1
|
Bird N, Scobie N, Berlanga P, Blanc P, Buenger V, Campbell-Hewson Q, Casanova M, DuBois S, Glade Bender J, Graham A, Heenen D, Ip-Toma C, Ludwinski D, Moreno L, Neuberg D, Palmer A, Paoletti X, Plieger-van Solkema W, Reaman G, de Rojas T, Rossig C, Schiel A, Wakeling S, Vassal G, Pearson A, Knox L. Stakeholder Perspectives on Randomized Clinical Trials for Children With Poor-Prognosis Cancers. JAMA Netw Open 2024; 7:e2449239. [PMID: 39641924 DOI: 10.1001/jamanetworkopen.2024.49239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Importance In poor-prognosis children's cancers, new therapies may carry fresh hope for patients and parents. However, there is an absolute requirement for any new therapy to be properly evaluated to fulfill scientific, regulatory, and reimbursement requirements. Randomized clinical trials (RCTs) are considered the gold standard, but no consensus exists on how and when they should be deployed to best meet the needs of all stakeholders. Objective To conduct a multistakeholder meeting to foster a greater shared understanding of perspectives regarding RCTs of new therapies for children with poor-prognosis cancers and develop consensus recommendations on when and how they should be used. Evidence Review During October 2022 and April 2023, 2 structured workshops were convened, bringing together individuals representing the perspectives of patient advocates and academic clinician-researchers, regulators, and health technology assessment bodies. A premeeting briefing document was prepared and circulated to all attendees. During the workshops, selected attendees presented on behalf of each stakeholder group, focused topic discussions were conducted, and each meeting concluded by agreeing on a consensus set of recommendations. Meeting organizers drafted meeting summary reports that were circulated to all attendees, who commented on and revised them as a group to produce final recommendations from the workshops. Findings Though the workshops did not reconcile all stakeholder differences, sufficient areas of agreement enabled a set of conclusions to be drawn, resulting in 8 consensus recommendations: (1) drug development strategies for new therapies, including the role of RCTs, should be established at the time of first-in-child studies; (2) engagement with regulators and health technology assessment bodies about RCT design is crucial; (3) involvement of patient advocates is necessary to ensure that an RCT is patient focused; (4) timing of an RCT is critical to preserve clinical equipoise; (5) use of crossover in an RCT can be of benefit, but with important caveats; (6) end point maturity and overall survival in an RCT may be important for regulatory and health technology assessment approvals; (7) in the absence of an RCT, contemporaneous control cohorts are preferred over historical control cohorts; and (8) quality of life should be captured in all prospective RCTs. Conclusions and Relevance The agreed-upon workshop conclusions provide a basis for key considerations while undertaking future drug development activities for children with poor-prognosis cancers, ensuring that the needs and perspectives of all stakeholders are factored in from the outset.
Collapse
Affiliation(s)
- Nicholas Bird
- Solving Kids' Cancer UK, London, United Kingdom
- Childhood Cancer International Europe, Vienna, Austria
| | - Nicole Scobie
- Childhood Cancer International Europe, Vienna, Austria
- Zoé4life, Sullens, Switzerland
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Centre, Paris, France
| | - Patricia Blanc
- Childhood Cancer International Europe, Vienna, Austria
- Imagine for Margo, Paris, France
| | - Vickie Buenger
- Coalition Against Childhood Cancer, Philadelphia, Pennsylvania
| | | | - Michela Casanova
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Tumori, Milan, Italy
| | - Steven DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Ann Graham
- MIB Agents Osteosarcoma Alliance, Barnard, Vermont
| | - Delphine Heenen
- Childhood Cancer International Europe, Vienna, Austria
- KickCancer, Brussels, Belgium
| | | | | | - Lucas Moreno
- Division of Pediatric Hematology and Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Xavier Paoletti
- Université Versailles St Quentin and INSERM U900 STAMPM, Institut Curie, Paris, France
| | | | - Gregory Reaman
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anja Schiel
- Norwegian Medical Products Agency, Oslo, Norway
| | - Sara Wakeling
- Alice's Arc, Rhabdomyosarcoma Children's Cancer Charity, London, United Kingdom
| | - Gilles Vassal
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Centre, Paris, France
- ACCELERATE, Brussels, Belgium
| | | | - Leona Knox
- Solving Kids' Cancer UK, London, United Kingdom
| |
Collapse
|
2
|
Pearson AD, DuBois SG, Macy ME, de Rojas T, Donoghue M, Weiner S, Knoderer H, Bernardi R, Buenger V, Canaud G, Cantley L, Chung J, Fox E, Friend J, Glade-Bender J, Gorbatchevsky I, Gore L, Gupta A, Hawkins DS, Juric D, Lang LA, Leach D, Liaw D, Lesa G, Ligas F, Lindberg G, Lindberg W, Ludwinski D, Marshall L, Mazar A, McDonough J, Nysom K, Ours C, Pappo A, Parsons DW, Rosenfeld A, Scobie N, Smith M, Taylor D, Weigel B, Weinstein A, Karres D, Vassal G. Paediatric strategy forum for medicinal product development of PI3-K, mTOR, AKT and GSK3β inhibitors in children and adolescents with cancer. Eur J Cancer 2024; 207:114145. [PMID: 38936103 DOI: 10.1016/j.ejca.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.
Collapse
Affiliation(s)
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | | | | | | | | | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA USA
| | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | - John Chung
- Bayer Healthcare Pharmaceuticals, Whippany, NJ, USA
| | | | | | | | | | | | - Abha Gupta
- The Hospital for Sick Children (SickKids), Princess Margaret Hospital Toronto, Canada
| | | | | | - Leigh Anna Lang
- Rally Foundation for Childhood Cancer Research, Atlanta, GA, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | | | | | | | - Lynley Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | | | - Christopher Ours
- National Human Genome Research Institute/National Institutes of Health, MD, USA
| | | | | | | | | | | | | | | | - Amy Weinstein
- Pediatric Brain Tumor Foundation of the US, Atlanta, USA
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
3
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
4
|
Kelly KM, Friedberg JW. Classic Hodgkin Lymphoma in Adolescents and Young Adults. J Clin Oncol 2024; 42:653-664. [PMID: 37983570 DOI: 10.1200/jco.23.01799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 11/22/2023] Open
Abstract
Hodgkin lymphoma (HL) represents one of the more common cancers occurring in adolescent and young adults (AYAs) age 15-39 years. Despite a generally high cure rate, age-related differences in HL biology and the optimal therapeutic approaches including supportive care and risks for long-term adverse effects in the AYA population remain understudied. After an overview of HL epidemiology and biology in the AYA population, this review will cover frontline pediatric and adult treatment approaches. Recently completed and ongoing studies will foster harmonization of risk group definition and trial eligibility criteria across the AYA spectrum, enabling more rapid progress. In addition to treatment approaches, an evolving holistic care approach to AYA HL will result in enhanced understanding of unique challenges, and continued improved short- and long-term outcome for these patients.
Collapse
Affiliation(s)
- Kara M Kelly
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center., Buffalo, NY
- Division of Pediatric Hematology/Oncology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
- Pediatric Hematology/Oncology, Oishei Children's Hospital, Buffalo, NY
| | | |
Collapse
|
5
|
Pearson ADJ, de Rojas T, Karres D, Reaman G, Scobie N, Fox E, Lesa G, Ligas F, Norga K, Nysom K, Pappo A, Weigel B, Weiner SL, Vassal G. Impact of ACCELERATE Paediatric Strategy Forums: a review of the value of multi-stakeholder meetings in oncology drug development. J Natl Cancer Inst 2024; 116:200-207. [PMID: 37975877 PMCID: PMC10852613 DOI: 10.1093/jnci/djad239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
In a landscape of an increasing number of products and histology and age agnostic trials for rare patient cancer, prioritization of products is required. Paediatric Strategy Forums, organized by ACCELERATE and the European Medicines Agency with participation of the US Food and Drug Administration, are multi-stakeholder meetings that share information to best inform pediatric drug development strategies and subsequent clinical trial decisions. Academia, industry, regulators, and patient advocates are equal members, with patient advocates highlighting unmet needs of children and adolescents with cancer. The 11 Paediatric Strategy Forums since 2017 have made specific and general conclusions to accelerate drug development. Conclusions on product prioritization meetings, as well as global master protocols, have been outputs of these meetings. Forums have provided information for regulatory discussions and decisions by industry to facilitate development of high-priority products; for example, 62% of high-priority assets (agreed at a Forum) in contrast to 5% of those assets not considered high priority have been the subject of a Paediatric Investigational Plan or Written Request. Where there are multiple products of the same class, Forums have recommended a focused and sequential approach. Class prioritization resulted in an increase in waivers for non-prioritized B-cell products (44% to 75%) and a decrease in monotherapy trials, proposed in Paediatric Investigation Plans (PIP) submissions of checkpoint inhibitors from 53% to 19%. Strategy Forums could play a role in defining unmet medical needs. Multi-stakeholder forums, such as the Paediatric Strategy Forum, serve as a model to improve collaboration in the oncology drug development paradigm.
Collapse
Affiliation(s)
| | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Gregory Reaman
- US Food and Drug Administration (FDA), Silver Spring, MD, USA
| | | | - Elizabeth Fox
- St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium
- Paediatric Committee of the European Medicines Agency, (EMA), Amsterdam, The Netherlands
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | - Gilles Vassal
- ACCELERATE, Brussels, Belgium, Europe
- Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
6
|
Cheung SYA, Hay JL, Lin YW, de Greef R, Bullock J. Pediatric oncology drug development and dosage optimization. Front Oncol 2024; 13:1235947. [PMID: 38348118 PMCID: PMC10860405 DOI: 10.3389/fonc.2023.1235947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Oncology drug discovery and development has always been an area facing many challenges. Phase 1 oncology studies are typically small, open-label, sequential studies enrolling a small sample of adult patients (i.e., 3-6 patients/cohort) in dose escalation. Pediatric evaluations typically lag behind the adult development program. The pediatric starting dose is traditionally referenced on the recommended phase 2 dose in adults with the incorporation of body size scaling. The size of the study is also small and dependent upon the prevalence of the disease in the pediatric population. Similar to adult development, the dose is escalated or de-escalated until reaching the maximum tolerated dose (MTD) that also provides desired biological activities or efficacy. The escalation steps and identification of MTD are often rule-based and do not incorporate all the available information, such as pharmacokinetic (PK), pharmacodynamic (PD), tolerability and efficacy data. Therefore, it is doubtful if the MTD approach is optimal to determine the dosage. Hence, it is important to evaluate whether there is an optimal dosage below the MTD, especially considering the emerging complexity of combination therapies and the long-term tolerability and safety of the treatments. Identification of an optimal dosage is also vital not only for adult patients but for pediatric populations as well. Dosage-finding is much more challenging for pediatric populations due to the limited patient population and differences among the pediatric age range in terms of maturation and ontogeny that could impact PK. Many sponsors defer the pediatric strategy as they are often perplexed by the challenges presented by pediatric oncology drug development (model of action relevancy to pediatric population, budget, timeline and regulatory requirements). This leads to a limited number of approved drugs for pediatric oncology patients. This review article provides the current regulatory landscape, incentives and how they impact pediatric drug discovery and development. We also consider different pediatric cancers and potential clinical trial challenges/opportunities when designing pediatric clinical trials. An outline of how quantitative methods such as pharmacometrics/modelling & simulation can support the dosage-finding and justification is also included. Finally, we provide some reflections that we consider helpful to accelerate pediatric drug discovery and development.
Collapse
|
7
|
Epperly R, Giordani VM, Mikkilineni L, Shah NN. Early and Late Toxicities of Chimeric Antigen Receptor T-Cells. Hematol Oncol Clin North Am 2023; 37:1169-1188. [PMID: 37349152 PMCID: PMC10592597 DOI: 10.1016/j.hoc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
As chimeric antigen receptor (CAR) T-cell therapy is increasingly integrated into clinical practice across a range of malignancies, identifying and treating inflammatory toxicities will be vital to success. Early experiences with CD19-targeted CAR T-cell therapy identified cytokine release syndrome and neurotoxicity as key acute toxicities and led to unified initiatives to mitigate the influence of these complications. In this section, we provide an update on the current state of CAR T-cell-related toxicities, with an emphasis on emerging acute toxicities affecting additional organ systems and considerations for delayed toxicities and late effects.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1130, Memphis, TN 38105, USA
| | - Victoria M Giordani
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA; Pediatric Hematology/Oncology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lekha Mikkilineni
- Blood and Marrow Transplantation & Cellular Therapy, Stanford University, Palo Alto, CA, USA; Stanford School of Medicine, 300 Pasteur Drive, Room H0101, Stanford, CA 94305, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Buldini B, Faggin G, Porcù E, Scarparo P, Polato K, Tregnago C, Varotto E, Rizzardi P, Rizzari C, Locatelli F, Biffi A, Pigazzi M. CD72 is a pan-tumor antigen associated to pediatric acute leukemia. Cytometry A 2023; 103:1004-1009. [PMID: 37876342 DOI: 10.1002/cyto.a.24790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023]
Abstract
In the development of novel immunotherapeutic approaches, the step of target identification is a challenging process, because it aims at identifying robust tumor-associated antigens (TAAs) specific for the pathological population and causing no off-target effects. Here we propose CD72 as a novel and robust TAA for pediatric acute leukemias. We provided an outline of CD72 expression assessed by flow cytometry on a variety of cancer cell lines and primary samples, including normal bone marrow (BM) samples and hematopoietic stem and progenitor cells. We analyzed CD 72 expression on a cohort of 495 pathological pediatric BM aspirates, including: 215 B-cell precursor acute lymphoblastic leukemias (BCP-ALL), 156 acute myeloid leukemias (AMLs), 88 T-lineage ALLs or lymphoblastic lymphomas with BM infiltration, 13 B-lineage lymphoblastic lymphomas with BM infiltration, 9 myelodysplastic syndromes with increased blasts (5%-9% blasts on BM: MDS-IB1) and 14 non-hematopoietic solid tumors infiltrating BM. Results showed that CD72 is highly expressed in almost all BCP-ALL and the majority of AML at diagnosis, including BCP-ALL cases characterized by CD19 loss. These findings support a potential role for advanced diagnostics and novel immunotherapy approaches, providing a pan-ALL and AML target.
Collapse
Affiliation(s)
- Barbara Buldini
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
- Pediatric Hematology, Oncology, Hematopoietic Cell and Gene Therapy Reserach Area, Istituto di Ricerca Pediatrica (IRP) - Città della Speranza, Padua, Italy
| | - Giovanni Faggin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
| | - Elena Porcù
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
| | - Pamela Scarparo
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
| | - Katia Polato
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
| | - Claudia Tregnago
- Pediatric Hematology, Oncology, Hematopoietic Cell and Gene Therapy Reserach Area, Istituto di Ricerca Pediatrica (IRP) - Città della Speranza, Padua, Italy
| | - Elena Varotto
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
| | | | - Carmelo Rizzari
- Department of Pediatrics, University of Milano-Bicocca, IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
- Pediatric Hematology, Oncology, Hematopoietic Cell and Gene Therapy Reserach Area, Istituto di Ricerca Pediatrica (IRP) - Città della Speranza, Padua, Italy
| | - Martina Pigazzi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women's and Child Health Department, University of Padua, Padua, Italy
- Pediatric Hematology, Oncology, Hematopoietic Cell and Gene Therapy Reserach Area, Istituto di Ricerca Pediatrica (IRP) - Città della Speranza, Padua, Italy
| |
Collapse
|
9
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Callahan C, Haas L, Smith L. CAR-T cells for pediatric malignancies: Past, present, future and nursing implications. Asia Pac J Oncol Nurs 2023; 10:100281. [PMID: 38023730 PMCID: PMC10661550 DOI: 10.1016/j.apjon.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Abstract
The treatment landscape for pediatric cancers over the last 11 years has undergone a dramatic change, especially with relapsed and refractory B-cell acute lymphoblastic leukemia (ALL), due to the introduction of chimeric antigen receptor-T (CAR-T) cell therapy. Because of the success of CAR-T cell therapy in patients with relapsed and refractory B-cell ALL, this promising therapy is undergoing trials in multiple other pediatric malignancies. This article will focus on the introduction of CAR-T cell therapy in pediatric B-cell ALL and discuss past and current trials. We will also discuss trials for CAR-T cell therapy in other pediatric malignancies. This information was gathered through a comprehensive literature review along with using first hand institutional experience. Due to the potential severe toxicities related to CAR-T cell therapy, safe practices and monitoring are key. These authors demonstrate that nurses have a profound responsibility in preparing and caring for patients and families, monitoring and managing side effects in these patients, ensuring that study guidelines are followed, and providing continuity for patients, families, and referring providers. Education of nurses is crucial for improved patient outcomes.
Collapse
Affiliation(s)
- Colleen Callahan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Lauren Haas
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Laura Smith
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
11
|
Pearson ADJ, Federico S, Gatz SA, Ortiz M, Lesa G, Scobie N, Gounaris I, Weiner SL, Weigel B, Unger TJ, Stewart E, Smith M, Slotkin EK, Reaman G, Pappo A, Nysom K, Norga K, McDonough J, Marshall LV, Ludwinski D, Ligas F, Karres D, Kool M, Horner TJ, Henssen A, Heenen D, Hawkins DS, Gore L, Bender JG, Galluzzo S, Fox E, de Rojas T, Davies BR, Chakrabarti J, Carmichael J, Bradford D, Blanc P, Bernardi R, Benchetrit S, Akindele K, Vassal G. Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2023; 190:112950. [PMID: 37441939 DOI: 10.1016/j.ejca.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Collapse
Affiliation(s)
- Andrew D J Pearson
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium.
| | - Sara Federico
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Michael Ortiz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | | | - Ioannis Gounaris
- Merck Serono Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Feltham, UK
| | | | | | - T J Unger
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | - Gregory Reaman
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency (EMA), Amsterdam, the Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany
| | | | | | | | - Douglas S Hawkins
- Seattle Children's Hospital, Seattle, WA, USA; Children's Oncology Group, Seattle, WA, USA
| | - Lia Gore
- Children's Hospital Colorado, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa de Rojas
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium
| | | | | | - Juliet Carmichael
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Diana Bradford
- US Food and Drug Administration, Silver Springs, MD, USA
| | | | - Ronald Bernardi
- Genentech, a Member of the Roche Group, South San Francisco, CA, USA
| | - Sylvie Benchetrit
- National Agency for the Safety of Medicine and Health Products, Paris, France
| | | | - Gilles Vassal
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
12
|
Panetti S, McJannett N, Fultang L, Booth S, Gneo L, Scarpa U, Smith C, Vardon A, Vettore L, Whalley C, Pan Y, Várnai C, Endou H, Barlow J, Tennant D, Beggs A, Mussai F, De Santo C. Engineering amino acid uptake or catabolism promotes CAR T-cell adaption to the tumor environment. Blood Adv 2023; 7:1754-1761. [PMID: 36521029 PMCID: PMC10182289 DOI: 10.1182/bloodadvances.2022008272] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells take up amino acids from the extracellular space to drive cell proliferation and viability. Similar mechanisms are applied by immune cells, resulting in the competition between conventional T cells, or indeed chimeric antigen receptor (CAR) T cells and tumor cells, for the limited availability of amino acids within the environment. We demonstrate that T cells can be re-engineered to express SLC7A5 or SLC7A11 transmembrane amino acid transporters alongside CARs. Transporter modifications increase CAR T-cell proliferation under low tryptophan or cystine conditions with no loss of CAR cytotoxicity or increased exhaustion. Transcriptomic and phenotypic analysis reveals that downstream, SLC7A5/SLC7A11-modified CAR T cells upregulate intracellular arginase expression and activity. In turn, we engineer and phenotype a further generation of CAR T cells that express functional arginase 1/arginase 2 enzymes and have enhanced CAR T-cell proliferation and antitumor activity. Thus, CAR T cells can be adapted to the amino acid metabolic microenvironment of cancer, a hitherto recognized but unaddressed barrier for successful CAR T-cell therapy.
Collapse
Affiliation(s)
- Silvia Panetti
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Nicola McJannett
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Booth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Luciana Gneo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ugo Scarpa
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Charles Smith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ashley Vardon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lisa Vettore
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | - Celina Whalley
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | - Yi Pan
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | - Csilla Várnai
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | | | - Jonathan Barlow
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Tennant
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Beggs
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, United Kingdom
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature 2023; 614:635-648. [PMID: 36813894 DOI: 10.1038/s41586-023-05707-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 211.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 01/04/2023] [Indexed: 02/24/2023]
Abstract
The remarkable clinical activity of chimeric antigen receptor (CAR) therapies in B cell and plasma cell malignancies has validated the use of this therapeutic class for liquid cancers, but resistance and limited access remain as barriers to broader application. Here we review the immunobiology and design principles of current prototype CARs and present emerging platforms that are anticipated to drive future clinical advances. The field is witnessing a rapid expansion of next-generation CAR immune cell technologies designed to enhance efficacy, safety and access. Substantial progress has been made in augmenting immune cell fitness, activating endogenous immunity, arming cells to resist suppression via the tumour microenvironment and developing approaches to modulate antigen density thresholds. Increasingly sophisticated multispecific, logic-gated and regulatable CARs display the potential to overcome resistance and increase safety. Early signs of progress with stealth, virus-free and in vivo gene delivery platforms provide potential paths for reduced costs and increased access of cell therapies in the future. The continuing clinical success of CAR T cells in liquid cancers is driving the development of increasingly sophisticated immune cell therapies that are poised to translate to treatments for solid cancers and non-malignant diseases in the coming years.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA. .,Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA. .,Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA. .,Division of Blood and Marrow Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Kaguelidou F, Ouèdraogo M, Treluyer JM, Le Jeunne C, Annereau M, Blanc P, Bureau S, Ducassou S, Fiquet B, Flamein F, Gaillard S, Hankard R, Laugel V, Laurent C, Levy C, Marquet T, Polak M, Portefaix A, Vassal G. Paediatric drug development and evaluation: Existing challenges and recommendations. Therapie 2023; 78:105-114. [PMID: 36528416 DOI: 10.1016/j.therap.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/11/2022]
Abstract
Despite various international regulatory initiatives over the last 20 years, many challenges remain in the field of paediatric drug development and evaluation. Indeed, drug research and development is still focused essentially on adult indications, thereby excluding many paediatric patients, limiting the feasibility of trials and favouring competing developments. Off-label prescribing persists and the development of age-appropriate dosage forms for children remains limited. Against this background, the members of this panel (TR) recommend the launch of multi-partner exchange forums on specific topics in order to focus new drug research and development on the real, unmet medical needs of children and adolescents, and in keeping with the underlying mechanisms of action. Scientific information sharing and cooperation between stakeholders are also essential for defining reference evaluation methods in each medical field. These forums can be organised through existing paediatric facilities and research networks at the French and European level. The latter are specifically dedicated to paediatric research and can facilitate clinical trial implementation and patient enrolment. Moreover, specific grants and public/private partnerships are still needed to support studies on the repositioning of drugs in paediatric indications, and pharmacokinetic studies aimed at defining appropriate dosages. The development of new pharmaceutical forms, better suited for paediatric use, and the promotion of resulting innovations will stimulate future investments. Initiatives to gather observational safety and efficacy data following off-label and/or derogatory early access should also be encouraged to compensate for the lack of information available in these situations. Finally, the creation of Ethics Committees (EC) with a specific "mother-child" advisory expertise should be promoted to ensure that the current regulation (Jardé law in France) is implemented whilst also taking into account the paediatric specificities in medical trials.
Collapse
Affiliation(s)
- Florentia Kaguelidou
- Center of Clinical Investigations and Pediatric Pharmacology, Inserm CIC1426, Robert-Debré hospital, AP-HP.Nord, 75000 Paris, France; Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France.
| | - Maria Ouèdraogo
- Lead « partenaires parcours de soins référents médicaux », laboratoire Roche, 92100 Boulogne, France
| | - Jean-Marc Treluyer
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Département de pharmacologie, CRPV, hôpital Cochin, AP-HP.Centre, 75014 Paris, France
| | - Claire Le Jeunne
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Service de médecine interne, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Maxime Annereau
- Département de pharmacie clinique, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Patricia Blanc
- Association de patients («) Imagine for Margo - Enfants sans Cancer », 78100 Saint-Germain-en-Laye, France
| | - Serge Bureau
- Direction de la recherche clinique, de l'innovation, des relations avec les universités et organismes de recherche (DRCI), Assistance publique-Hôpitaux de Paris, 75000 Paris, France
| | - Stéphane Ducassou
- Unité hématologie oncologie pédiatrique, CHU Bordeaux, 33000 Bordeaux, France
| | - Béatrice Fiquet
- Département médical, Amgen, 92100 Boulogne-Billancourt, France
| | - Florence Flamein
- University Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, 59000 Lille, France; French Clinical Research Infrastructure Network (F-CRIN) - PEDSTART, 94000 Créteil, France
| | - Ségolène Gaillard
- Hospices civils de Lyon, EPICIME-CIC 1407 de Lyon, Inserm, CHU-Lyon, 69677 Bron, France; Université Lyon 1, CNRS UMR 5558, laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France
| | | | - Vincent Laugel
- Pôle médico-chirurgical de pédiatrie, centre d'investigation clinique, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France
| | | | - Corinne Levy
- Clinical Research Center (CRC), centre hospitalier intercommunal de Créteil, 94000 Créteil, France
| | - Thierry Marquet
- Accès des patients à l'innovation, Takeda, 75116 Paris, France
| | - Michel Polak
- Unité d'endocrinologie, gynécologie, diabétologie pédiatriques, Inserm U1016, Institut Imagine, centre de référence des maladies endocriniennes rares de la croissance et du développement, hôpital universitaire Necker-Enfants-Malades, AP-HP Centre, université Paris-Descartes, 75743 Paris, France
| | - Aurélie Portefaix
- Hospices civils de Lyon, Pediatric Clinic Investigation Center, Inserm P-1407, 69500 Bron, France
| | - Gilles Vassal
- Département de cancérologie de l'enfant et de l'adolescent, Gustave Roussy Comprehensive Cancer Center et université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
15
|
Kaguelidou F, Ouèdraogo M, Treluyer JM, Le Jeunne C, Annereau M, Blanc P, Bureau S, Ducassou S, Fiquet B, Flamein F, Gaillard S, Hankard R, Laugel V, Laurent C, Levy C, Marquet T, Polak M, Portefaix A, Vassal G. Développement des médicaments en pédiatrie : défis existants et recommandations. Therapie 2023; 78:95-104. [PMID: 36543724 DOI: 10.1016/j.therap.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Florentia Kaguelidou
- Center of Clinical Investigations and Pediatric Pharmacology, Inserm CIC1426, Robert-Debré Hospital, AP-HP Nord, 75000 Paris, France; Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France.
| | - Maria Ouèdraogo
- Lead « partenaires parcours de soins référents médicaux », laboratoire Roche, 92100 Boulogne, France
| | - Jean-Marc Treluyer
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Département de pharmacologie, CRPV, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Claire Le Jeunne
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Service de médecine interne, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Maxime Annereau
- Département de pharmacie clinique, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - Patricia Blanc
- Association de patients « Imagine for Margo - Enfants sans Cancer », 78100 Saint-Germain-en-Laye, France
| | - Serge Bureau
- Direction de la recherche clinique, de l'innovation, des relations avec les universités et organismes de recherche (DRCI), Assistance publique-Hôpitaux de Paris, 75000 Paris, France
| | - Stéphane Ducassou
- Unité hématologie oncologie pédiatrique, CHU Bordeaux, 33000 Bordeaux, France
| | - Béatrice Fiquet
- Département médical, Amgen, 92100 Boulogne-Billancourt, France
| | - Florence Flamein
- Université Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, 59000 Lille, France; French Clinical Research Infrastructure Network (F-CRIN) - PEDSTART, 94000 Créteil, France
| | - Ségolène Gaillard
- Hospices civils de Lyon, EPICIME-CIC 1407 de Lyon, Inserm, CHU-Lyon, 69677 Bron, France; Université Lyon 1, CNRS UMR 5558, laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France
| | | | - Vincent Laugel
- Pôle médicochirurgical de pédiatrie, centre d'investigation clinique, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France
| | | | - Corinne Levy
- Clinical Research Center (CRC), centre hospitalier intercommunal de Créteil, 94000 Créteil, France
| | - Thierry Marquet
- Directeur de l'accès des patients à l'innovation, Takeda, 75116 Paris, France
| | - Michel Polak
- Unité d'endocrinologie, gynécologie, diabétologie pédiatriques, Inserm U1016, Institut Imagine, centre de référence des maladies endocriniennes rares de la croissance et du développement, hôpital universitaire Necker-Enfants-Malades, AP-HP Centre, université Paris Descartes, 75743 Paris, France
| | - Aurélie Portefaix
- Hospices civils de Lyon, Pediatric Clinic Investigation Center, Inserm P-1407, 69500 Bron, France
| | - Gilles Vassal
- Département de cancérologie de l'enfant et de l'adolescent, Gustave-Roussy Comprehensive Cancer Center, université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
16
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
17
|
Pearson ADJ, de Rojas T, Karres D, Reaman G, Scobie N, Fox E, Lesa G, Ligas F, Norga K, Nysom K, Pappo A, Weigel B, Weiner S, Vassal G. ACCELERATE Paediatric Strategy Forums: an advance for oncological drug development? Lancet Oncol 2022; 23:1354-1357. [PMID: 36328007 DOI: 10.1016/s1470-2045(22)00619-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Gilles Vassal
- ACCELERATE, 1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
18
|
Paediatric Strategy Forum for medicinal product development of multi-targeted kinase inhibitors in bone sarcomas: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 173:71-90. [PMID: 35863108 DOI: 10.1016/j.ejca.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The eighth Paediatric Strategy Forum focused on multi-targeted kinase inhibitors (mTKIs) in osteosarcoma and Ewing sarcoma. The development of curative, innovative products in these tumours is a high priority and addresses unmet needs in children, adolescents and adults. Despite clinical and investigational use of mTKIs, efficacy in patients with bone tumours has not been definitively demonstrated. Randomised studies, currently being planned or in progress, in front-line and relapse settings will inform the further development of this class of product. It is crucial that these are rapidly initiated to generate robust data to support international collaborative efforts. The experience to date has generally indicated that the safety profile of mTKIs as monotherapy, and in combination with chemotherapy or other targeted therapy, is consistent with that of adults and that toxicity is manageable. Increasing understanding of relevant predictive biomarkers and tumour biology is absolutely critical to further develop this class of products. Biospecimen samples for correlative studies and biomarker development should be shared, and a joint academic-industry consortium created. This would result in an integrated collection of serial tumour tissues and a systematic retrospective and prospective analyses of these samples to ensure robust assessment of biologic effect of mTKIs. To support access for children to benefit from these novel therapies, clinical trials should be designed with sufficient scientific rationale to support regulatory and payer requirements. To achieve this, early dialogue between academia, industry, regulators, and patient advocates is essential. Evaluating feasibility of combination strategies and then undertaking a randomised trial in the same protocol accelerates drug development. Where possible, clinical trials and development should include children, adolescents, and adults less than 40 years. To respond to emerging science, in approximately 12 months, a multi-stakeholder group will meet and review available data to determine future directions and priorities.
Collapse
|
19
|
Wagner DL, Koehl U, Chmielewski M, Scheid C, Stripecke R. Review: Sustainable Clinical Development of CAR-T Cells – Switching From Viral Transduction Towards CRISPR-Cas Gene Editing. Front Immunol 2022; 13:865424. [PMID: 35784280 PMCID: PMC9248912 DOI: 10.3389/fimmu.2022.865424] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
T cells modified for expression of Chimeric Antigen Receptors (CARs) were the first gene-modified cell products approved for use in cancer immunotherapy. CAR-T cells engineered with gammaretroviral or lentiviral vectors (RVs/LVs) targeting B-cell lymphomas and leukemias have shown excellent clinical efficacy and no malignant transformation due to insertional mutagenesis to date. Large-scale production of RVs/LVs under good-manufacturing practices for CAR-T cell manufacturing has soared in recent years. However, manufacturing of RVs/LVs remains complex and costly, representing a logistical bottleneck for CAR-T cell production. Emerging gene-editing technologies are fostering a new paradigm in synthetic biology for the engineering and production of CAR-T cells. Firstly, the generation of the modular reagents utilized for gene editing with the CRISPR-Cas systems can be scaled-up with high precision under good manufacturing practices, are interchangeable and can be more sustainable in the long-run through the lower material costs. Secondly, gene editing exploits the precise insertion of CARs into defined genomic loci and allows combinatorial gene knock-ins and knock-outs with exciting and dynamic perspectives for T cell engineering to improve their therapeutic efficacy. Thirdly, allogeneic edited CAR-effector cells could eventually become available as “off-the-shelf” products. This review addresses important points to consider regarding the status quo, pending needs and perspectives for the forthright evolution from the viral towards gene editing developments for CAR-T cells.
Collapse
Affiliation(s)
- Dimitrios L. Wagner
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH-Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) as well as Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Markus Chmielewski
- Clinic I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Christoph Scheid
- Clinic I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Renata Stripecke
- Clinic I for Internal Medicine, University Hospital Cologne, Cologne, Germany
- Laboratory of Regenerative Immune Therapies Applied, Research Center for Translational Regenerative Medicine (Rebirth), Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
- Cancer Research Center Cologne Essen (CCCE), Cologne, Germany
- *Correspondence: Renata Stripecke, ;
| |
Collapse
|
20
|
ACCELERATE – Five years accelerating cancer drug development for children and adolescents. Eur J Cancer 2022; 166:145-164. [DOI: 10.1016/j.ejca.2022.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
|
21
|
Immunotherapy: genetically agnostic in BCP-ALL? Blood 2022; 139:2093-2094. [PMID: 35389440 DOI: 10.1182/blood.2022015618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
|