1
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein kinase A is a functional component of focal adhesions. J Biol Chem 2024; 300:107234. [PMID: 38552737 PMCID: PMC11044056 DOI: 10.1016/j.jbc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hannah Naughton
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Madeline McTigue
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rachel J Beltman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew A Herppich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Alan K Howe
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein Kinase A is a Functional Component of Focal Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553932. [PMID: 37645771 PMCID: PMC10462105 DOI: 10.1101/2023.08.18.553932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify fifty-three high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3) - a well-established molecular scaffold, regulator of cell migration, and component of focal and fibrillar adhesions - as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
|
3
|
Lednovich KR, Gough S, Brenner M, Qadri T, Layden BT. G
Protein‐Coupled Receptors in Metabolic Disease. GPCRS AS THERAPEUTIC TARGETS 2022:521-552. [DOI: 10.1002/9781119564782.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Hoang Trung H, Yoshihara T, Nakao A, Hayashida K, Hirata Y, Shirasuna K, Kuwamura M, Nakagawa Y, Kaneko T, Mori Y, Asano M, Kuramoto T. Deficiency of the RIβ subunit of protein kinase A causes body tremor and impaired fear conditioning memory in rats. Sci Rep 2021; 11:2039. [PMID: 33479380 PMCID: PMC7820254 DOI: 10.1038/s41598-021-81515-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
The RIβ subunit of cAMP-dependent protein kinase (PKA), encoded by Prkar1b, is a neuronal isoform of the type I regulatory subunit of PKA. Mice lacking the RIβ subunit exhibit normal long-term potentiation (LTP) in the Schaffer collateral pathway of the hippocampus and normal behavior in the open-field and fear conditioning tests. Here, we combined genetic, electrophysiological, and behavioral approaches to demonstrate that the RIβ subunit was involved in body tremor, LTP in the Schaffer collateral pathway, and fear conditioning memory in rats. Genetic analysis of WTC-furue, a mutant strain with spontaneous tremors, revealed a deletion in the Prkar1b gene of the WTC-furue genome. Prkar1b-deficient rats created by the CRISPR/Cas9 system exhibited body tremor. Hippocampal slices from mutant rats showed deficient LTP in the Schaffer collateral-CA1 synapse. Mutant rats also exhibited decreased freezing time following contextual and cued fear conditioning, as well as increased exploratory behavior in the open field. These findings indicate the roles of the RIβ subunit in tremor pathogenesis and contextual and cued fear memory, and suggest that the hippocampal and amygdala roles of this subunit differ between mice and rats and that rats are therefore beneficial for exploring RIβ function.
Collapse
Affiliation(s)
- Hieu Hoang Trung
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Katsumi Hayashida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yoshiki Hirata
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinkuuourai-kita, Izumisano, Osaka, 598-8531, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan. .,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Mizuhara M, Kometani-Gunjigake K, Nakao-Kuroishi K, Toyono T, Hitomi S, Morii A, Shiga M, Seta Y, Ono K, Kawamoto T. Vesicular nucleotide transporter mediates adenosine triphosphate release in compressed human periodontal ligament fibroblast cells and participates in tooth movement-induced nociception in rats. Arch Oral Biol 2019; 110:104607. [PMID: 31810015 DOI: 10.1016/j.archoralbio.2019.104607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pain control is imperative in orthodontic treatment. Adenosine triphosphate (ATP) is a key mediator released from periodontal ligament cells that excites nociceptive nerve endings. Vesicular nucleotide transporter (VNUT), encoded by the Solute carrier family 17 member 9 (SLC17A9) gene, participates in ATP uptake into secretory vesicles; thus, it may mediate tooth movement-induced pain. In the present study, we examined whether VNUT in periodontal ligament cells participates in tooth movement-induced nociception. DESIGN Expression levels of SLC17A9, connexin 43, and pannexin 1 in human periodontal ligament fibroblasts (HPDLFs) were examined by quantitative reverse transcription-polymerase chain reaction. Mechanical force via centrifugation-induced ATP release was measured using an ATP bioluminescence assay. Inhibitors were used to evaluate the role of ATP transporters. Face-grooming behaviors were assessed as indicators of nociceptive responses after experimental tooth movement in rats, as well as the effects of drugs for the pain-like behavior. RESULTS After HPDLFs underwent mechanical stimulation by centrifugation, SLC17A9 mRNA expression in the cells was significantly upregulated. Increased ATP release from HPDLFs after mechanical stimulation was suppressed by treatment with clodronic acid, a VNUT inhibitor, at concentrations of 0.1 and 1.0 μM. In rats, face-grooming behaviors (indicators of nociception) were significantly increased on day 1 after experimental tooth movement. Increased face-grooming behaviors were suppressed by systemic administration of clodronic acid (0.1 mg/kg). CONCLUSIONS These results indicate that release of ATP from periodontal ligament cells via VNUT is important for nociceptive transduction during orthodontic treatment. Thus, VNUT may provide a novel drug target for tooth movement-induced pain.
Collapse
Affiliation(s)
- Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Takashi Toyono
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Aoi Morii
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Yuji Seta
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| |
Collapse
|
6
|
Selvaraj P, Shen Q, Yang F, Naqvi NI. Cpk2, a Catalytic Subunit of Cyclic AMP-PKA, Regulates Growth and Pathogenesis in Rice Blast. Front Microbiol 2017; 8:2289. [PMID: 29209297 PMCID: PMC5702331 DOI: 10.3389/fmicb.2017.02289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
The cAMP-Protein Kinase A signaling, anchored on CpkA, is necessary for appressorium development and host penetration, but indispensable for infectious growth in Magnaporthe oryzae. In this study, we identified and characterized the gene encoding the second catalytic subunit, CPK2, whose expression was found to be lower compared to CPKA at various stages of pathogenic growth in M. oryzae. Deletion of CPK2 caused no alterations in vegetative growth, conidiation, appressorium formation, or pathogenicity. Surprisingly, the cpkAΔcpk2Δ double deletion strain displayed significant reduction in growth rate and conidiation compared to the single deletion mutants. Interestingly, loss of CPKA and CPK2 resulted in morphogenetic defects in germ tubes (with curled/wavy and serpentine growth pattern) on hydrophobic surfaces, and a complete failure to produce appressoria therein, thus suggesting an important role for CPK2-mediated cAMP-PKA in surface sensing and response pathway. CPKA promoter-driven expression of CPK2 partially suppressed the defects in host penetration and pathogenicity in the cpkAΔ. Such ectopic CPK2 expressing strain successfully penetrated the rice leaves, but was unable to produce proper secondary invasive hyphae, thus underscoring the importance of CpkA in growth and differentiation in planta. The Cpk2-GFP localized to the nuclei and cytoplasmic vesicles in conidia and germ tubes. The Cpk2-GFP colocalized with CpkA-mCherry on vesicles in the cytosol, but such overlap was not evident in the nuclei. Our studies indicate that CpkA and Cpk2 share overlapping functions, but also play distinct roles during pathogenesis-associated signaling and morphogenesis in the rice blast fungus.
Collapse
Affiliation(s)
- Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Qing Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Fan Yang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Arora K, Sinha C, Zhang W, Ren A, Moon CS, Yarlagadda S, Naren AP. Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why? Pflugers Arch 2013; 465:1397-407. [PMID: 23604972 DOI: 10.1007/s00424-013-1280-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/21/2023]
Abstract
Preciseness of cellular behavior depends upon how an extracellular cue mobilizes a correct orchestra of cellular messengers and effector proteins spatially and temporally. This concept, termed compartmentalization of cellular signaling, is now known to form the molecular basis of many aspects of cellular behavior in health and disease. The cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate are ubiquitous cellular messengers that can be compartmentalized in three ways: first, by their physical containment; second, by formation of multiple protein signaling complexes; and third, by their selective depletion. Compartmentalized cyclic nucleotide signaling is a very prevalent response among all cell types. In order to understand how it becomes relevant to cellular behavior, it is important to know how it is executed in cells to regulate physiological responses and, also, how its execution or dysregulation can lead to a pathophysiological condition, which forms the scope of the presented review.
Collapse
Affiliation(s)
- Kavisha Arora
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Agarwal C, Aulakh KB, Edelen K, Cooper M, Wallen RM, Adams S, Schultz DJ, Perlin MH. Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity. MICROBIOLOGY-SGM 2013; 159:857-868. [PMID: 23475947 DOI: 10.1099/mic.0.061234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Components of the cAMP (cyclic AMP) signalling cascades are conserved from fungi to humans, and are particularly important for fungal dimorphism and pathogenicity. Previous work has described two phosphodiesterases, UmPde1 and UmPde2, in Ustilago maydis which show strong phosphodiesterase activity. We further characterized the biological function(s) of these phosphodiesterases in U. maydis. Specifically, we examined their possible role(s) in regulation of the cAMP-dependent protein kinase A (PKA) pathway and their roles in filamentous growth and pathogenicity. We found that UmPde1, which shares 35 % similarity with Cryptococcus neoformans Pde1, also displays functional homology with this enzyme. UmPde1 complements the capsule-formation defect of C. neoformans strains deleted for Pde1. In U. maydis, the cell morphology of the umpde1 deletion mutant resembled the multiple budding phenotypes seen with the ubc1 mutant, which lacks the regulatory subunit of PKA. Interestingly, on low-ammonium medium, umpde2 deletion strains showed a reduction in filamentation that was comparable to that of ubc1 deletion strains; however, umpde1 deletion strains showed normal filamentation on low-ammonium medium. Furthermore, both the ubc1 deletion strain in which the PKA pathway was constitutively active and the umpde1 deletion strains were significantly reduced in pathogenicity, while the umpde2 deletion strains showed a trend for reduced pathogenicity compared with wild-type strains. These data support a role for the phosphodiesterases UmPde1 and UmPde2 in regulating the U. maydis cAMP-dependent PKA pathway through modulation of cAMP levels, thus affecting dimorphic growth and pathogenicity.
Collapse
Affiliation(s)
- Charu Agarwal
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - Kavita B Aulakh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - Kaly Edelen
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - Michael Cooper
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - R Margaret Wallen
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - Seth Adams
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
9
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
10
|
Lauks J, Klemmer P, Farzana F, Karupothula R, Zalm R, Cooke NE, Li KW, Smit AB, Toonen R, Verhage M. Synapse associated protein 102 (SAP102) binds the C-terminal part of the scaffolding protein neurobeachin. PLoS One 2012; 7:e39420. [PMID: 22745750 PMCID: PMC3380004 DOI: 10.1371/journal.pone.0039420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022] Open
Abstract
Neurobeachin (Nbea) is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.
Collapse
Affiliation(s)
- Juliane Lauks
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Patricia Klemmer
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Fatima Farzana
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ramesh Karupothula
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Robbert Zalm
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nancy E. Cooke
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ruud Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Braun P, Gingras AC. History of protein-protein interactions: From egg-white to complex networks. Proteomics 2012; 12:1478-98. [DOI: 10.1002/pmic.201100563] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology; Center for Life and Food Sciences Weihenstephan; Technical University Munich; Freising Germany
- Research Unit Protein Science; Helmholtz Centre Munich; Munich Germany
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
12
|
Chen H, Tsalkova T, Mei FC, Hu Y, Cheng X, Zhou J. 5-Cyano-6-oxo-1,6-dihydro-pyrimidines as potent antagonists targeting exchange proteins directly activated by cAMP. Bioorg Med Chem Lett 2012; 22:4038-43. [PMID: 22607683 DOI: 10.1016/j.bmcl.2012.04.082] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022]
Abstract
Exchange proteins directly activated by cAMP (Epac) are a family of guanine nucleotide exchange factors that regulate a wide variety of intracellular processes in response to second messenger cAMP. To explore the structural determinants for Epac antagonist properties of high throughput screening (HTS) hit ESI-08, pyrimidine 1, a series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine analogues have been synthesized and evaluated for their activities for Epac inhibition. Structure-activity relationship (SAR) analysis led to the identification of three more potent Epac antagonists (6b, 6g, and 6h). These inhibitors may serve as valuable pharmacological probes for further elucidation of the physiological functions and mechanisms of Epac regulation. Our SAR results and molecular docking studies have also revealed that further optimization of the moieties at the C-6 position of pyrimidine scaffold may allow us to discover more potent Epac-specific antagonists.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
13
|
Antoni FA. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium 2012; 51:260-6. [PMID: 22385836 DOI: 10.1016/j.ceca.2011.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
Calcium ions and cyclic adenosine monophosphate (cAMP) are virtually ubiquitous intracellular signaling molecules in mammalian cells. This paper will focus on the cross-talk between Ca(2+) and cAMP mobilizing signaling pathways and summarize the underlying molecular mechanisms. Subsequently, workings of adenohypophyseal corticotrope cells will be reviewed to highlight the physiological relevance of a Ca(2+) cAMP interactions in neuroendocrinology.
Collapse
Affiliation(s)
- Ferenc A Antoni
- Division of Preclinical Research, EGIS Pharmaceuticals PLC, Hungary.
| |
Collapse
|
14
|
Lin YC, Adamson RH, Clark JF, Reed RK, Curry FRE. Phosphodiesterase 4 inhibition attenuates plasma volume loss and transvascular exchange in volume-expanded mice. J Physiol 2011; 590:309-22. [PMID: 22083598 DOI: 10.1113/jphysiol.2011.213447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We tested the hypothesis that inhibition of phosphodiesterase 4 (PDE4) with rolipram to increase vascular endothelial cAMP and stabilize the endothelial barrier would attenuate the action of endogenous atrial natriuretic peptide (ANP) to increase vascular permeability to the plasma protein albumin after an acute plasma volume expansion. After rolipram pretreatment (8 mg (kg body wt)(-1), intraperitoneal, 30 min) more than 95% of the peak increase in plasma volume after volume expansion (4.5% bovine serum albumin, 114 μl (g body wt)(-1) h(-1), 15 min) remained in the vascular space 75 min after the end of infusion, whereas only 67% of the fluid was retained in volume-expanded animals with no rolipram pretreatment. Rolipram significantly decreased 30 min fluorescently labelled albumin clearance (μl (g dry wt)(-1)) relative to untreated volume-expanded controls in skin (e.g. back, 10.4 ± 1.6 vs. 19.5 ± 3.6, P = 0.04), muscle (e.g. hamstring, 15.0 ± 1.9 vs. 20.8 ± 1.4, P = 0.04) and in colon, caecum, and rectum (average reduction close to 50%). The mass of muscle and skin tissue accounted for 70% of volume-expansion-dependent albumin shifts from plasma to interstitium. The results are consistent with observations that the PDE4 inhibitor rolipram attenuates ANP-induced increases in vascular permeability after infusion of exogenous ANP and observations of elevated central venous pressure after a similar volume expansion in mice with selective deletion of the endothelial ANP receptor. These observations may form the basis for new strategies to retain intravenous fluid containing macromolecules.
Collapse
Affiliation(s)
- Yueh-Chen Lin
- Department of Physiology and Membrane Biology, School of Medicine, 1 Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
15
|
Mohammad S, Ramos LS, Buck J, Levin LR, Rubino F, McGraw TE. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110β isoform of phosphatidylinositol 3-kinase. J Biol Chem 2011; 286:43062-70. [PMID: 22027830 DOI: 10.1074/jbc.m111.289009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3' kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism.
Collapse
Affiliation(s)
- Sameer Mohammad
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bai C, Xu XL, Wang HS, Wang YM, Chan FY, Wang Y. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. Mol Microbiol 2011; 82:879-93. [PMID: 21992526 DOI: 10.1111/j.1365-2958.2011.07859.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adenylyl cyclase Cyr1 plays a pivotal role in regulating virulence traits in the human fungal pathogen Candida albicans. Although a diverse range of signals are known to activate Cyr1, it remains unclear how low activity is maintained in the absence of stimuli. To uncover negative regulatory elements, we designed a genetic screen to identify mutations in Cyr1 that increase its catalytic activity. We found such a mutant carrying a single Glu1541 to Lys substitution in a conserved motif C-terminal to the catalytic domain. This E1541K mutation caused constitutive filamentous growth, hypersensitivity to stress, resistance to farnesol and overproduction of riboflavin. The mutant phenotype depends on Cap1 and Ras1, two known positive regulators of Cyr1, and the filamentous growth requires Hgc1, a key promoter of hyphal growth. Strikingly, expressing a truncated version of the mutant protein lacking the entire region N-terminal to the catalytic domain in cyr1Δ cells caused a fivefold increase in the cellular cAMP level. Such cells exhibited dramatic enlargement, cytokinetic defects, G1 arrest and impaired hyphal development. Thus, our studies have revealed novel regulatory elements in Cyr1 that normally repress Cyr1 activity to prevent the toxicity of unregulated high cAMP levels.
Collapse
Affiliation(s)
- Chen Bai
- Institute of Molecular and Cell Biology, A *STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
17
|
Hu Y, Liu E, Bai X, Zhang A. The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:177-87. [PMID: 20059552 DOI: 10.1111/j.1567-1364.2009.00598.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | |
Collapse
|
18
|
Agarwal C, Schultz DJ, Perlin MH. Two phosphodiesterases from ustilago maydis share structural and biochemical properties with non-fungal phosphodiesterases. Front Microbiol 2010; 1:127. [PMID: 21687762 PMCID: PMC3109409 DOI: 10.3389/fmicb.2010.00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/26/2010] [Indexed: 12/01/2022] Open
Abstract
The dependence of Protein Kinase A (PKA) activity on cAMP levels is an important facet of the dimorphic switch between budding and filamentous growth as well as for pathogenicity in some fungi. To better understand these processes in the pathogenic fungus Ustilago maydis, we characterized the structure and biochemical functions of two phosphodiesterase (PDE) genes. Phosphodiesterases are enzymes involved in cAMP turnover and thus, contribute to the regulation of the cAMP-PKA signaling pathway. Two predicted homologs of PDEs were identified in the genome of U. maydis and hypothesized to be involved in cAMP turnover, thus regulating activity of the PKA catalytic subunit. Both umpde1 and umpde2 genes contain domains associated with phosphodiesterase activity predicted by InterPro analysis. Biochemical characterization of recombinantly produced UmPde1 (U. maydis Phosphodiesterase I) and UmPde2 demonstrated that both enzymes have phosphodiesterase activity in vitro, yet neither was inhibited by the phosphodiesterase inhibitor IBMX. Moreover, UmPde1 is specific for cAMP, while UmPde2 has broader substrate specificity, utilizing cAMP and cGMP as substrates. In addition, UmPde2 was also found to have nucleotide phosphatase activity that was higher with GMP compared to AMP. These results demonstrate that UmPde1 is a bona fide phosphodiesterase, while UmPde2 has more general activity as a cyclic nucleotide phosphodiesterase and/or GMP/AMP phosphatase. Thus, UmPde1 and UmPde2 likely have important roles in cell morphology and development and share some characteristics with a variety of non-fungal phosphodiesterases.
Collapse
Affiliation(s)
- Charu Agarwal
- Department of Biology, Program on Disease Evolution, University of Louisville Louisville, KY, USA
| | | | | |
Collapse
|
19
|
Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JKJ, Latchman DS, Djamgoz MBA. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol 2010; 224:527-39. [PMID: 20432453 DOI: 10.1002/jcp.22154] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
External (but not internal) application of beta-estradiol (E2) increased the current amplitude of voltage-gated Na(+) channels (VGSCs) in MDA-MB-231 human breast cancer (BCa) cells. The G-protein activator GTP-gamma-S, by itself, also increased the VGSC current whilst the G-protein inhibitor GDP-beta-S decreased the effect of E2. Expression of GPR30 (a G-protein-coupled estrogen receptor) in MDA-MB-231 cells was confirmed by PCR, Western blot and immunocytochemistry. Importantly, G-1, a specific agonist for GPR30, also increased the VGSC current amplitude in a dose-dependent manner. Transfection and siRNA-silencing of GPR30 expression resulted in corresponding changes in GPR30 protein expression but only internally, and the response to E2 was not affected. The protein kinase A inhibitor, PKI, abolished the effect of E2, whilst forskolin, an adenylate cyclase activator, by itself, increased VGSC activity. On the other hand, pre-incubation of the MDA-MB-231 cells with brefeldin A (a trans-Golgi protein trafficking inhibitor) had no effect on the E2-induced increase in VGSC amplitude, indicating that such trafficking ('externalisation') of VGSC was not involved. Finally, acute application of E2 decreased cell adhesion whilst the specific VGSC blocker tetrodotoxin increased it. Co-application of E2 and tetrodotoxin inhibited the effect of E2 on cell adhesion, suggesting that the effect of E2 was mainly through VGSC activity. Pre-treatment of the cells with PKI abolished the effect of E2 on adhesion, consistent with the proposed role of PKA. Potential implications of the E2-induced non-genomic upregulation of VGSC activity for BCa progression are discussed.
Collapse
Affiliation(s)
- Scott P Fraser
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Bales KR, Plath N, Svenstrup N, Menniti FS. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1007/7355_2010_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum Mutat 2009; 30:1486-511. [DOI: 10.1002/humu.21106] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Dessauer CW. Adenylyl cyclase--A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 2009; 76:935-41. [PMID: 19684092 DOI: 10.1124/mol.109.059345] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The formation of multiprotein complexes is a repeated theme in biology ranging from the regulation of the extracellular signal-regulated kinase and cAMP signaling pathways to the formation of postsynaptic density complexes or tight junctions. A-kinase anchoring proteins (AKAPs) are well known for their ability to scaffold protein kinase A and components upstream and downstream of cAMP production, including G protein-coupled receptors, cAMP-dependent Rap-exchange factors, and phosphodiesterases. Specific adenylyl cyclase (AC) isoforms have also been identified as components of AKAP complexes, namely AKAP79, Yotiao, and mAKAP. In this review, we summarize recent evidence for AC-AKAP complexes and requirements for compartmentalization of cAMP signaling. The ability of AKAPs to assemble intricate feedback loops to control spatiotemporal aspects of cAMP signaling adds yet another dimension to the classic cAMP pathway.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Carnegie GK, Means CK, Scott JD. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 2009; 61:394-406. [PMID: 19319965 DOI: 10.1002/iub.168] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review, we focus on recent advances in the elucidation of AKAP function.
Collapse
Affiliation(s)
- Graeme K Carnegie
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
24
|
Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin via ATP/P2Y1 in periodontal cells. J Dent Res 2008; 87:564-8. [PMID: 18502966 DOI: 10.1177/154405910808700601] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our previous study showed that mechanical stress induced the expression of osteopontin (OPN) in human periodontal ligament (HPDL) cells through the Rho kinase pathway. The increase of OPN expression via Rho kinase has been demonstrated to be triggered by nucleotide. Therefore, we hypothesized that nucleotides, particularly adenosine triphosphate (ATP), participated in the stress-induced OPN expression in HPDL cells. In the present study, the roles of ATP and P2Y1 purinoceptor were examined. Reverse-transcription polymerase chain-reaction and Western blot analysis revealed that the stress-induced ATP exerted its stimulatory effect on OPN expression. The inductive effect was attenuated by apyrase and completely inhibited by the Rho kinase inhibitor, as well as by the P2Y1 antagonist. We here propose that stress induces release of ATP, which in turn mediates Rho kinase activation through the P2Y1 receptor, resulting in the up-regulation of OPN. Stress-induced ATP could play a significant role in alveolar bone resorption.
Collapse
Affiliation(s)
- S Wongkhantee
- Department of Anatomy, Graduate School of Oral Biology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
25
|
Wojtal KA, Hoekstra D, van Ijzendoorn SCD. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape. Bioessays 2008; 30:146-55. [PMID: 18200529 DOI: 10.1002/bies.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
26
|
Candia OA, Kong CW, Alvarez LJ. IBMX-elicited inhibition of water permeability in the isolated rabbit conjunctival epithelium. Exp Eye Res 2008; 86:480-91. [PMID: 18234193 PMCID: PMC2288740 DOI: 10.1016/j.exer.2007.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 11/25/2022]
Abstract
Agents expected to increase intracellular cAMP levels were tested on the diffusional water permeability (P(dw)) of isolated rabbit conjunctival epithelia given recent indications of the apical expression of AQP5, a water channel homologue regulated by cAMP in other cell systems. For these experiments, segments of conjunctivae were mounted between Ussing-type hemichambers under short-circuit conditions. Unidirectional water fluxes (J(dw)) were measured by adding (3)H(2)O to one hemichamber and sampling from the other, while the electrical parameters (I(sc) and R(t)) were recorded simultaneously. J(dw) were determined under control conditions and after the introduction of forskolin, dibutyryl-cAMP, rolipram and IBMX. All agents reduced J(dw), with rolipram and IBMX the most effective inhibitors (~28% reduction), while simultaneously evoking stimulations of the I(sc); suggesting that cAMP regulates ionic transport and P(dw) independently. This observation was consistent with the elimination of the IBMX-elicited I(sc) stimulations by the PKA inhibitor, H89, and the ineffectiveness of the sulfonamide in preventing the J(dw) reductions produced by the xanthine. Data from mannitol fluxes and Arrhenius plots indicated that the IBMX-elicited P(dw) reduction occurred at the level of water-transporting channels, but the specific moiety was not identified. Instead it was observed that lipophiles commonly used in other systems to uncouple cellular communication precluded the effects of IBMX on J(dw), but the mechanism for these results was not directly linked to gap-junction blockade in the conjunctiva, as assessed by the transepithelial electrical parameters. Putatively, agents such as heptanol, by also fluidizing the bilayer, may have changed the conformation of a water channel in a manner preventing down-regulation by IBMX. Nevertheless, this study uncovered an apparently unique response to cAMP elevation exhibited by the conjunctiva, namely that P(dw) declines via an H89-insensitive pathway under conditions whereby PKA-dependent electrolyte transport might be over stimulated due to excessive cAMP levels (e.g., PDE inhibition).
Collapse
Affiliation(s)
- Oscar A Candia
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
27
|
Ma Y, Taylor SS. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1. J Biol Chem 2008; 283:11743-51. [PMID: 18287098 DOI: 10.1074/jbc.m710494200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).
Collapse
Affiliation(s)
- Yuliang Ma
- Howard Hughes Medical Institute and the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
28
|
Nie T, McDonough CB, Huang T, Nguyen PV, Abel T. Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 2007; 27:10278-88. [PMID: 17881534 PMCID: PMC2927986 DOI: 10.1523/jneurosci.1602-07.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies of hippocampal long-term potentiation (LTP), a cellular model of memory storage, implicate cAMP-dependent protein kinase (PKA) in presynaptic and postsynaptic mechanisms of LTP. The anchoring of PKA to AKAPs (A kinase-anchoring proteins) creates compartmentalized pools of PKA, but the roles of presynaptically and postsynaptically anchored forms of PKA in late-phase LTP are unclear. In this study, we have created genetically modified mice that conditionally express Ht31, an inhibitor of PKA anchoring, to probe the roles of anchored PKA in hippocampal LTP and spatial memory. Our findings show that at hippocampal Schaffer collateral CA3-CA1 synapses, theta-burst LTP requires presynaptically anchored PKA. In addition, a pool of anchored PKA in hippocampal area CA3 is required for spatial memory. These findings reveal a novel and significant role for anchored PKA signaling in cellular mechanisms underlying memory storage.
Collapse
Affiliation(s)
- Ting Nie
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Conor B. McDonough
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Ted Huang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Peter V. Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alberta, Canada T6G 2H7
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
29
|
Bilodeau ML, Hamm HE. Regulation of protease-activated receptor (PAR) 1 and PAR4 signaling in human platelets by compartmentalized cyclic nucleotide actions. J Pharmacol Exp Ther 2007; 322:778-88. [PMID: 17525299 DOI: 10.1124/jpet.107.121830] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin potently regulates human platelets by the G protein-coupled receptors protease-activated receptor (PAR) 1 and PAR4. Platelet activation by thrombin and other agonists is broadly inhibited by prostacyclin and nitric oxide acting through adenylyl and guanylyl cyclases to elevate cAMP and cGMP levels, respectively. Using forskolin and YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole] to selectively activate the adenylyl and guanylyl cyclases, respectively, and the membrane-permeable analogs N(6),2'-O-dibutyryladenosine-3'-5'-cAMP (dibutyryl-cAMP) and 8-(4-parachlorophenylthoi)-cGMP (8-pCPT-cGMP), we sought to identify key antiplatelet steps for cyclic nucleotide actions in blocking platelet activation by PAR1 versus PAR4. Platelet aggregation by PAR1 or PAR4 was inhibited with similar EC(50) of 1.2 to 2.1 microM forskolin, 31 to 33 microM YC-1, 57 to 150 microM dibutyryl-cAMP, and 220 to 410 microM 8-pCPT-cGMP. There was a marked left shift in the inhibitory potencies of forskolin and YC-1 for alpha-granule release and glycoprotein IIbIIIa/integrin alphaIIbbeta3 activation (i.e., EC(50) of 1-60 and 40-1300 nM, respectively) that was not observed for dibutyryl-cAMP and 8-pCPT-cGMP (i.e., EC(50) of 200-600 and 40-140 microM, respectively). This inhibition was essentially instantaneous, and measurements of cyclic nucleotide levels and kinase activities support a model of compartmentation involving the cyclic nucleotide effectors and regulators and the key molecular targets for this platelet inhibition. The different sensitivities of PAR1 and PAR4 to inhibition of calcium mobilization and dense granule release identify key antiplatelet steps for cyclic nucleotide actions and are consistent with the signaling models for these receptors. Specifically, PAR4 inhibition depends on the regulation of both calcium mobilization and dense granule release, and PAR1 inhibition depends predominantly on the regulation of dense granule release.
Collapse
Affiliation(s)
- Matthew L Bilodeau
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 442 Robinson Research Building, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
30
|
Liang S, Wang M, Triantafilou K, Triantafilou M, Nawar HF, Russell MW, Connell TD, Hajishengallis G. The A subunit of type IIb enterotoxin (LT-IIb) suppresses the proinflammatory potential of the B subunit and its ability to recruit and interact with TLR2. THE JOURNAL OF IMMUNOLOGY 2007; 178:4811-9. [PMID: 17404262 DOI: 10.4049/jimmunol.178.8.4811] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type IIb heat-labile enterotoxin of Escherichia coli (LT-IIb) and its nontoxic pentameric B subunit (LT-IIb-B(5)) display different immunomodulatory activities, the mechanisms of which are poorly understood. We investigated mechanisms whereby the absence of the catalytically active A subunit from LT-IIb-B(5) renders this molecule immunostimulatory through TLR2. LT-IIb-B(5), but not LT-IIb, induced TLR2-mediated NF-kappaB activation and TNF-alpha production. These LT-IIb-B(5) activities were antagonized by LT-IIb; however, inhibitors of adenylate cyclase or protein kinase A reversed this antagonism. The LT-IIb antagonistic effect is thus likely dependent upon the catalytic activity of its A subunit, which causes elevation of intracellular cAMP and activates cAMP-dependent protein kinase A. Consistent with this, a membrane-permeable cAMP analog and a cAMP-elevating agonist, but not catalytically defective point mutants of LT-IIb, mimicked the antagonistic action of wild-type LT-IIb. The mutants moreover displayed increased proinflammatory activity compared with wild-type LT-IIb. Additional mechanisms for the divergent effects on TLR2 activation by LT-IIb and LT-IIb-B(5) were suggested by findings that the latter was significantly stronger in inducing lipid raft recruitment of TLR2 and interacting with this receptor. The selective use of TLR2 by LT-IIb-B(5) was confirmed in an assay for IL-10, which is inducible by both LT-IIb and LT-IIb-B(5) at comparable levels; TLR2-deficient macrophages failed to induce IL-10 in response to LT-IIb-B(5) but not in response to LT-IIb. These differential immunomodulatory effects by LT-IIb and LT-IIb-B(5) have important implications for adjuvant development and, furthermore, suggest that enterotoxic E. coli may suppress TLR-mediated innate immunity through the action of the enterotoxin A subunit.
Collapse
Affiliation(s)
- Shuang Liang
- Center for Oral Health and Systemic Disease, Department of Periodontics, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Proceedings of the first International Meeting on Anchored cAMP Signaling Pathways, Biomedical Campus, Berlin-Buch, Germany, 15-16 October 2005. Eur J Cell Biol 2006; 85:581-697. [PMID: 16647785 DOI: 10.1016/j.ejcb.2006.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|