1
|
He Y, Chen L, Miao M, Dai Y, Qin L, Lin J, Qi Y, Xiao H, Qiu Y, Zhang X, Sun H, Wang J, Xu MY, Tan P, Yang B, Sun G, Zhao F, Li D. Maternal n-3 fatty acid supplementation has an immediate impact on the human milk fatty acid composition. Food Funct 2024; 15:11630-11639. [PMID: 39523804 DOI: 10.1039/d4fo02548b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background. Fatty acids are essential components in breast milk with mutable characteristics. The fatty acid profiles of breast milk varied with lactating women's intake of long-chain polyunsaturated fatty acids (LCPUFAs) including DHA, EPA, and ALA. Objective. This study aimed to investigate the correlation between dietary n-3 PUFA supplementation and the hourly variation of the fatty acid compositions in breast milk. Materials and methods. The fatty acid profiles were analyzed in 600 human milk samples from 8 hospitals in 8 different Chinese areas. Blood and breast milk samples were obtained from a group of seventy-five lactating mothers, all within 6 to 9 months postpartum. Each mother collected 8 dried milk samples (DMSs) within 2 days: half an hour before breakfast; 2 and 3 hours after breakfast every day; and 2 and 3 hours after lunch on day 1. One fingertip blood sample was collected 10 minutes before the breakfast on the first day. The mothers took supplements containing about 3 grams of n-3 PUFAs at 10 minutes before the breakfast on day 2. Results. (1) In breast milk, oleic acid (C18:1n9c, OA) was the most abundant fatty acid (35.55%) followed by C18:2n6c (linoleic acid, LA, 24.45%); (2) the breast milk DHA of the inland participants (0.26%) was lower than that from coastal participants (0.57%), but compensated with much higher ALA (inland 3.19% vs. coastal 2.21%), and thus provided higher total milk n-3 PUFAs (inland 3.88% vs. coastal 3.28%); (3) the breast milk EPA and DHA increased from the baseline (EPA 0.17% and DHA 0.44%) after supplementation in 2 hours (EPA 0.18% and DHA 0.44%) and 3 hours (EPA 0.19% and DHA 0.46%). Conclusions. Dietary supplementation of n-3 PUFAs had an immediate impact on the breast milk fatty acid composition. The concentration of ALA, LA and OA was strengthened in breast milk compared to that in maternal blood.
Collapse
Affiliation(s)
- Yannan He
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Chen
- School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Miao Miao
- Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 MoChou Road, Nanjing 210004, China
| | - Yongmei Dai
- Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 MoChou Road, Nanjing 210004, China
| | - Li Qin
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 88 Jinlong Road, Enshi, Hubei 445000, China
| | - Jing Lin
- Department of Clinical Nutrition, Affiliated Hospital of Inner Mongolia Medical College, No. 1 North Road, Hui Min District, Huhhot, China
| | - Yumei Qi
- Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Huijuan Xiao
- Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Yajun Qiu
- Affiliated Hospital of Ningbo University Medical College, No. 247 Renmin Road, Jiangbei District, Ningbo 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang 315211, China
| | - Hailan Sun
- The Department of Clinical Nutrition, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401120, China
| | - Jianing Wang
- The Department of Clinical Nutrition, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401120, China
| | - Meng-Yan Xu
- Department of nursing, Hangzhou Women's Hospital, No. 369 Kunpeng Rd., Shangcheng District, Hangzhou, Zhejiang Province 310008, China
| | - Ping Tan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Qingdao 266000, China
| | - Bo Yang
- Institute of Lipids Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guiju Sun
- School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Feng Zhao
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
2
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
3
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
4
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
5
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
6
|
Zhang M, Liu Z, Kang F, Wu K, Ni H, Han Y, Yang Y, Fu T, Yang G, Gao T, Han L. Is milk fat globule size correlated with milk fat content in Ruminants? Food Chem 2024; 439:138101. [PMID: 38043286 DOI: 10.1016/j.foodchem.2023.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.
Collapse
Affiliation(s)
- Menglu Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Zhentao Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Fangyuan Kang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Kuixian Wu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Han Ni
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Yingqian Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Yanbin Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Guoyu Yang
- Key Laboratory of Animal Growth and Development of Henan Province, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China.
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046 PR China.
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046 PR China.
| |
Collapse
|
7
|
Ozturk G, Paviani B, Rai R, Robinson RC, Durham SD, Baller MI, Wang A, Nitin N, Barile D. Investigating Milk Fat Globule Structure, Size, and Functionality after Thermal Processing and Homogenization of Human Milk. Foods 2024; 13:1242. [PMID: 38672914 PMCID: PMC11049580 DOI: 10.3390/foods13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk provides bioactive compounds such as milk fat globules (MFGs), which promote brain development, modulate the immune system, and hold antimicrobial properties. To ensure microbiological safety, donor milk banks apply heat treatments. This study compares the effects of heat treatments and homogenization on MFG's physicochemical properties, bioactivity, and bioavailability. Vat pasteurization (Vat-PT), retort (RTR), and ultra-high temperature (UHT) were performed with or without homogenization. UHT, RTR, and homogenization increased the colloidal dispersion of globules, as indicated by increased zeta potential. The RTR treatment completely inactivated xanthine oxidase activity (a marker of MFG bioactivity), whereas UHT reduced its activity by 93%. Interestingly, Vat-PT resulted in less damage, with 28% activity retention. Sialic acid, an important compound for brain health, was unaffected by processing. Importantly, homogenization increased the in vitro lipolysis of MFG, suggesting that this treatment could increase the digestibility of MFG. In terms of color, homogenization led to higher L* values, indicating increased whiteness due to finer dispersion of the fat and casein micelles (and thus greater light scattering), whereas UHT and RTR increased b* values associated with Maillard reactions. This study highlights the nuanced effects of processing conditions on MFG properties, emphasizing the retention of native characteristics in Vat-PT-treated human milk.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Sierra D. Durham
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Mara I. Baller
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
9
|
Wang J, Xi Y, Sun B, Deng J, Ai N. Utilization of low-temperature heating method to improve skim milk production: Microstructure, stability, and constituents of milk fat globule membrane. Food Chem X 2024; 21:101187. [PMID: 38370307 PMCID: PMC10869298 DOI: 10.1016/j.fochx.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
In the process of defatting milk, preheating treatment is an important factor affecting the flavor of skim milk. Here, raw milk was preheated at different times and temperatures. Then laser confocal microscopy, multiple-light scattering instrument, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the microstructure of milk fat globule membrane (MFGM), milk stability, and MFGM protein (MFGMP) components. Results showed that phospholipid domain of MFGM changed from an ordered state (Lo) to a disordered state (Ld) with increase in treatment temperature and time, leading to an increase in MFGMP content in skim milk. During the stability test, the stability of raw milk decreased significantly with increase in preheating temperature, while the opposite was true for skim milk. Finally, the results of MFGMP differentiation analysis showed that, the content of ten taste-related MFGMPs in the control group samples was significantly lower compared to the optimal group (P < 0.05).
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yanmei Xi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
10
|
Bai X, Shang J, Wu C, Yu H, Chen X, Yue X, Yang M. Phosphoproteomics Revealed Differentially Expressed Sites and Function of the Bovine Milk Fat Globule Membrane in Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6040-6052. [PMID: 38454851 DOI: 10.1021/acs.jafc.3c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and β-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Xinping Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| |
Collapse
|
11
|
Jaakamo MJ, Luukkonen TJ, Kairenius PK, Bayat AR, Ahvenjärvi SA, Vilkki JH, Leskinen HM. Effects of dietary forage-to-concentrate ratio and forage type on milk phospholipids and fatty acid composition of polar lipids. J Dairy Sci 2024; 107:1450-1459. [PMID: 37806636 DOI: 10.3168/jds.2023-23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
The effects of grass silage and red clover silage on milk fatty acid (FA) composition are extensively studied, but little is known of their effects on minor lipid constituents of milk fat globule membrane. We investigated the effects of forage:concentrate (FC) ratio in grass silage-based diets and forage type (grass silage vs. red clover silage) on selected molecular species of milk phospholipids (PL) and the FA composition of PL. Ten multiparous Nordic Red cows were offered following dietary treatments: grass silage-based diets containing 70:30 (HG) or 30:70 (LG) FC ratio or a red clover silage-based diet (RC) comprising 50:50 FC ratio on a dry matter basis. The most abundant molecular species within the phosphatidylcholines was 16:0-18:1 phosphatidylcholine that was increased by 18% in HG compared with LG milk. Dietary treatments did not affect the relative proportion of 18:1-18:1+18:0-18:2 phosphatidylethanolamine that was the most prevalent species (ca. 44%-45%) in that class. We identified the d18:1-22:0 sphingomyelin as the most abundant sphingomyelin species that tended to increase in HG milk compared with LG. The FC ratio did not affect the relative proportions of saturated FA nor monounsaturated FA in PL, but the proportion of cis-9 18:1 was elevated in HG versus LG milk, whereas the proportion of 18:2n-6 was 50% higher in LG versus HG milk. The RC diet increased monounsaturated FA and 18:3n-3 levels in PL compared with grass silage-based diets and decreased the relative proportion of saturated FA. However, the RC diet did not affect the relative proportion of polyunsaturated FA in PL, although red clover silage typically increases the proportion of polyunsaturated FA in milk fat. This study provides valuable knowledge of the minor lipid components in milk on species level in relation to common feeding strategies in high-forage systems.
Collapse
Affiliation(s)
- Mari J Jaakamo
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland.
| | - Tytti J Luukkonen
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Piia K Kairenius
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Ali R Bayat
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Seppo A Ahvenjärvi
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Johanna H Vilkki
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Heidi M Leskinen
- Animal Nutrition, Production Systems, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland.
| |
Collapse
|
12
|
Nie C, Zhao Y, Wang X, Li Y, Fang B, Wang R, Wang X, Liao H, Li G, Wang P, Liu R. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024; 16:587. [PMID: 38474716 DOI: 10.3390/nu16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.
Collapse
Affiliation(s)
- Chao Nie
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yunyi Zhao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Haiping Liao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Gengsheng Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Saito H, Kato S, Shimizu N, Takahashi T, Jutanom M, Ito J, Kasatani S, Nakagawa K. LC-MS/MS analysis of milk triacylglycerol hydroperoxide isomers which are generated corresponding to the photo- and thermal-oxidation. Food Res Int 2024; 178:113913. [PMID: 38309901 DOI: 10.1016/j.foodres.2023.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Milk is a rich source of essential nutrients such as lipids. However, lipid oxidation can be considered a crucial factor in determining the initial stage of milk deterioration. Therefore, it is essential to identify the mechanisms of lipid oxidation, such as photo-oxidation or thermal oxidation, to efficiently prevent it by selecting proper antioxidants. In this study, the oxidation mechanisms of long-life (LL) milk were investigated, and triacylglycerol hydroperoxide isomers generated corresponding to the oxidation mechanisms were analyzed by LC-MS/MS. This study first prepared the standard of TG 4:0_16:0_18:1;OOH isomers, which are the appropriate target for evaluating LL milk's oxidation mechanism. The authentic standards provided the robust analysis of TG 4:0_16:0_18:1;OOH isomers and suggested that LL milk was susceptible to photo-oxidation rather than thermal-oxidation. Furthermore, it was discovered that radicals play a role in the oxidation of LL milk during photo-oxidation. This information could be valuable in effectively preventing photo-oxidation in LL milk. It is important to note that milk is contained in a variety of food products. Hence, these findings would be applicable not only to milk but also to various milk-containing food products.
Collapse
Affiliation(s)
- Hirotada Saito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Takumi Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Mirinthorn Jutanom
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Satoshi Kasatani
- Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Japan.
| |
Collapse
|
14
|
Karbanová J, Deniz IA, Wilsch-Bräuninger M, de Sousa Couto RA, Fargeas CA, Santos MF, Lorico A, Corbeil D. Extracellular lipidosomes containing lipid droplets and mitochondria are released during melanoma cell division. Cell Commun Signal 2024; 22:57. [PMID: 38243233 PMCID: PMC10799373 DOI: 10.1186/s12964-024-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of melanoma is increasing worldwide. Since metastatic melanoma is highly aggressive, it is important to decipher all the biological aspects of melanoma cells. In this context, we have previously shown that metastatic FEMX-I melanoma cells release small (< 150 nm) extracellular vesicles (EVs) known as exosomes and ectosomes containing the stem (and cancer stem) cell antigenic marker CD133. EVs play an important role in intercellular communication, which could have a micro-environmental impact on surrounding tissues. RESULTS We report here a new type of large CD133+ EVs released by FEMX-I cells. Their sizes range from 2 to 6 µm and they contain lipid droplets and mitochondria. Real-time video microscopy revealed that these EVs originate from the lipid droplet-enriched cell extremities that did not completely retract during the cell division process. Once released, they can be taken up by other cells. Silencing CD133 significantly affected the cellular distribution of lipid droplets, with a re-localization around the nuclear compartment. As a result, the formation of large EVs containing lipid droplets was severely compromised. CONCLUSION Given the biochemical effect of lipid droplets and mitochondria and/or their complexes on cell metabolism, the release and uptake of these new large CD133+ EVs from dividing aggressive melanoma cells can influence both donor and recipient cells, and therefore impact melanoma growth and dissemination.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
| | - Rita Alexandra de Sousa Couto
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Mark F Santos
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA.
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany.
| |
Collapse
|
15
|
Yu B, Liu J, Cai Z, Mu T, Zhang D, Feng X, Gu Y, Zhang J. MicroRNA-19a regulates milk fat metabolism by targeting SYT1 in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253:127096. [PMID: 37769766 DOI: 10.1016/j.ijbiomac.2023.127096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional factors involved in the regulation of gene expression and play crucial roles in biological processes related to milk fat metabolism. Our previous study revealed that miR-19a expression was significantly higher in the mammary epithelial cells of high-milk fat cows than in those of low-milk fat cows. However, the precise molecular mechanisms underlying these differences remain unclear. In this study, we found a high expression of miR-19a in the mammary tissues of dairy cows. The regulatory effects of miR-19a on bovine mammary epithelial cells (BMECs) were analyzed using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, which demonstrated that miR-19a significantly inhibited BMEC proliferation. Transfection of the miR-19a mimic into BMECs significantly upregulated the expression of milk fat marker genes LPL, SCAP, and SREBP1, promoting triglyceride (TG) synthesis and lipid droplet formation, whereas the miR-19a inhibitor exhibited the opposite function. TargetScan and miRWalk predictions revealed that synaptotagmin 1 (SYT1) is a target gene of miR-19a. A dual luciferase reporter gene assay, RT-qPCR, and western blot analyses revealed that miR-19a directly targets the 3'-untranslated region (UTR) of SYT1 and negatively regulates SYT1 expression. Functional validation revealed that overexpression of SYT1 in BMECs significantly downregulated the expression of LPL, SCAP, and SREBP1, and inhibited TG synthesis and lipid droplet formation. Conversely, the knockdown of SYT1 had the opposite effect. Altogether, miR-19a plays a crucial role in regulating the proliferation and differentiation of BMECs and regulates biological processes related to TG synthesis and lipid droplet formation by suppressing SYT1 expression. These findings provide a strong foundation for further research on the functional mechanisms underlying milk fat metabolism in dairy cows.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Tong Mu
- School of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Di Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
16
|
Sprenger RR, Ostenfeld MS, Bjørnshave A, Rasmussen JT, Ejsing CS. Lipidomic Characterization of Whey Concentrates Rich in Milk Fat Globule Membranes and Extracellular Vesicles. Biomolecules 2023; 14:55. [PMID: 38254655 PMCID: PMC10813332 DOI: 10.3390/biom14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Lipids from milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for cognitive development and human health. Milk-derived whey concentrates rich in these lipids are therefore used as ingredients in infant formulas to mimic human milk and in medical nutrition products to improve the metabolic fitness of adults and elderly people. In spite of this, there is no consensus resource detailing the multitude of lipid molecules in whey concentrates. To bridge this knowledge gap, we report a comprehensive and quantitative lipidomic resource of different whey concentrates. In-depth lipidomic analysis of acid, sweet, and buttermilk whey concentrates identified 5714 lipid molecules belonging to 23 lipid classes. The data show that the buttermilk whey concentrate has the highest level of fat globule-derived triacylglycerols and that the acid and sweet whey concentrates have the highest proportions of MFGM- and EV-derived membrane lipids. Interestingly, the acid whey concentrate has a higher level of cholesterol whereas sweet whey concentrate has higher levels of lactosylceramides. Altogether, we report a detailed lipid molecular compendium of whey concentrates and lay the groundwork for using in-depth lipidomic technology to profile the nutritional value of milk products and functional foods containing dairy-based concentrates.
Collapse
Affiliation(s)
- Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | | | - Jan T. Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
17
|
Pan H, Qin Y, Zhu J, Wang W, Liu Z, Huang X, Lam SM, Shui G, Wang Y, Jiang Y, Huang X. Centrins control chicken cone cell lipid droplet dynamics through lipid-droplet-localized SPDL1. Dev Cell 2023; 58:2528-2544.e8. [PMID: 37699389 DOI: 10.1016/j.devcel.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023]
Abstract
As evolutionarily conserved organelles, lipid droplets (LDs) carry out numerous functions and have various subcellular localizations in different cell types and species. In avian cone cells, there is a single apically localized LD. We demonstrated that CIDEA (cell death inducing DFFA like effector a) and microtubules promote the formation of the single LD in chicken cone cells. Centrins, which are well-known centriole proteins, target to the cone cell LD via their C-terminal calcium-binding domains. Centrins localize on cone cell LDs with the help of SPDL1-L (spindle apparatus coiled-coil protein 1-L), a previously uncharacterized isoform of the kinetochore-associated dynein adaptor SPDL1. The loss of CETN3 or overexpression of a truncated CETN1 abrogates the apical localization of the cone cell LD. Simulation analysis showed that multiple LDs or a single mispositioned LD reduces the light sensitivity. Collectively, our findings identify a role of centrins in the regulation of cone cell LD localization, which is important for the light sensitivity of cone cells.
Collapse
Affiliation(s)
- Huimin Pan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiang Qin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Ning J, Yang M, Liu W, Luo X, Yue X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16435-16451. [PMID: 37882656 DOI: 10.1021/acs.jafc.3c04534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
19
|
Colombo J, Harris CL, Wampler JL, Zhuang W, Shaddy DJ, Liu BY, Wu SS. Improved Neurodevelopmental Outcomes at 5.5 Years of Age in Children Who Received Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula Through 12 Months: A Randomized Controlled Trial. J Pediatr 2023; 261:113483. [PMID: 37192722 DOI: 10.1016/j.jpeds.2023.113483] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE To evaluate the neurodevelopmental outcomes at 5.5 years of age in children who were previously randomized to cow milk-based infant formula (control) or similar formula (milk fat globule membrane + lactoferrin) with added sources of bovine milk fat globule membrane and bovine lactoferrin through 12 months of age. DESIGN Children who completed study feeding were invited to participate in follow-up assessments: cognitive development across multiple domains (primary outcome; Wechsler Preschool & Primary Scale of Intelligence, 4th Edition), inhibitory control/rule learning (Stroop Task), flexibility/rule learning (Dimensional Change Card Sort), and behavior/emotion (Child Behavior Checklist). RESULTS Of 292 eligible participants (control: 148, milk fat globule membrane + lactoferrin: 144), 116 enrolled and completed assessments (control: 59, milk fat globule membrane + LF: 57). There were no group demographic differences except family income (milk fat globule membrane + lactoferrin significantly higher). Wechsler Preschool & Primary Scale of Intelligence, 4th Edition composite scores (mean ± standard error) for Visual Spatial (100.6 ± 1.7 vs 95.3 ± 1.7; P = .027), Processing Speed (107.1 ± 1.4 vs 100.0 ± 1.4; P < .001), and Full-Scale IQ (98.7 ± 1.4 vs 93.5 ± 1.5; P = .012) were significantly higher for milk fat globule membrane + lactoferrin versus control, even after controlling for demographic/socioeconomic factors. Stroop Task scores were significantly higher in milk fat globule membrane + lactoferrin versus control (P < .001). Higher Dimensional Change Card Sort scores (P = .013) in the border phase (most complex/challenging) were detected, and more children passed the border phase (32% vs 12%; P = .039) for milk fat globule membrane versus control. No group differences in Child Behavior Checklist score were detected. CONCLUSIONS Children who received infant formula to 12 months of age with added bovine milk fat globule membrane and bovine lactoferrin versus standard formula demonstrated improved cognitive outcomes in multiple domains at 5.5 years of age, including measures of intelligence and executive function. TRIAL REGISTRATION Clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT04442477.
Collapse
Affiliation(s)
- John Colombo
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS.
| | - Cheryl L Harris
- Medical Affairs, ReckittǀMead Johnson Nutrition Institute, Evansville, IN
| | - Jennifer L Wampler
- Medical Affairs, ReckittǀMead Johnson Nutrition Institute, Evansville, IN
| | - Weihong Zhuang
- Medical Affairs, ReckittǀMead Johnson Nutrition Institute, Evansville, IN
| | - D Jill Shaddy
- Department of Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Bryan Y Liu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Steven S Wu
- Medical Affairs, ReckittǀMead Johnson Nutrition Institute, Evansville, IN; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
20
|
Schipper L, Bartke N, Marintcheva-Petrova M, Schoen S, Vandenplas Y, Hokken-Koelega ACS. Infant formula containing large, milk phospholipid-coated lipid droplets and dairy lipids affects cognitive performance at school age. Front Nutr 2023; 10:1215199. [PMID: 37731397 PMCID: PMC10508340 DOI: 10.3389/fnut.2023.1215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background Breastfeeding has been positively associated with infant and child neurocognitive development and function. Contributing to this effect may be differences between human milk and infant formula in the milk lipid composition and milk fat globule structure. Objective To evaluate the effects of an infant formula mimicking human milk lipid composition and milk fat globule structure on childhood cognitive performance. Methods In a randomized, controlled trial, healthy term infants received until 4 months of age either a Standard infant formula (n = 108) or a Concept infant formula (n = 115) with large, milk phospholipid coated lipid droplets and containing dairy lipids. A breastfed reference group (n = 88) was included. Erythrocyte fatty acid composition was determined at 3 months of age. Neurocognitive function was assessed as exploratory follow-up outcome at 3, 4, and 5 years of age using the Flanker test, Dimensional Change Card Sort (DCCS) test and Picture Sequence Memory test from the National Institutes of Health Toolbox Cognition Battery. Mann-Whitney U test and Fisher exact test were used to compare groups. Results Erythrocyte omega-6 to -3 long-chain polyunsaturated fatty acid ratio appeared to be lower in the Concept compared to the Standard group (P = 0.025). At age 5, only the Concept group was comparable to the Breastfed group in the highest reached levels on the Flanker test, and the DCCS computed score was higher in the Concept compared to the Standard group (P = 0.021). Conclusion These outcomes suggest that exposure to an infant formula mimicking human milk lipid composition and milk fat globule structure positively affects child neurocognitive development. Underlying mechanisms may include a different omega-3 fatty acid status during the first months of life. Clinical trial registration https://onderzoekmetmensen.nl/en/trial/28614, identifier NTR3683 and NTR5538.
Collapse
Affiliation(s)
| | - Nana Bartke
- Danone Nutricia Research, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
21
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
22
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
23
|
Choudhary V, Goodman JM. Editorial: The evolving role of lipid droplets: Advancements and future directions. Front Cell Dev Biol 2023; 11:1175083. [PMID: 37025181 PMCID: PMC10070960 DOI: 10.3389/fcell.2023.1175083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Vineet Choudhary
- All India Institute of Medical Sciences (AIIMS), Department of Biotechnology, New Delhi, India
| | - Joel M. Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, United States
| |
Collapse
|
24
|
Micronutrient, Metabolic, and Inflammatory Biomarkers through 24 Months of Age in Infants Receiving Formula with Added Bovine Milk Fat Globule Membrane through the First Year of Life: A Randomized Controlled Trial. J Nutr 2023; 153:511-522. [PMID: 36894243 DOI: 10.1016/j.tjnut.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bovine milk fat globule membrane (MFGM) added in infant formula supports typical growth and safety through 24 mo of age in term infants. OBJECTIVES To assess micronutrient (zinc, iron, ferritin, transferrin receptor), metabolic [glucose, insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), insulin-like growth factor-1 (IGF-1), triglycerides (TGs), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C)], and inflammatory (leptin, adiponectin, high sensitivity C-reactive protein) secondary outcomes through 24 mo of age in infants who received standard cow's milk-based infant formula (SF), similar formula with added bovine MFGM (EF), or human milk (HM) through 1 y. METHODS Infants whose parents agreed to a blood draw at baseline (<120 d of age) (SF = 80; EF = 80; HM = 83) were included. Subsequent collections (2-4 h fasting) occurred at D180, D365, and D730. Biomarker concentrations were analyzed and group changes tested using generalized estimating equations models. RESULTS Only serum iron (+22.1 μg/dL) and HDL-C (+2.5 mg/dL) were significantly higher for EF compared with SF at D730. Prevalence of zinc deficiency for EF (-17.4%) and SF (-16.6%) at D180 and depleted iron stores for SF (+21.4%) at D180 and EF (-34.6%) and SF (-28.0%) at D365 were significantly different compared with HM. IGF-1 (ng/mL) for EF and SF was significantly higher at D180 (+8.9) and for EF (+8.8) at D365, and (+14.5) at D730 compared with HM. Insulin (μUI/mL) for EF (+2.5) and SF (+5.8) and HOMA-IR for EF (+0.5) and SF (+0.6) were significantly higher compared with HM at D180. TGs (mg/dL) for SF (+23.9) at D180, for EF (+19.0) and SF (+17.8) at D365, and EF (+17.3) and SF (+14.5) at D730 were significantly higher compared with HM. Zinc, ferritin, glucose, LDL-C and total cholesterol changes were higher in formula groups compared with HM between various time points. CONCLUSIONS Micronutrient, metabolic, and inflammatory biomarkers were generally similar through 2 y in infants who received infant formula with or without added bovine MFGM. Over the 2 y, differences were observed between infant formulas and HM reference group. This trial was registered at clinicaltrials.gov as NTC02626143.
Collapse
|
25
|
Physical sampling practices and principles: Is it an underappreciated facet of dairy science? Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Monks J, Orlicky DJ, Libby AE, Dzieciatkowska M, Ladinsky MS, McManaman JL. Perilipin-2 promotes lipid droplet-plasma membrane interactions that facilitate apocrine lipid secretion in secretory epithelial cells of the mouse mammary gland. Front Cell Dev Biol 2022; 10:958566. [PMID: 36158190 PMCID: PMC9500548 DOI: 10.3389/fcell.2022.958566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Secretory epithelial cells (sMEC) in mammary glands of lactating animals secrete lipids by a novel apocrine mechanism in which cytoplasmic lipid droplets (LD) contact and are enveloped by elements of the apical plasma membrane (APM) before being released into the lumen of the gland as membrane bound structures. The molecular properties of LD-APM contacts and the mechanisms regulating LD membrane envelopment and secretion are not fully understood. Perilipin-2 (Plin2) is a constitutive LD protein that has been proposed to tether LD to the APM through formation of a complex with the transmembrane protein, butyrophilin1a1 (BTN) and the redox enzyme, xanthine oxidoreductase (XOR). Using mice lacking Plin2 and physiological inhibition of apocrine lipid secretion, we demonstrate that LD-APM contact and envelopment are mechanistically distinct steps that they are differentially regulated by Plin2 and independent of LD secretion. We find that Plin2 is not required for formation of LD-APM contacts. However, it increases the percentage of LD that contact the APM and mediates enlargement of the LD-APM contact zone as LD undergo membrane envelopment. The effects of Plin2 LD-APM interactions are associated with increased abundances of BTN, XOR and Cidea, which are implicated as mediators of LD-APM contact formation, on membranes surrounding secreted LD, and with promotion of glycocalyx remodeling at LD-APM contact sites. We propose that Plin2 does not directly mediate contact between LD and the APM but acts by enhancing molecular interactions that stabilize LD-APM contacts and govern membrane envelopment of LD during apocrine lipid secretion. Plin2 does not appear to significantly affect the lipid content of milk in fully lactating animals, but it does increase lipid secretion at the onset of lactation in primaparous dams, which suggest a role in facilitating apocrine lipid secretion in sMEC during their initial transition to a secretory phenotype.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew E. Libby
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monica Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - James L. McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
28
|
Glycoproteomic and Lipidomic Characterization of Industrially Produced Whey Protein Phospholipid Concentrate with Emphasis on Antimicrobial Xanthine Oxidase, Oxylipins and Small Milk Fat Globules. DAIRY 2022. [DOI: 10.3390/dairy3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work investigates the composition of whey protein phospholipid concentrate (WPPC), an underutilized dairy stream, and reveals that it is a source of many bioactive compounds that can benefit the immune system and gut health. Our glycoproteomics approach uncovered that proteins derived from the milk fat globule membrane (MFGM) represent 23% of the total protein relative abundance and identified 85 N-glycans. Released sialic acid, an additional marker of glycosylation, ranged from 1.2 to 2% of the total weight. Xanthine oxidase, a glycosylated marker of MFG bioactivity, was found in high abundance and displayed higher antimicrobial activity than bovine milk, despite its similar fat and solids content. An average MFG diameter of 2.64 ± 0.01 µm was found in liquid WPPC, compared to 4.78 ± 0.13 µm in bovine milk, which likely explains the unusually high presence of glycosylated membrane-bound proteins and phospholipids, whose total fatty acids accounted for 20% of the WPPC total fatty acid pool. Free and bound oxylipins (mainly derived from linoleic acid) were also identified, together with other less abundant anti-inflammatory lipid mediators derived from eicosapentaenoic acid and docosahexaenoic acid. Our study demonstrates that WPPC represents a promising starting material for bioactive compound extraction and a functional vehicle for the delivery of small MFGs.
Collapse
|
29
|
Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation – A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
31
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Preparation of Human Milk Fat Substitutes: A Review. Life (Basel) 2022; 12:life12020187. [PMID: 35207476 PMCID: PMC8874823 DOI: 10.3390/life12020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.
Collapse
|
33
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
34
|
Jaramillo-Ospina AM, Toro-Campos R, Murguia-Peniche T, Wampler JL, Wu SS, Berseth CL, Uauy R. Added bovine milk fat globule membrane in formula–Growth, body composition and safety through age two: an RCT. Nutrition 2022; 97:111599. [DOI: 10.1016/j.nut.2022.111599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
|
35
|
Hedrick J, Yeiser M, Harris CL, Wampler JL, London HE, Patterson AC, Wu SS. Infant Formula with Added Bovine Milk Fat Globule Membrane and Modified Iron Supports Growth and Normal Iron Status at One Year of Age: A Randomized Controlled Trial. Nutrients 2021; 13:4541. [PMID: 34960093 PMCID: PMC8708584 DOI: 10.3390/nu13124541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Inclusion of bovine-derived milk fat globule membrane (bMFGM) or bMFGM components in infant formulas (IFs) may support healthy brain development. This double-blind, prospective trial evaluated growth, tolerance, and iron status in infants receiving added bMFGM and modified protein, iron, and arachidonic acid (ARA) concentrations in IF. Healthy term infants were randomized to: control (marketed, routine cow's milk-based IF/100 kcal: 2.1 g protein, 1.8 mg iron, 34 mg ARA) or INV-MFGM (investigational cow's milk-based IF/100 kcal: 1.9 g protein, 1.2 mg iron, 25 mg ARA and whey protein-lipid concentrate, 5 g/L (source of bMFGM)). Anthropometrics, stool characteristics, fussiness, and gassiness through day 365 and blood markers of iron status at day 365 were evaluated. The primary outcome was rate of weight gain from 14-120 days of age. Of 373 infants enrolled (control: 191, INV-MFGM: 182), 275 completed the study (control: 141; INV-MFGM: 134). No group differences in growth rate (g/day) from day 14-120 or study discontinuation were detected. Few group differences in growth or parent-reported fussiness, gassiness, or stool characteristics were detected. No group differences were detected in hemoglobin, hematocrit, or incidence of anemia. In healthy term infants, bMFGM and modified protein, iron, and ARA concentrations in a cow's milk-based IF were well-tolerated, associated with adequate growth throughout the first year of life, and supported normal iron status at one year of age.
Collapse
Affiliation(s)
- James Hedrick
- Kentucky Pediatrics, 201 South 5th Street, Bardstown, KY 40004, USA;
| | - Michael Yeiser
- Owensboro Pediatrics, 2200 E. Parrish Ave Bldg B, Suite 101, Owensboro, KY 42303, USA;
| | - Cheryl L. Harris
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Jennifer L. Wampler
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Hila Elisha London
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Ashley C. Patterson
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Steven S. Wu
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| |
Collapse
|
36
|
Abstract
Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.
Collapse
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | | | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
37
|
A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021; 10:foods10092158. [PMID: 34574268 PMCID: PMC8472115 DOI: 10.3390/foods10092158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, camel milk (CM) has been considered as a health-promoting icon due to its medicinal and nutritional benefits. CM fat globule membrane has numerous health-promoting properties, such as anti-adhesion and anti-bacterial properties, which are suitable for people who are allergic to cow's milk. CM contains milk fat globules with a small size, which accounts for their rapid digestion. Moreover, it also comprises lower amounts of cholesterol and saturated fatty acids concurrent with higher levels of essential fatty acids than cow milk, with an improved lipid profile manifested by reducing cholesterol levels in the blood. In addition, it is rich in phospholipids, especially plasmalogens and sphingomyelin, suggesting that CM fat may meet the daily nutritional requirements of adults and infants. Thus, CM and its dairy products have become more attractive for consumers. In view of this, we performed a comprehensive review of CM fat's composition and nutritional properties. The overall goal is to increase knowledge related to CM fat characteristics and modify its unfavorable perception. Future studies are expected to be directed toward a better understanding of CM fat, which appears to be promising in the design and formulation of new products with significant health-promoting benefits.
Collapse
|
38
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
39
|
de Wolf JR, Lenferink A, Lenferink A, Otto C, Bosschaart N. Evaluation of the changes in human milk lipid composition and conformational state with Raman spectroscopy during a breastfeed. BIOMEDICAL OPTICS EXPRESS 2021; 12:3934-3947. [PMID: 34457390 PMCID: PMC8367237 DOI: 10.1364/boe.427646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Human milk fat forms the main energy source for breastfed infants, and is highly variable in terms of concentration and composition. Understanding the changes in human milk lipid composition and conformational state during a breastfeed can provide insight into lipid synthesis and secretion in the mammary gland. Therefore, the aim of this study was to evaluate human milk fatty acid length, degree of unsaturation (lipid composition) and lipid phase (lipid conformational state) at different stages during a single breastfeed (fore-, bulk- and hindmilk). A total of 48 samples from 16 lactating subjects were investigated with confocal Raman spectroscopy. We did not observe any significant changes in lipid composition between fore-, bulk and hindmilk. A new finding from this study is that lipid conformational state at room temperature changed significantly during a breastfeed, from almost crystalline to almost liquid. This observation suggests that lipid synthesis in the mammary gland changes during a single breastfeed.
Collapse
Affiliation(s)
- Johanna R. de Wolf
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Anki Lenferink
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Aufried Lenferink
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Cees Otto
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
40
|
Sukreet S, Braga CP, An TT, Adamec J, Cui J, Trible B, Zempleni J. Isolation of extracellular vesicles from byproducts of cheesemaking by tangential flow filtration yields heterogeneous fractions of nanoparticles. J Dairy Sci 2021; 104:9478-9493. [PMID: 34218910 DOI: 10.3168/jds.2021-20300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective large-scale protocols for the enrichment of sMEV from byproducts in dairy plants. Here, we tested the hypothesis that sMEV may be enriched from byproducts of cheesemaking by tangential flow filtration (EV-FF) and that the sMEV have properties similar to sMEV prepared by ultracentrifugation (sMEV-UC). Three fractions of EV were purified from the whey fraction of cottage cheese making by using EV-FF that passed through a membrane with a 50-kDa cutoff (50 penetrate; 50P), and subfractions of 50P that were retained (100 retentate; 100R) or passed through (100 penetrate; 100P) a membrane with a 100-kDa cutoff; sMEV-UC controls were prepared by serial ultracentrifugation. The abundance of sMEV (<200 nm) was less than 0.3% in EV-FF compared with sMEV-UC (1012/mL of milk). Despite the low EV count, the protein content (mg/mL) of 100R (63 ± 0.02; ± standard deviation) was higher than that of 50P (0.75 ± 0.10), 100P (0.65 ± 0.40), and sMEV-UC (27 ± 0.02). There were 17, 14, 35, and 75 distinct proteins detected by nontargeted mass spectrometry analysis in 50P, 100R, 100P, and sMEV-UC, respectively. Exosome markers CD9, CD63, CD81, HSP-70, PDCD6IP, and TSG101 were detected in control sMEV-UC but not in EV-FF by using targeted mass spectrometry and immunoblot analyses. Negative exosome markers, APOB, β-integrin, and histone H3 were below the limit of detection in EV-FF and control sMEV-UC analyzed by immunoblotting. The abundance of the major milk fat globule protein butyrophilin showed the following pattern: 100R ≫ 100P = 50P > sMEV-UC. More than 100 mature microRNA were detected in sMEV-UC by using sequencing analysis, compared with 36 to 60 microRNA in EV-FF. Only 100R and sMEV-UC yielded mRNA in quantities and qualities sufficient for sequencing analysis; an average of 276,000 and 838,000 reads were mapped to approximately 14,600 and 18,500 genes in 100R and sMEV-UC, respectively. In principal component analysis, microRNA, mRNA, and protein in EV-FF preparations clustered separately from control sMEV-UC. We conclude that under the conditions used here, flow filtration yields a heterogeneous population of milk EV.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln 68583
| | | | - Thuy T An
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln 68588
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln 68588
| | | | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln 68583.
| |
Collapse
|
41
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Wang M, Cao C, Wang Y, Li H, Li H, Yu J. Comparison of bovine milk fat globule membrane protein retention by different ultrafiltration membranes using a label-free proteomic approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Sedykh SE, Purvinish LV, Burkova EE, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Nevinsky GA. Analysis of peptides and small proteins in preparations of horse milk exosomes, purified on anti-CD81-Sepharose. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Affiliation(s)
- Felicity M Davis
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
45
|
Different processed milk with residual xanthine oxidase activity and risk of increasing serum uric acid level. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Milk-Derived Extracellular Vesicles Suppress Inflammatory Cytokine Expression and Nuclear Factor-κB Activation in Lipopolysaccharide-Stimulated Macrophages. DAIRY 2021. [DOI: 10.3390/dairy2020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In milk and milk products, small membrane-enclosed vesicles can be found, commonly termed extracellular vesicles (EVs). Milk-derived EVs have previously been suggested to have immunoregulatory properties, especially important for infants without a fully functioning immune system. In the present study, EV fractions were isolated from human milk, mature and colostrum bovine milk, and two dairy fractions, and successively surveyed for their immunomodulating effects on lipopolysaccharide (LPS)-stimulated macrophages (RAW264.7). RAW264.7 cell material and supernatant were evaluated by monitoring degradation of IκBα in the NF-κB pathway, and IL-6 and IL-1β cytokine production, using Western blotting and enzyme-linked immunosorbent assaying, respectively. The results revealed that preincubation with EVs derived from raw human and bovine milk lowered the LPS-activated response of the NF-κB pathway. Additionally, it was found that preincubation with EVs, from human and bovine milk as well as dairy whey or skim milk-derived fractions, decreased secretion of proinflammatory cytokines from LPS-activated RAW264.7 cells. The findings that milk-derived EVs can change the inflammatory response in macrophages support the notion that milk EVs have an important role in mother-to-infant communication and protection of a newborn.
Collapse
|
47
|
Interactions of Lipid Droplets with the Intracellular Transport Machinery. Int J Mol Sci 2021; 22:ijms22052776. [PMID: 33803444 PMCID: PMC7967230 DOI: 10.3390/ijms22052776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.
Collapse
|
48
|
A novel approach for modulating the spatial distribution of fat globules in acid milk gel and its effect on the perception of fat-related attributes. Food Res Int 2021; 140:109990. [PMID: 33648225 DOI: 10.1016/j.foodres.2020.109990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
Modulating the inhomogeneous distribution of fat globules within an emulsion gel is now being considered an effective method to increase the perception of fat-related sensory attributes. However, the methods for preparing the inhomogeneous gel were relatively complicated in previous studies. In the present study, milks enriched with different sizes of fat globule were obtained and then used to prepare glucono-δ-lactone-induced milk gels. The gels with different spatial distributions of fat globules were obtained through natural creaming. To ensure the high fat content layer exist on the gel surface, the two gels made from the same milk were superimposed from the bottom to form a new gel. In situ confocal microscopy showed that under the same overall fat content, the superimposed gel containing larger fat globules (L-L gel) exhibited the greatest inhomogeneity in microstructure with the highest average surface fat area fraction (10.9%), and the largest difference in fat content between the surface and the inside layers (9.1%). To illustrate the effect of inhomogeneous distribution of fat globules in gels on the perception of fat-related attributes, quantitative descriptive sensory analysis as well as the lubrication properties measurement under simulated oral processing conditions were carried out. The results showed the superimposed gels exhibited higher creaminess ratings and lower friction coefficients at 20 mm/s than those of the original gels. Overall, the study modulated the spatial distribution of fat globules in acid milk gels through natural creaming and superimposition and illustrated its positive effect on the perception of fat-related sensory attributes.
Collapse
|
49
|
Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms 2021; 9:341. [PMID: 33572211 PMCID: PMC7914750 DOI: 10.3390/microorganisms9020341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The milk fat globule membrane (MFGM), the component that surrounds fat globules in milk, and its constituents have gained significant attention for their gut function, immune-boosting properties, and cognitive-development roles. The MFGM can directly interact with probiotic bacteria, such as bifidobacteria and lactic acid bacteria (LAB), through interactions with bacterial surface proteins. With these interactions in mind, increasing evidence supports a synergistic effect between MFGM and probiotics to benefit human health at all ages. This important synergy affects the survival and adhesion of probiotic bacteria through gastrointestinal transit, mucosal immunity, and neurocognitive behavior in developing infants. In this review, we highlight the current understanding of the co-supplementation of MFGM and probiotics with a specific emphasis on their interactions and colocalization in dairy foods, supporting in vivo and clinical evidence, and current and future potential applications.
Collapse
Affiliation(s)
| | | | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| |
Collapse
|
50
|
Effect of acetate, β-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 2021; 57:66-75. [PMID: 33403623 DOI: 10.1007/s11626-020-00538-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to assess the effects of acetate and β-hydroxybutyrate alone or in combination on lipogenic genes and their associated regulatory proteins in dairy cow mammary epithelial cells (DCMEC) using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, lipid droplet staining and a triglyceride content detection kit, to determine whether SCFA are related to milk fat synthesis regulation in DCMEC. Our experiment shows that addition of different concentrations of acetate, β-hydroxybutyrate and their combinations to DCMEC increase in relative mRNA abundance of lipogenic genes and key transcription factors suggest an increase in lipogenic capacity, which is supported by an increased in cytosolic triglyceride content. Similarly, the protein expression level of acetyl-coenzyme A carboxylase (ACACA), fatty acid synthase (FASN) and sterol-coenzyme desaturase-1 (SCD1) genes and the transcription factor sterol regulatory element-binding protein-1 (SREBP1) were found to be increased by addition of acetate, β-hydroxybutyrate and their combinations. The expression pattern of fat-related genes and proteins showed similar trends in almost all treatments, suggesting that common transcription factor are regulating these genes. These results show that acetate and β-hydroxybutyrate regulate fat synthesis, further confirming that SCFAs work by targeting genes to activate the SREBP1 and insulin-induced gene 1 protein (INSIG1) signalling pathways in DCMEC.
Collapse
|