki Ueno
- Department of Breast Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
4
|
Zheng Y, Zhang Z, Li D, Huang R, Ning S. Breaking through therapeutic barriers: Insights into CDK4/6 inhibition resistance in hormone receptor-positive metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189174. [PMID: 39218402 DOI: 10.1016/j.bbcan.2024.189174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The therapeutic landscape for hormone receptor-positive (HR+) breast carcinoma has undergone a significant transformation with the advent of cyclin-dependent kinase (CDK)4/6 inhibitors, particularly in combination with endocrine therapy as the primary regimen. However, the evolution of resistance mechanisms in response to CDK4/6 inhibitors in HR+ metastatic breast cancer presents substantial challenges in managing the disease. This review explores the diverse genomic landscape underlying resistance, including disturbances in the cell cycle, deviations in oncogenic signaling pathways, deficiencies in DNA damage response (DDR) mechanisms, and changes in the tumor microenvironment (TME). Additionally, it discusses potential strategies to surmount resistance, including advancements in endocrine therapy, targeted inhibition of cell cycle components, suppression of AKT/mTOR activation, exploration of the FGFR pathway, utilization of antibody-drug conjugates (ADCs), and integration of immune checkpoint inhibitors (ICIs) with endocrine therapy and CDK4/6 inhibitors, providing pathways for enhancing patient outcomes amidst treatment challenges.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Zeyuan Zhang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Dan Li
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Rong Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China.
| |
Collapse
|
5
|
Mayer EL, Ren Y, Wagle N, Mahtani R, Ma C, DeMichele A, Cristofanilli M, Meisel J, Miller KD, Abdou Y, Riley EC, Qamar R, Sharma P, Reid S, Sinclair N, Faggen M, Block CC, Ko N, Partridge AH, Chen WY, DeMeo M, Attaya V, Okpoebo A, Alberti J, Liu Y, Gauthier E, Burstein HJ, Regan MM, Tolaney SM. PACE: A Randomized Phase II Study of Fulvestrant, Palbociclib, and Avelumab After Progression on Cyclin-Dependent Kinase 4/6 Inhibitor and Aromatase Inhibitor for Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor-Negative Metastatic Breast Cancer. J Clin Oncol 2024; 42:2050-2060. [PMID: 38513188 DOI: 10.1200/jco.23.01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Cyclin-dependent kinase (CDK) 4/6 inhibitors (CDK4/6is) are an important component of treatment for hormone receptor-positive/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC), but it is not known if patients might derive benefit from continuation of CDK4/6i with endocrine therapy beyond initial tumor progression or if the addition of checkpoint inhibitor therapy has value in this setting. METHODS The randomized multicenter phase II PACE trial enrolled patients with hormone receptor-positive/HER2- MBC whose disease had progressed on previous CDK4/6i and aromatase inhibitor (AI) therapy. Patients were randomly assigned 1:2:1 to receive fulvestrant (F), fulvestrant plus palbociclib (F + P), or fulvestrant plus palbociclib and avelumab (F + P + A). The primary end point was investigator-assessed progression-free survival (PFS) in patients treated with F versus F + P. RESULTS Overall, 220 patients were randomly assigned between September 2017 and February 2022. The median age was 57 years (range, 25-83 years). Most patients were postmenopausal (80.9%), and 40% were originally diagnosed with de novo MBC. Palbociclib was the most common previous CDK4/6i (90.9%). The median PFS was 4.8 months on F and 4.6 months on F + P (hazard ratio [HR], 1.11 [90% CI, 0.79 to 1.55]; P = .62). The median PFS on F + P + A was 8.1 months (HR v F, 0.75 [90% CI, 0.50 to 1.12]; P = .23). The difference in PFS with F + P and F + P + A versus F was greater among patients with baseline ESR1 and PIK3CA alterations. CONCLUSION The addition of palbociclib to fulvestrant did not improve PFS versus fulvestrant alone among patients with hormone receptor-positive/HER2- MBC whose disease had progressed on a previous CDK4/6i plus AI. The increased PFS seen with the addition of avelumab warrants further investigation in this patient population.
Collapse
Affiliation(s)
- Erica L Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yue Ren
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Reshma Mahtani
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL
| | - Cynthia Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Angela DeMichele
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Jane Meisel
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Kathy D Miller
- Hematology/Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Yara Abdou
- Department of Medicine, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Elizabeth C Riley
- Department of Medicine, Brown Cancer Center, University of Louisville Health, Louisville, KY
| | | | - Priyanka Sharma
- Department of Medical Oncology, University of Kansas Medical Center, Westwood, KS
| | - Sonya Reid
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Natalie Sinclair
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Meredith Faggen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Caroline C Block
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Naomi Ko
- Department of Medical Oncology, Boston Medical Center, Boston, MA
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Wendy Y Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michelle DeMeo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Amanda Okpoebo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jillian Alberti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Harold J Burstein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Meredith M Regan
- Harvard Medical School, Boston, MA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
McGuinness C, Britt KL. Estrogen receptor regulation of the immune microenvironment in breast cancer. J Steroid Biochem Mol Biol 2024; 240:106517. [PMID: 38555985 DOI: 10.1016/j.jsbmb.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Collapse
Affiliation(s)
- Conor McGuinness
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
8
|
Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol 2024; 21:89-105. [PMID: 38082107 DOI: 10.1038/s41571-023-00840-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibition in combination with endocrine therapy is the standard-of-care treatment for patients with advanced-stage hormone receptor-positive, HER2 non-amplified (HR+HER2-) breast cancer. These agents can also be administered as adjuvant therapy to patients with higher-risk early stage disease. Nonetheless, the clinical success of these agents has created several challenges, such as how to address acquired resistance, identifying which patients are most likely to benefit from therapy prior to treatment, and understanding the optimal timing of administration and sequencing of these agents. In this Review, we describe the rationale for targeting CDK4/6 in patients with breast cancer, including a summary of updated clinical evidence and how this should inform clinical practice. We also discuss ongoing research efforts that are attempting to address the various challenges created by the widespread implementation of these agents.
Collapse
Affiliation(s)
- Laura Morrison
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
- Breast Unit, The Royal Marsden Hospital, London, UK
| | - Sibylle Loibl
- German Breast Group, Goethe University, Frankfurt, Germany
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK.
- Breast Unit, The Royal Marsden Hospital, London, UK.
| |
Collapse
|
9
|
Nayyar N, de Sauvage MA, Chuprin J, Sullivan EM, Singh M, Torrini C, Zhang BS, Bandyopadhyay S, Daniels KA, Alvarez-Breckenridge C, Dahal A, Brehm MA, Brastianos PK. CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis. Clin Cancer Res 2024; 30:420-435. [PMID: 37611074 PMCID: PMC10872577 DOI: 10.1158/1078-0432.ccr-23-0433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.
Collapse
Affiliation(s)
- Naema Nayyar
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | | | - Jane Chuprin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - Emily M Sullivan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Mohini Singh
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Consuelo Torrini
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Britney S Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Sushobhana Bandyopadhyay
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania
| | - Keith A Daniels
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - Christopher Alvarez-Breckenridge
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashish Dahal
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Michael A Brehm
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Priscilla K Brastianos
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Fuentes‐Antrás J, Bedard PL, Cescon DW. Seize the engine: Emerging cell cycle targets in breast cancer. Clin Transl Med 2024; 14:e1544. [PMID: 38264947 PMCID: PMC10807317 DOI: 10.1002/ctm2.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/31/2023] [Indexed: 01/25/2024] Open
Abstract
Breast cancer arises from a series of molecular alterations that disrupt cell cycle checkpoints, leading to aberrant cell proliferation and genomic instability. Targeted pharmacological inhibition of cell cycle regulators has long been considered a promising anti-cancer strategy. Initial attempts to drug critical cell cycle drivers were hampered by poor selectivity, modest efficacy and haematological toxicity. Advances in our understanding of the molecular basis of cell cycle disruption and the mechanisms of resistance to CDK4/6 inhibitors have reignited interest in blocking specific components of the cell cycle machinery, such as CDK2, CDK4, CDK7, PLK4, WEE1, PKMYT1, AURKA and TTK. These targets play critical roles in regulating quiescence, DNA replication and chromosome segregation. Extensive preclinical data support their potential to overcome CDK4/6 inhibitor resistance, induce synthetic lethality or sensitise tumours to immune checkpoint inhibitors. This review provides a biological and drug development perspective on emerging cell cycle targets and novel inhibitors, many of which exhibit favourable safety profiles and promising activity in clinical trials.
Collapse
Affiliation(s)
- Jesús Fuentes‐Antrás
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
- NEXT OncologyHospital Universitario QuironSalud MadridMadridSpain
| | - Philippe L. Bedard
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - David W. Cescon
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Zattarin E, Mariani L, Menichetti A, Leporati R, Provenzano L, Ligorio F, Fucà G, Lobefaro R, Lalli L, Vingiani A, Nichetti F, Griguolo G, Sirico M, Bernocchi O, Marra A, Corti C, Zagami P, Agostinetto E, Jacobs F, Di Mauro P, Presti D, Sposetti C, Giorgi CA, Guarneri V, Pedersini R, Losurdo A, Generali D, Curigliano G, Pruneri G, de Braud F, Dieci MV, Vernieri C. Peripheral blood lymphocytes predict clinical outcomes in hormone receptor-positive HER2-negative advanced breast cancer patients treated with CDK4/6 inhibitors. Ther Adv Med Oncol 2023; 15:17588359231204857. [PMID: 38130467 PMCID: PMC10734364 DOI: 10.1177/17588359231204857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6i) combined with Endocrine Therapy (ET) are the standard treatment for patients with Hormone Receptor-positive/HER2-negative advanced breast cancer (HR+/HER2- aBC). Objectives While CDK4/6i are known to reduce several peripheral blood cells, such as neutrophils, lymphocytes and platelets, the impact of these modulations on clinical outcomes is unknown. Design A multicenter, retrospective-prospective Italian study. Methods We investigated the association between baseline peripheral blood cells, or their early modifications (i.e. 2 weeks after treatment initiation), and the progression-free survival (PFS) of HR+/HER2- aBC patients treated with ETs plus CDK4/6i. Random Forest models were used to select covariates associated with patient PFS among a large list of patient- and tumor-related variables. Results We evaluated 638 HR+/HER2- aBC patients treated with ET plus CDK4/6i at six Italian Institutions between January 2017 and May 2021. High baseline lymphocyte counts were independently associated with longer PFS [median PFS (mPFS) 20.1 versus 13.2 months in high versus low lymphocyte patients, respectively; adjusted Hazard Ratio (aHR): 0.78; 95% confidence interval (CI): 0.66-0.92; p = 0.0144]. Moreover, patients experiencing a lower early reduction of lymphocyte counts had significantly longer PFS when compared to patients undergoing higher lymphocyte decrease (mPFS 18.1 versus 14.5 months; aHR: 0.82; 95% CI: 0.73-0.93; p = 0.0037). Patients with high baseline lymphocytes and undergoing a lower reduction, or even an increase, of lymphocyte counts during CDK4/6i therapy experienced the longest PFS, while patients with lower baseline lymphocytes and undergoing a higher decrease of lymphocytes had the lowest PFS (mPFS 21.4 versus 11 months, respectively). Conclusion Baseline and on-treatment modifications of peripheral blood lymphocytes have independent prognostic value in HR+/HER2- aBC patients. This study supports the implementation of clinical strategies to boost antitumor immunity in patients with HR+/HER2- aBC treated with ETs plus CDK4/6i.
Collapse
Affiliation(s)
- Emma Zattarin
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Menichetti
- Oncology 2, Istituto Oncologico Veneto IOV – IRCCS, Padova, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Lalli
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gaia Griguolo
- Oncology 2, Istituto Oncologico Veneto IOV – IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Zagami
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Agostinetto
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Institut Jules Bordet and l’Université Libre de Bruxelles, Bruxelles, Belgium
| | - Flavia Jacobs
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Daniele Presti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Valentina Guarneri
- Oncology 2, Istituto Oncologico Veneto IOV – IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy
| | | | - Agnese Losurdo
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Daniele Generali
- Breast Cancer Unit & Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Vittoria Dieci
- Oncology 2, Istituto Oncologico Veneto IOV – IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan 20133, Italy IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
12
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
13
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
14
|
Lee EY, Lee DW, Lee KH, Im SA. Recent Developments in the Therapeutic Landscape of Advanced or Metastatic Hormone Receptor-Positive Breast Cancer. Cancer Res Treat 2023; 55:1065-1076. [PMID: 37817306 PMCID: PMC10582540 DOI: 10.4143/crt.2023.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Hormone receptor-positive (HR+) disease is the most frequently diagnosed subtype of breast cancer. Among tumor subtypes, natural course of HR+ breast cancer is indolent with favorable prognosis compared to other subtypes such as human epidermal growth factor protein 2-positive disease and triple-negative disease. HR+ tumors are dependent on steroid hormone signaling and endocrine therapy is the main treatment option. Recently, the discovery of cyclin-dependent kinase 4/6 inhibitors and their synergistic effects with endocrine therapy has dramatically improved treatment outcome of advanced HR+ breast cancer. The demonstrated efficacy of additional nonhormonal agents, such as targeted therapy against mammalian target of rapamycin and phosphatidylinositol 3-kinase signaling, poly(ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immunotherapeutic agents have further expanded the available therapeutic options. This article reviews the latest advancements in the treatment of HR+ breast cancer, and in doing so discusses not only the development of currently available treatment regimens but also emerging therapies that invite future research opportunities in the field.
Collapse
Affiliation(s)
- Eunice Yoojin Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Dae-Won Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
16
|
Masuda J, Sakai H, Tsurutani J, Tanabe Y, Masuda N, Iwasa T, Takahashi M, Futamura M, Matsumoto K, Aogi K, Iwata H, Hosonaga M, Mukohara T, Yoshimura K, Imamura CK, Miura S, Yamochi T, Kawabata H, Yasojima H, Tomioka N, Yoshimura K, Takano T. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: a phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer 2023; 11:e007126. [PMID: 37709297 PMCID: PMC10503337 DOI: 10.1136/jitc-2023-007126] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Hormone receptor (HR)-positive breast cancer is a disease for which no immune checkpoint inhibitors have shown promise as effective therapies. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors synergistically increased the effectiveness of antiprogrammed cell death protein-1 (anti-PD-1)/programmed death-ligand 1 (PD-L1) antibodies in preclinical studies. METHODS This non-randomized, multicohort, phase II study evaluated the efficacy and safety of the anti-PD-1 antibody nivolumab 240 mg administered every 2 weeks in combination with the CDK4/6 inhibitor abemaciclib 150 mg twice daily and either fulvestrant (FUL) or letrozole (LET) as a first-line or second-line treatment for HR-positive HER2-negative metastatic breast cancer. The primary end point was the objective response rate (ORR), and secondary end points were toxicity, progression-free survival, and overall survival. Blood, tissue, and fecal samples were collected at multiple points for correlative studies to evaluate immunity biomarkers. RESULTS From June 2019 to early study termination due to safety concerns on July 2020, 17 patients were enrolled (FUL: n=12, LET: n=5). One patient with a prior treatment history in the FUL cohort was excluded. ORRs were 54.5% (6/11) and 40.0% (2/5) in the FUL and LET cohorts, respectively. Treatment-emergent (TE) adverse events (AEs) of grade ≥3 occurred in 11 (92%) and 5 (100%) patients in the FUL and LET cohorts, respectively. The most common grade ≥3 TEAEs were neutropenia (7 (58.3%) and 3 (60.0%) in the FUL and LET cohorts, respectively), followed by alanine aminotransferase elevation (5 (41.6%) and 4 (80.0%)). One treatment-related death from interstitial lung disease occurred in the LET cohort. Ten patients developed liver-related grade ≥3 AEs. Liver biopsy specimens from 3 patients showed hepatitis characterized by focal necrosis with predominant CD8+ lymphocyte infiltration. Marked elevation of tumor necrosis factor-related cytokines and interleukin-11, and a decrease in peripheral regulatory T cells (Tregs), were observed in patients with hepatotoxicity. These findings suggest that treatment-related toxicities were immune-related AEs likely caused by proinflammatory cytokine production and suppression of Treg proliferation due to the addition of abemaciclib to nivolumab therapy. CONCLUSIONS Although the combination of nivolumab and abemaciclib was active, it caused severe and prolonged immune-related AEs. TRIAL REGISTRATION NUMBER JapicCTI-194782, jRCT2080224706, UMIN000036970.
Collapse
Affiliation(s)
- Jun Masuda
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Hitomi Sakai
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Yuko Tanabe
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Takahashi
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji Matsumoto
- Department of Medical Oncology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Kenjiro Aogi
- Department of Breast Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Mari Hosonaga
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno-oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Chiyo K Imamura
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Sakiko Miura
- Department of Pathology, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Toshiko Yamochi
- Department of Pathology, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Hiroyuki Yasojima
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Nobumoto Tomioka
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Kenichi Yoshimura
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshimi Takano
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| |
Collapse
|
17
|
Schettini F, Fontana A, Gattazzo F, Strina C, Milani M, Cappelletti MR, Cervoni V, Morelli L, Curigliano G, Iebba V, Generali D. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur J Cancer 2023; 191:112948. [PMID: 37454444 DOI: 10.1016/j.ejca.2023.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cyclin-dependent kinase (CDK)4/6-inhibitors with endocrine therapy represent the standard of treatment of hormone receptor-positive(HR+)/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC). Gut microbiota seems to predict treatment response in several tumour types, being directly implied in chemotherapy resistance and development of adverse effects. No evidence is available on gut microbiota impact on efficacy of HR+ breast cancer treatment. PATIENTS AND METHODS We assessed the potential association among faecal microbiota and therapeutic efficacy of CDK4/6-inhibitors on 14 MBC patients classified as responders (R) and non-responders (NR) according to progression-free survival. A stool sample was collected at baseline and V3-V4 16S targeted sequencing was employed to assess its bacterial composition. Statistical associations with R and NR were studied. RESULTS No significant differences were observed between R and NR in terms of α-/β-diversity at the phylum and species level. Machine-learning (ML) algorithms evidenced four bacterial species as a discriminant for R (Bifidobacterium longum, Ruminococcus callidus) and NR (Clostridium innocuum, Schaalia odontolytica), and an area under curve (AUC) of 0.946 after Random Forest modelling. Network analysis evidenced two major clusters of bacterial species, named Species Interacting Groups (SIG)1-2, with SIG1 harbouring 75% of NR-related bacterial species, and SIG2 regrouping 76% of R-related species (p < 0.001). Cross-correlations among several patients' circulating immune cells or biomarkers and bacterial species' relative abundances showed associations with potential prognostic implications. CONCLUSIONS Our results provide initial insights into the gut microbiota involvement in sensitivity and/or resistance to CDK4/6-inhibitors + endocrine therapy in MBC. If confirmed in larger trials, several microbiota manipulation strategies might be hypothesised to improve response to CDK4/6-inhibitors.
Collapse
Affiliation(s)
- Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federica Gattazzo
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Strina
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Manuela Milani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Maria Rosa Cappelletti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Valeria Cervoni
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
18
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
19
|
Lee JS, Hackbart H, Cui X, Yuan Y. CDK4/6 Inhibitor Resistance in Hormone Receptor-Positive Metastatic Breast Cancer: Translational Research, Clinical Trials, and Future Directions. Int J Mol Sci 2023; 24:11791. [PMID: 37511548 PMCID: PMC10380517 DOI: 10.3390/ijms241411791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, has revolutionized the treatment landscape for hormone receptor-positive breast cancer. These agents have demonstrated significant clinical benefits in terms of both progression-free survival and overall survival. However, resistance to CDK4/6 inhibitors remains a challenge, limiting their long-term efficacy. Understanding the complex mechanisms driving resistance is crucial for the development of novel therapeutic strategies and the improvement of patient outcomes. Translational research efforts, such as preclinical models and biomarker studies, offer valuable insight into resistance mechanisms and may guide the identification of novel combination therapies. This review paper aims to outline the reported mechanisms underlying CDK4/6 inhibitor resistance, drawing insights from both clinical data and translational research in order to help direct the future of treatment for hormone receptor-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hannah Hackbart
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yuan Yuan
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer 2023; 1878:188912. [PMID: 37182667 DOI: 10.1016/j.bbcan.2023.188912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The dysregulation of the cell cycle is one of the hallmarks of cancer. Cyclin-dependent kinase 4 (CDK4) and CDK6 play crucial roles in regulating cell cycle and other cellular functions. CDK4/6 inhibitors have achieved great success in treating breast cancers and are currently being tested extensively in other tumor types as well. Accumulating evidence suggests that CDK4/6 inhibitors exert antitumor effects through immunomodulation aside from cell cycle arrest. Here we outline the immunomodulatory activities of CDK4/6 inhibitors, discuss the immune mechanisms of drug resistance and explore avenues to harness their immunotherapeutic potential when combined with immune checkpoint inhibitors (ICIs) or chimeric antigen receptor (CAR) T-cell therapy to improve the clinical outcomes.
Collapse
Affiliation(s)
- Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Kumar A, Ramani V, Bharti V, de Lima Bellan D, Saleh N, Uzhachenko R, Shen C, Arteaga C, Richmond A, Reddy SM, Vilgelm A. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses. J Immunother Cancer 2023; 11:e006019. [PMID: 37230537 PMCID: PMC10231009 DOI: 10.1136/jitc-2022-006019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. METHOD We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. RESULTS We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. CONCLUSIONS Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Vijay Ramani
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roman Uzhachenko
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Carlos Arteaga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Sangeetha M Reddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anna Vilgelm
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, Columbus, OH, USA
| |
Collapse
|
22
|
Ali LR, Garrido-Castro AC, Lenehan PJ, Bollenrucher N, Stump CT, Dougan M, Goel S, Shapiro GI, Tolaney SM, Dougan SK. PD-1 blockade and CDK4/6 inhibition augment nonoverlapping features of T cell activation in cancer. J Exp Med 2023; 220:e20220729. [PMID: 36688919 PMCID: PMC9884581 DOI: 10.1084/jem.20220729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/08/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
We performed single-cell RNA-sequencing and T cell receptor clonotype tracking of breast and ovarian cancer patients treated with the CDK4/6 inhibitor ribociclib and PD-1 blockade. We highlight evidence of two orthogonal treatment-associated phenomena: expansion of T cell effector populations and promotion of T cell memory formation. Augmentation of the antitumor memory pool by ribociclib boosts the efficacy of subsequent PD-1 blockade in mouse models of melanoma and breast cancer, pointing toward sequential therapy as a potentially safe and synergistic strategy in patients.
Collapse
Affiliation(s)
- Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ana C. Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Courtney T. Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Mittal A, Molto Valiente C, Tamimi F, Schlam I, Sammons S, Tolaney SM, Tarantino P. Filling the Gap after CDK4/6 Inhibitors: Novel Endocrine and Biologic Treatment Options for Metastatic Hormone Receptor Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15072015. [PMID: 37046675 PMCID: PMC10093251 DOI: 10.3390/cancers15072015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of cyclin-dependent kinase (CDK)4/6 inhibitors has rapidly reshaped treatment algorithms for hormone receptor (HR)-positive metastatic breast cancer, with endocrine treatment (ET) plus a CDK4/6-inhibitor currently representing the standard of care in the first line setting. However, treatment selection for those patients experiencing progression while on ET + CDK4/6-inhibitors remains challenging due to the suboptimal activity or significant toxicities of the currently available options. There is also a paucity of data regarding the efficacy of older regimens, such as everolimus + exemestane, post-CDK4/6 inhibition. In this setting of high unmet need, several clinical trials of novel drugs have recently reported encouraging results: the addition of the AKT-inhibitor capivasertib to fulvestrant demonstrated a significant improvement in progression-free survival (PFS); the oral selective estrogen receptor degrader (SERD) elacestrant prolonged PFS compared to traditional ET in a phase 3 trial, particularly among patients with detectable ESR1 mutations; finally, PARP inhibitors are available treatment options for patients with pathogenic BRCA1/2 germline mutations. Overall, a plethora of novel endocrine and biologic treatment options are finally filling the gap between first-line ET and later line chemotherapy. In this review article, we recapitulate the activity of these novel treatment options and their potential role in future treatment algorithms.
Collapse
Affiliation(s)
- Abhenil Mittal
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center; Toronto, ON M5G 2C1, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Consolacion Molto Valiente
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center; Toronto, ON M5G 2C1, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Faris Tamimi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center; Toronto, ON M5G 2C1, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Sarah Sammons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +1-631-632-3800
| |
Collapse
|
24
|
Ashai N, Swain SM. Post-CDK 4/6 Inhibitor Therapy: Current Agents and Novel Targets. Cancers (Basel) 2023; 15:1855. [PMID: 36980743 PMCID: PMC10046856 DOI: 10.3390/cancers15061855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Front-line therapy for advanced and metastatic hormone receptor positive (HR+), HER2 negative (HER-) advanced or metastatic breast cancer (mBC) is endocrine therapy with a CDK4/6 inhibitor (CDK4/6i). The introduction of CDK4/6i has dramatically improved progression-free survival and, in some cases, overall survival. The optimal sequencing of post-front-line therapy must be personalized to patients' overall health and tumor biology. This paper reviews approved next lines of therapy for mBC and available data on efficacy post-progression on CDK4/6i. Given the success of endocrine front-line therapy, there has been an expansion in therapies under clinical investigation targeting the estrogen receptor in novel ways. There are also clinical trials ongoing attempting to overcome CDK4/6i resistance. This paper will review these drugs under investigation, review efficacy data when possible, and provide descriptions of the adverse events reported.
Collapse
Affiliation(s)
- Nadia Ashai
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Washington, DC 20007, USA
| | | |
Collapse
|
25
|
Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer 2023; 9:7. [PMID: 36781869 PMCID: PMC9925769 DOI: 10.1038/s41523-023-00508-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Recent progress in immunobiology has led the way to successful host immunity enhancement against breast cancer. In triple-negative breast cancer, the combination of cancer immunotherapy based on PD-1/PD-L1 immune checkpoint inhibitors with chemotherapy was effective both in advanced and early setting phase 3 clinical trials. These encouraging results lead to the first approvals of immune checkpoint inhibitors in triple-negative breast cancer and thus offer new therapeutic possibilities in aggressive tumors and hard-to-treat populations. Furthermore, several ongoing trials are investigating combining immunotherapies involving immune checkpoint inhibitors with conventional therapies and as well as with other immunotherapeutic strategies such as cancer vaccines, CAR-T cells, bispecific antibodies, and oncolytic viruses in all breast cancer subtypes. This review provides an overview of immunotherapies currently under clinical development and updated key results from clinical trials. Finally, we discuss the challenges to the successful implementation of immune treatment in managing breast cancer and their implications for the design of future clinical trials.
Collapse
|
26
|
Pandey P, Khan F, Upadhyay TK, Sharangi AB. Deciphering the Immunomodulatory Role of Cyclin-Dependent Kinase 4/6 Inhibitors in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032236. [PMID: 36768557 PMCID: PMC9916547 DOI: 10.3390/ijms24032236] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is characterized by persistent cell proliferation driven by aberrant cell cycle regulation and stimulation of cyclin-dependent kinases (CDKs). A very intriguing and potential approach for the development of antitumor medicines is the suppression of CDKs that lead to induction of apoptosis and cell cycle arrest. The shift of the cell cycle from the G0/G1 phase to the S phase, which is characterized by active transcription and synthesis, depends on the development of the cyclin D-CDK4/6 complex. A precise balance between anticancer activity and general toxicity is demonstrated by CDK inhibitors, which can specifically block CDK4/6 and control the cell cycle by reducing the G1 to S phase transition. CDK4/6 inhibitors have recently been reported to exhibit significant cell growth inhibition via modulating the tumour microenvironment in cancerous cells. One significant new understanding is that these inhibitors serve important functions in the interaction among tumour cells and the host immune system in addition to being cytostatic. Herein, we discuss the biological significance of CDK4/6 inhibitors in cancer therapeutics, as well as their biological impact on T cells and other important immune cells. Furthermore, we explore the integration of preclinical findings of these pharmaceuticals' ability to enhance antitumor immunity.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
- Correspondence:
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| |
Collapse
|
27
|
Merlini A, Pavese V, Manessi G, Rabino M, Tolomeo F, Aliberti S, D’Ambrosio L, Grignani G. Targeting cyclin-dependent kinases in sarcoma treatment: Current perspectives and future directions. Front Oncol 2023; 13:1095219. [PMID: 36741019 PMCID: PMC9893281 DOI: 10.3389/fonc.2023.1095219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Effective treatment of advanced/metastatic bone and soft tissue sarcomas still represents an unmet medical need. Recent advances in targeted therapies have highlighted the potential of cyclin-dependent kinases (CDK) inhibitors in several cancer types, including sarcomas. CDKs are master regulators of the cell cycle; their dysregulation is listed among the "hallmarks of cancer" and sarcomas are no exception to the rule. In this review, we report both the molecular basis, and the potential therapeutic implications for the use of CDK inhibitors in sarcoma treatment. What is more, we describe and discuss the possibility and biological rationale for combination therapies with conventional treatments, target therapy and immunotherapy, highlighting potential avenues for future research to integrate CDK inhibition in sarcoma treatment.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, IRCCS-FPO, Turin, Italy,Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Pavese
- Department of Oncology, University of Turin, Turin, Italy
| | - Giulia Manessi
- Department of Oncology, University of Turin, Turin, Italy
| | - Martina Rabino
- Department of Oncology, University of Turin, Turin, Italy
| | | | | | - Lorenzo D’Ambrosio
- Department of Oncology, University of Turin, Turin, Italy,Medical Oncology, Azienda Ospedaliera Universitaria San Luigi Gonzaga, Turin, Italy,*Correspondence: Lorenzo D’Ambrosio,
| | | |
Collapse
|
28
|
Immune Checkpoint Inhibitors and Novel Immunotherapy Approaches for Breast Cancer. Curr Oncol Rep 2022; 24:1801-1819. [PMID: 36255603 DOI: 10.1007/s11912-022-01339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To critically review the existing evidence on immune checkpoint inhibitors (ICIs) in early-stage and metastatic breast cancer and discuss emerging strategies in the different breast cancer subtypes. RECENT FINDINGS Immunotherapy has become one of the major milestones in contemporary oncology, revolutionizing the treatment of multiple solid tumors. ICI agents combined with chemotherapy have demonstrated significant efficacy in both early-stage and metastatic triple-negative breast cancer. However, only a subgroup of patients responds to those agents and some associated toxicities, although infrequent, can be life-disabling. Emerging data from immunotherapy studies in advanced hormone receptor-positive (HR +) breast cancer as well as HER2-positive disease are arising with mixed results. Although breast cancer has not classically been considered a hot tumor, ICIs have proven to be effective in a subset of breast cancer patients. However, much remains to be learned, and the identification of new biomarkers beyond PD-L1 expression is essential not only to improve the efficacy of ICI but also to identify patients who can avoid them, together with their toxicities and costs.
Collapse
|
29
|
Tatarova Z, Blumberg DC, Korkola JE, Heiser LM, Muschler JL, Schedin PJ, Ahn SW, Mills GB, Coussens LM, Jonas O, Gray JW. A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nat Biotechnol 2022; 40:1823-1833. [PMID: 35788566 PMCID: PMC9750874 DOI: 10.1038/s41587-022-01379-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
Systematically identifying synergistic combinations of targeted agents and immunotherapies for cancer treatments remains difficult. In this study, we integrated high-throughput and high-content techniques-an implantable microdevice to administer multiple drugs into different sites in tumors at nanodoses and multiplexed imaging of tumor microenvironmental states-to investigate the tumor cell and immunological response signatures to different treatment regimens. Using a mouse model of breast cancer, we identified effective combinations from among numerous agents within days. In vivo studies in three immunocompetent mammary carcinoma models demonstrated that the predicted combinations synergistically increased therapeutic efficacy. We identified at least five promising treatment strategies, of which the panobinostat, venetoclax and anti-CD40 triple therapy was the most effective in inducing complete tumor remission across models. Successful drug combinations increased spatial association of cancer stem cells with dendritic cells during immunogenic cell death, suggesting this as an important mechanism of action in long-term breast cancer control.
Collapse
Affiliation(s)
- Zuzana Tatarova
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan C Blumberg
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - John L Muschler
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pepper J Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian W Ahn
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Oliver Jonas
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Dennis MJ, Sacco AG, Qi Y, Bykowski J, Pittman E, Chen R, Messer K, Cohen EE, Gold KA. A phase I study of avelumab, palbociclib, and cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma. Oral Oncol 2022; 135:106219. [DOI: 10.1016/j.oraloncology.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
31
|
Phase II Study Combining Pembrolizumab with Aromatase Inhibitor in Patients with Metastatic Hormone Receptor Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14174279. [PMID: 36077811 PMCID: PMC9454514 DOI: 10.3390/cancers14174279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
This study investigated the safety and antitumor activity of aromatase inhibitors (AI) with immune checkpoint inhibitor (ICI) pembrolizumab in patients with hormone receptor positive (HR+) human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC) in a phase II study with a safety lead-in (NCT02648477). Patients received pembrolizumab plus AI up to 2 years or until confirmed progression or unacceptable toxicity. Key eligibility criteria were HR+ HER2- MBC; RECIST v1.1 measurable disease; adequate organ function; and ECOG 0-1. Primary endpoints were safety and overall response rate. A 3-at-risk design was used for the safety lead-in with a targeted accrual of 20 patients. Grade 2 adverse events (AEs) included 35% fatigue, 20% rash, and 10% hot flashes. Grade 3 immune-related AEs (irAEs) related to pembrolizumab included 5% elevated AST/ALT, 5% rash, and 5% lymphopenia. Two (10%) patients had partial responses, three (15%) had stable disease, and 15 (75%) had progression of disease. Median progression-free survival was 1.8 months (95% CI 1.6, 2.6), median overall survival was 17.2 months (95% CI 9.4, NA), and median follow-up time was 40.1 months (range 31.3-46.8 months). The combination was well tolerated, but clinical activity was comparable to AI alone.
Collapse
|
32
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
33
|
Zhang T, Zhang C, Fu Z, Gao Q. Immune Modulatory Effects of Molecularly Targeted Therapy and Its Repurposed Usage in Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14091768. [PMID: 36145516 PMCID: PMC9505720 DOI: 10.3390/pharmaceutics14091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The fast evolution of anti-tumor agents embodies a deeper understanding of cancer pathogenesis. To date, chemotherapy, targeted therapy, and immunotherapy are three pillars of the paradigm for cancer treatment. The success of immune checkpoint inhibitors (ICIs) implies that reinstatement of immunity can efficiently control tumor growth, invasion, and metastasis. However, only a fraction of patients benefit from ICI therapy, which turns the spotlight on developing safe therapeutic strategies to overcome the problem of an unsatisfactory response. Molecular-targeted agents were designed to eliminate cancer cells with oncogenic mutations or transcriptional targets. Intriguingly, accumulating shreds of evidence demonstrate the immunostimulatory or immunosuppressive capacity of targeted agents. By virtue of the high attrition rate and cost of new immunotherapy exploration, drug repurposing may be a promising approach to discovering combination strategies to improve response to immunotherapy. Indeed, many clinical trials investigating the safety and efficacy of the combination of targeted agents and immunotherapy have been completed. Here, we review and discuss the effects of targeted anticancer agents on the tumor immune microenvironment and explore their potential repurposed usage in cancer immunotherapy.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenhao Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
- Correspondence: ; Tel./Fax: +86-21-6403-7181
| |
Collapse
|
34
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
35
|
Guo X, Chen H, Zhou Y, Shen L, Wu S, Chen Y. Cyclin-dependent kinase inhibition and its intersection with immunotherapy in breast cancer: more than CDK4/6 inhibition. Expert Opin Investig Drugs 2022; 31:933-944. [PMID: 35786092 DOI: 10.1080/13543784.2022.2097067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cyclin-dependent kinase (CDK) 4/6 inhibitors (CDK4/6i) have had clinical success in treating hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer. Notably, CDK4/6i have expanded to the neoadjuvant setting for early breast cancer and other cancer types and potently synergize with immunotherapy. Other CDKs, including CDK7, CDK9, and CDK12/13, mainly function in transcriptional processes as well as cell cycle regulation, RNA splicing, and DNA damage response. Inhibiting these CDKs aids in suppressing tumors, reversing drug resistance, increasing drug sensitivity, and enhancing anti-tumor immunity in breast cancer. AREAS COVERED We reviewed the applications of CDK4/6i, CDK7i, CDK9i and CDK12/13i for various breast cancer subtypes and their potentials for combination with immunotherapy. A literature search of PubMed, Embase, and Web of Science was conducted in April 2022. EXPERT OPINION The use of CDK4/6i represents a major milestone in breast cancer treatment. Moreover, transcription-related CDKs play critical roles in tumor development and are promising therapeutic targets for breast cancer. Some relevant clinical studies are underway. More specific and efficient CDKis will undoubtedly be developed and clinically tested. Characterization of their immune-priming effects will promote the development of combination therapies consisting of CDKi and immunotherapy.
Collapse
Affiliation(s)
- Xianan Guo
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Shen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Xu T, Wang Z, Liu J, Wang G, Zhou D, Du Y, Li X, Xia Y, Gao Q. Cyclin-Dependent Kinase Inhibitors Function as Potential Immune Regulators via Inducing Pyroptosis in Triple Negative Breast Cancer. Front Oncol 2022; 12:820696. [PMID: 35756622 PMCID: PMC9213695 DOI: 10.3389/fonc.2022.820696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Immunotherapy is the most promising treatment in triple-negative breast cancer (TNBC), and its efficiency is largely dependent on the intra-tumoral immune cells infiltrations. Thus, novel ways to assist immunotherapy by increasing immune cell infiltrations were highly desirable. Methods To find key immune-related genes and discover novel immune-evoking molecules, gene expression profiles of TNBC were downloaded from Gene Expression Omnibus (GEO). Single-sample gene set enrichment analysis (ssGSEA) and Weighted Gene Co-expression Network Analysis (WGCNA) were conducted to identified hub genes. The CMap database was used subsequently to predicate potential drugs that can modulate the overall hub gene expression network. In vitro experiments were conducted to assess the anti-tumor activity and the pyroptosis phenotypes induced by GW-8510. Results Gene expression profiles of 198 TNBC patients were downloaded from GEO dataset GSE76124, and ssGSEA was used to divide them into Immune Cell Proficiency (ICP) group and Immune Cell Deficiency (ICD) group. Hub differential expressed gene modules between two groups were identified by WGCNA and then annotated by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A cyclin-dependent kinase (CDK) 2 inhibitor, GW-8510 was then identified by the CMap database and further investigated. Treatment with GW-8510 resulted in potent inhibition of TNBC cell lines. More importantly, in vitro and in vivo studies confirmed that GW-8510 and other CDK inhibitors (Dinaciclib, and Palbociclib) can induce pyroptosis by activating caspase-3 and GSDME, which might be the mechanism for their immune regulation potentials. Conclusion GW-8510, as well as other CDK inhibitors, might serve as potential immune regulators and pyroptosis promotors in TNBC.
Collapse
Affiliation(s)
- Tao Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Lelliott EJ, Sheppard KE, McArthur GA. Harnessing the immunotherapeutic potential of CDK4/6 inhibitors in melanoma: is timing everything? NPJ Precis Oncol 2022; 6:26. [PMID: 35444175 PMCID: PMC9021218 DOI: 10.1038/s41698-022-00273-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) were developed as a cancer therapeutic on the basis of their tumor-intrinsic cytostatic potential, but have since demonstrated profound activity as immunomodulatory agents. While currently approved to treat hormone receptor-positive breast cancer, these inhibitors are under investigation in clinical trials as treatments for a range of cancer types, including melanoma. Melanoma is a highly immunogenic cancer, and has always been situated at the forefront of cancer immunotherapy development. Recent revelations into the immunotherapeutic activity of CDK4/6i, therefore, have significant implications for the utility of these agents as melanoma therapies. In recent studies, we and others have proven the immunomodulatory effects of CDK4/6i to be multifaceted and complex. Among the most notable effects, CDK4/6 inhibition induces transcriptional reprogramming in both tumor cells and immune cells to enhance tumor cell immunogenicity, promote an immune-rich tumor microenvironment, and skew T cell differentiation into a stem-like phenotype that is more amenable to immune checkpoint inhibition. However, in some contexts, the specific immunomodulatory effects of CDK4/6i may impinge on anti-tumor immunity. For example, CDK4/6 inhibition restricts optimal T cells expansion, and when used in combination with BRAF/MEK-targeted therapies, depletes immune-potentiating myeloid subsets from the tumor microenvironment. We propose that such effects, both positive and negative, may be mitigated or exacerbated by altering the CDK4/6i dosing regimen. Here, we discuss what the most recent insights mean for clinical trial design, and propose clinical considerations and strategies that may exploit the full immunotherapeutic potential of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Emily J Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| | - Karen E Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Grant A McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
Schmidt M, Heimes AS. Immunomodulating Therapies in Breast Cancer-From Prognosis to Clinical Practice. Cancers (Basel) 2021; 13:4883. [PMID: 34638367 PMCID: PMC8507771 DOI: 10.3390/cancers13194883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The role of the immune system in breast cancer has been debated for decades. The advent of technologies such as next generation sequencing (NGS) has elucidated the crucial interplay between somatic mutations in tumors leading to neoantigens and immune responses with increased tumor-infiltrating lymphocytes and improved prognosis of breast cancer patients. In particular, triple-negative breast cancer (TNBC) has a higher mutational burden compared to other breast cancer subtypes. In addition, higher levels of tumor-associated antigens suggest that immunotherapies are a promising treatment option, specifically for TNBC. Indeed, higher concentrations of tumor-infiltrating lymphocytes are associated with better prognosis and response to chemotherapy in TNBC. An important target within the cancer immune cell cycle is the "immune checkpoint". Immune checkpoint inhibitors (ICPis) block the interaction of certain cell surface proteins that act as "brakes" on immune responses. Recent studies have shown that ICPis improve survival in both early and advanced TNBC. However, this comes at the price of increased toxicity, particularly immune-mediated toxicity. As an alternative approach, individualized mRNA vaccination strategies against tumor-associated neoantigens represent another promising approach leading to neoantigen-specific immune responses. These novel strategies should help to improve treatment outcomes, especially for patients with triple negative breast cancer.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|