1
|
Cao R, Zhang Y, Ju Y, Wang W, Xi C, Liu W, Liu K. Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118525. [PMID: 34798221 DOI: 10.1016/j.envpol.2021.118525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO2 and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops under joint exposure to ocean acidification and Cu. The integrated biomarker response results suggested that scallops were more sensitive to Cu toxicity and/or ocean acidification than clams. The proteomic results suggested that the increased energy metabolism and suppressed protein turnover rates may contribute to a higher resistivity to ocean acidification in clams than scallops. Overall, this study provides molecular insights into the distinct sensitivities between two bivalve species from different habitats under exposure to ocean acidification and/or Cu. The findings emphasize the aggravating impact of ocean acidification on Cu toxicity in clams and scallops. The results show that ocean acidification and copper pollution may reduce the long-term viability of clams and scallops, and lead to the degradation of estuarine ecosystems.
Collapse
Affiliation(s)
- Ruiwen Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Yiling Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuhao Ju
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenxiang Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenlin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kai Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
4
|
Wang X, Grunz-Borgmann EA, Parrish AR. Loss of α(E)-catenin potentiates cisplatin-induced nephrotoxicity via increasing apoptosis in renal tubular epithelial cells. Toxicol Sci 2014; 141:254-62. [PMID: 24973089 DOI: 10.1093/toxsci/kfu130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most potent and widely used antitumor drugs. However, the use of cisplatin is limited by its side effect, nephrotoxicity. Evidence has shown an increased incidence and severity of acute kidney injury (AKI) in the elderly. Previous studies from our laboratory demonstrate a decrease in α(E)-catenin expression in aged kidney. In this study, we investigated whether the loss of α(E)-catenin may increase cisplatin nephrotoxicity. To study the effects of reduced α(E)-catenin, a cell line with stable knockdown of α(E)-catenin (C2 cells) was used; NT3 is nontargeted control. C2 cells exhibited a significant loss of viability as determined by MTT assay compared with NT3 cells after cisplatin challenge, but showed no difference in lactate dehydrogenase (LDH) leakage. Increased caspase 3/7 activation and PARP cleavage was observed in C2 cells after cisplatin treatment. Z-VAD, a pan-caspase inhibitor, abolished the difference in susceptibility between NT3 and C2 cells. Interestingly, the expression of α(E)-catenin was further decreased after cisplatin treatment. Furthermore, in vivo data demonstrated a significant increase in serum creatinine at 72 h after a single dose of cisplatin in 24-month-old rats, but not in 4-month-old rats. Increased expression of KIM-1 and in situ apoptosis were also detected in aged kidney after cisplatin challenge. Taken together, these data suggest that loss of α(E)-catenin increases apoptosis of tubular epithelial cells which may contribute to the increased nephrotoxicity induced by cisplatin in aged kidney.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| |
Collapse
|
5
|
Al Haj A, Mazur AJ, Buchmeier S, App C, Theiss C, Silvan U, Schoenenberger CA, Jockusch BM, Hannappel E, Weeds AG, Mannherz HG. Thymosin beta4 inhibits ADF/cofilin stimulated F-actin cycling and hela cell migration: Reversal by active Arp2/3 complex. Cytoskeleton (Hoboken) 2013; 71:95-107. [DOI: 10.1002/cm.21128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Abdulatif Al Haj
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | | | - Sabine Buchmeier
- Cell Biology Group; Institute of Zoology; Technical University of Braunschweig; Germany
| | - Christine App
- Institute of Biochemistry; University of Erlangen; Erlangen Germany
| | | | - Unai Silvan
- Maurice E. Müller Institute for Structural Biology, Biocenter; Basel Switzerland
| | | | - Brigitte M. Jockusch
- Cell Biology Group; Institute of Zoology; Technical University of Braunschweig; Germany
| | - Ewald Hannappel
- Institute of Biochemistry; University of Erlangen; Erlangen Germany
| | - Alan G. Weeds
- MRC Laboratory of Molecular Biology and Trinity College; Cambridge United Kingdom
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
- Department of Physical Biochemistry; Max-Planck-Institute of Molecular Physiology; Dortmund Germany
| |
Collapse
|
6
|
Interference with the contractile machinery of the fibroblastic chondrocyte cytoskeleton induces re-expression of the cartilage phenotype through involvement of PI3K, PKC and MAPKs. Exp Cell Res 2013; 320:175-87. [PMID: 24246223 DOI: 10.1016/j.yexcr.2013.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
Chondrocytes rapidly lose their phenotypic expression of collagen II and aggrecan when grown on 2D substrates. It has generally been observed that a fibroblastic morphology with strong actin-myosin contractility inhibits chondrogenesis, whereas chondrogenesis may be promoted by depolymerization of the stress fibers and/or disruption of the physical link between the actin stress fibers and the ECM, as is the case in 3D hydrogels. Here we studied the relationship between the actin-myosin cytoskeleton and expression of chondrogenic markers by culturing fibroblastic chondrocytes in the presence of cytochalasin D and staurosporine. Both drugs induced collagen II re-expression; however, renewed glycosaminoglycan synthesis could only be observed upon treatment with staurosporine. The chondrogenic effect of staurosporine was augmented when blebbistatin, an inhibitor of myosin/actin contractility, was added to the staurosporine-stimulated cultures. Furthermore, in 3D alginate cultures, the amount of staurosporine required to induce chondrogenesis was much lower compared to 2D cultures (0.625 nM vs. 2.5 nM). Using a selection of specific signaling pathway inhibitors, it was found that PI3K-, PKC- and p38-MAPK pathways positively regulated chondrogenesis while the ERK-pathway was found to be a negative regulator in staurosporine-induced re-differentiation, whereas down-regulation of ILK by siRNA indicated that ILK is not determining for chondrocyte re-differentiation. Furthermore, staurosporine analog midostaurin displayed only a limited chondrogenic effect, suggesting that activation/deactivation of a specific set of key signaling molecules can control the expression of the chondrogenic phenotype. This study demonstrates the critical importance of mechanobiological factors in chondrogenesis suggesting that the architecture of the actin cytoskeleton and its contractility control key signaling molecules that determine whether the chondrocyte phenotype will be directed along a fibroblastic or chondrogenic path.
Collapse
|
7
|
Miranda MDS, Bressan FF, De Bem THC, Merighe GKF, Ohashi OM, King WA, Meirelles FV. Nuclear Transfer with Apoptotic Bovine Fibroblasts: Can Programmed Cell Death Be Reprogrammed? Cell Reprogram 2012; 14:217-24. [DOI: 10.1089/cell.2011.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Fabiana Fernandes Bressan
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Tiago Henrique Camara De Bem
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| | | | - Otávio Mitio Ohashi
- Faculdade de Biologia, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - William Alan King
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Flavio Viera Meirelles
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| |
Collapse
|
8
|
MANNHERZ HANSGEORG, MACH MONIKA, NOWAK DOROTA, MALICKA-BLASZKIEWICZ MARIA, MAZUR ANTONINA. LAMELLIPODIAL AND AMOEBOID CELL LOCOMOTION: THE ROLE OF ACTIN-CYCLING AND BLEB FORMATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048007000404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell migration depends on the rapid changes of the organization of actin filaments and generation of force by motor proteins. Vertebrate cells use two different mechanisms: mesenchymal or amoeboid migration. Cells migrating in mesenchymal mode are elongated and move over a two-dimensional substratum. They extend thin veil-like extensions at their leading face — lamellipodia, whose protrusion depend on polymerization and depolymerization processes of actin. During mesenchymal migration actin filaments are firmly connected by integrins to the extracellular matrix (ECM) at focal contacts, which serve as points of fixation for subsequent cell body traction by force producing actomyosin interactions. Cells migrating in amoeboid fashion are rounded and move through a three-dimensional ECM-network undergoing considerable shape changes and generating vesicle-like surface extensions — so-called blebs. These blebs and the migrating cells exhibit no or strongly reduced affinity to the ECM. Bleb formation depends on a transient decrease of plasma membrane stiffness and locally increased hydrostatic pressure, which is generated by actin-myosin interactions. Formation of numerous surface blebs is also typical of cells that undergo apoptotic cell death. Since these share a number of properties to blebs of amoeboid cells, an analysis is given of the distribution of some cytoskeletal components in apoptotic blebs.
Collapse
Affiliation(s)
- HANS GEORG MANNHERZ
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - MONIKA MACH
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | - DOROTA NOWAK
- Department of Cell Pathology, Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | | | - ANTONINA MAZUR
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, D-44227-Dortmund, Germany
| |
Collapse
|
9
|
Barberan S, McNair K, Iqbal K, Smith NC, Prendergast GC, Stone TW, Cobb SR, Morris BJ. Altered apoptotic responses in neurons lacking RhoB GTPase. Eur J Neurosci 2011; 34:1737-46. [PMID: 22098422 DOI: 10.1111/j.1460-9568.2011.07891.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Caspase 3 activation has been linked to the acute neurotoxic effects of central nervous system damage, as in traumatic brain injury or cerebral ischaemia, and also to the early events leading to long-term neurodegeneration, as in Alzheimer's disease. However, the precise mechanisms activating caspase 3 in neuronal injury are unclear. RhoB is a member of the Rho GTPase family that is dramatically induced by cerebral ischaemia or neurotrauma, both in preclinical models and clinically. In the current study, we tested the hypothesis that RhoB might directly modulate caspase 3 activity and apoptotic or necrotic responses in neurons. Over-expression of RhoB in the NG108-15 neuronal cell line or in cultured corticohippocampal neurons elevated caspase 3 activity without inducing overt toxicity. Cultured corticohippocampal neurons from RhoB knockout mice did not show any differences in sensitivity to a necrotic stimulus - acute calcium ionophore exposure - compared with neurons from wild-type mice. However, corticohippocampal neurons lacking RhoB exhibited a reduction in the degree of DNA fragmentation and caspase 3 activation induced by the apoptotic agent staurosporine, in parallel with increased neuronal survival. Staurosporine induction of caspase 9 activity was also suppressed. RhoB knockout mice showed reduced basal levels of caspase 3 activity in the adult brain. These data directly implicate neuronal RhoB in caspase 3 activation and the initial stages of programmed cell death, and suggest that RhoB may represent an attractive target for therapeutic intervention in conditions involving elevated caspase 3 activity in the central nervous system.
Collapse
Affiliation(s)
- Sara Barberan
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Machaidze G, Sokoll A, Shimada A, Lustig A, Mazur A, Wittinghofer A, Aebi U, Mannherz HG. Actin Filament Bundling and Different Nucleating Effects of Mouse Diaphanous-Related Formin FH2 Domains on Actin/ADF and Actin/Cofilin Complexes. J Mol Biol 2010; 403:529-45. [PMID: 20869367 DOI: 10.1016/j.jmb.2010.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 08/10/2010] [Accepted: 09/08/2010] [Indexed: 12/14/2022]
|
11
|
Ullal AJ, Pisetsky DS. The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis 2010; 15:586-96. [PMID: 20146001 DOI: 10.1007/s10495-010-0470-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microparticles (MPs) are small membrane-bound vesicles released from cells undergoing activation or cell death. These particles display potent biological activities that can impact on physiologic and pathologic processes. Previous studies with the Jurkat T leukemia cell line demonstrated that staurosporine (STS) induces the release of MPs as cells undergo apoptosis. To investigate further this process, we tested the effects of STS, its analogue, 7-hydroxystaurosporine (UCN-01), and other protein kinase C (PKC) and cyclin-dependent kinase (CDK) inhibitors. FACS analysis was used to assess MP release. Results of these studies indicate that STS and UCN-01 induce MP release by Jurkat cells; in contrast, other PKC and CDK inhibitors failed to induce comparable release, suggesting that release does not result from simple inhibition of either kinase alone. Time course experiments indicated that STS-induced particle release occurred as early as 2 h after treatment, with the early release MPs displaying low levels of binding of annexin V and propidium iodide (PI). Early-release MPs, however, matured in culture to an annexin V- and PI-positive phenotype. Together, these results indicate that STS and UCN-01 induce MPs that are phenotypically distinct and reflect specific patterns of kinase inhibition during apoptosis.
Collapse
|
12
|
Cell sheet integrity and nanomechanical breakdown during programmed cell death. Med Biol Eng Comput 2010; 48:1015-22. [DOI: 10.1007/s11517-010-0640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/17/2010] [Indexed: 11/26/2022]
|
13
|
Modulation of actin filament dynamics by actin-binding proteins residing in lamellipodia. Eur J Cell Biol 2010; 89:402-13. [DOI: 10.1016/j.ejcb.2009.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 09/24/2009] [Accepted: 10/01/2009] [Indexed: 11/19/2022] Open
|
14
|
Nowak D, Mazur AJ, Popow-Woźniak A, Radwańska A, Mannherz HG, Malicka-Błaszkiewicz M. Subcellular distribution and expression of cofilin and ezrin in human colon adenocarcinoma cell lines with different metastatic potential. Eur J Histochem 2010; 54:e14. [PMID: 20558337 PMCID: PMC3167302 DOI: 10.4081/ejh.2010.e14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/04/2023] Open
Abstract
The dynamic reorganization of the actin cytoskeleton is regulated by a number of actin binding proteins (ABPs). Four human colon adenocarcinoma cell lines - parental and three selected sublines, which differ in motility and metastatic potential, were used to investigate the expression level and subcellular localization of selected ABPs. Our interest was focused on cofilin and ezrin. These proteins are essential for cell migration and adhesion. The data received for the three more motile adenocarcinoma sublines (EB3, 3LNLN, 5W) were compared with those obtained for the parental LS180 adenocarcinoma cells and fibroblastic NRK cells. Quantitative densitometric analysis and confocal fluorescence microscopy were used to examine the expression levels and subcellular distribution of the selected ABPs. Our data show distinct increase in the level of cofilin in adenocarcinoma cells accompanied by the reduction of inactive phosphorylated form of cofilin. In more motile cells, cofilin was accumulated at cellular periphery in co-localization with actin filaments. Furthemore, we indicated translocation of ezrin towards the cell periphery within more motile cells in comparison with NRK and parental adenocarcinoma cells. In summary, our data indicate the correlation between migration ability of selected human colon adenocarcinoma sublines and subcellular distribution as well as the level of cofilin and ezrin. Therefore these proteins might be essential for the higher migratory activity of invasive tumor cells.
Collapse
Affiliation(s)
- D Nowak
- Dept. of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
Pelling AE, Veraitch FS, Chu CPK, Mason C, Horton MA. Mechanical dynamics of single cells during early apoptosis. ACTA ACUST UNITED AC 2009; 66:409-22. [PMID: 19492400 DOI: 10.1002/cm.20391] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic mechanical properties of cells are becoming recognized as indicators and regulators of physiological processes such as differentiation, malignant phenotypes and mitosis. A key process in development and homeostasis is apoptosis and whilst the molecular control over this pathway is well studied, little is known about the mechanical consequences of cell death. Here, we study the caspase-dependent mechanical kinetics of single cells during early apoptosis initiated with the general protein-kinase inhibitor staurosporine. This results in internal remodelling of the cytoskeleton and nucleus which is reflected in dynamic changes in the mechanical properties of the cell. Utilizing simultaneous confocal and atomic force microscopy (AFM), we measured distinct mechanical dynamics in the instantaneous cellular Young's Modulus and longer timescale viscous deformation. This allowed us to visualize time-dependent nuclear and cytoskeletal control of force dissipation with fluorescent fusion proteins throughout the cell. This work reveals that the cell death program not only orchestrates biochemical dynamics but also controls the mechanical breakdown of the cell. Importantly, the consequences of mechanical disregulation during apoptosis may be a contributing factor to several human pathologies through the poorly timed release of dead cells and cell debris.
Collapse
Affiliation(s)
- Andrew E Pelling
- Centre for Nanomedicine, The London Centre for Nanotechnology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Mazur AJ, Nowak D, Mannherz HG, Malicka-Błaszkiewicz M. Methotrexate induces apoptosis in CaSki and NRK cells and influences the organization of their actin cytoskeleton. Eur J Pharmacol 2009; 613:24-33. [PMID: 19383496 DOI: 10.1016/j.ejphar.2009.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
Abstract
Methotrexate is a widely used drug in treatments of various types of malignancies and in the therapy of rheumatoid arthritis. The goal of our study was to look at the effect of this dihydrofolate reductase inhibitor on the actin cytoskeleton, since actin plays an important role in cancer transformation and metastasis. For this reason we compared results obtained from experiments on CaSki (human uterine cervix cancer) and NRK (normal fibroblastic rat kidney) cells treated with methotrexate. It has been shown previously that methotrexate can induce apoptosis. Therefore we first examined whether methotrexate induces apoptosis in our model cells. For this aim we applied several assays like Caspase Glo 3/7, DNA fragmentation and binding of phosphatidylserine by annexin V-fluorescein. The data obtained indicated that methotrexate induces programmed cell death in CaSki and NRK cells. However, differences between CaSki and NRK cells were observed in the morphological alterations and dynamics of apoptosis induced by methotrexate. It seemed that cancer cells were more sensitive towards the cell death inducing activity at lower concentrations of methotrexate. Analysis by confocal microscopy of methotrexate-treated cells demonstrated that treatment with this folate antagonist affected the actin cytoskeleton, although the dis-organization of the actin cytoskeleton after treatment with methotrexate differed between cancer and normal cells.
Collapse
Affiliation(s)
- Antonina Joanna Mazur
- Department of Anatomy and Embryology, Faculty of Medicine, Ruhr University, Bochum, Germany.
| | | | | | | |
Collapse
|
17
|
Anuradha A, Annadurai RS, Shashidhara LS. Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:627-34. [PMID: 17517339 DOI: 10.1016/j.ibmb.2007.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 02/28/2007] [Accepted: 03/08/2007] [Indexed: 05/15/2023]
Abstract
Limonoids isolated from the Indian neem tree (Azadirachta indica) have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. However, their mode of action is still not very well understood. We have studied the mode of action of Azadirachtin A, the major limonoid of neem seed extracts, using Drosophila melanogaster as the model system. Azadirachtin A induces moderate-to-severe phenotypes in different tissues in a dose-dependent manner. At the cellular level, Azadirachtin A induces depolymerization of Actin leading to arrest of cells and subsequently apoptosis in a caspase-independent manner. Azadirachtin A-induced phenotypes were rescued by the over-expression of Cyclin E in a tissue-dependent manner. Cyclin E, which caused global rescue of Azadirachtin A-induced phenotypes, also effected rearrangement of the actin filaments. These results suggest that probably actin is a target of Azadirachtin A activity.
Collapse
|
18
|
Theiss C, Mazur A, Meller K, Mannherz HG. Changes in gap junction organization and decreased coupling during induced apoptosis in lens epithelial and NIH-3T3 cells. Exp Cell Res 2007; 313:38-52. [PMID: 17123514 DOI: 10.1016/j.yexcr.2006.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/15/2006] [Accepted: 09/18/2006] [Indexed: 02/06/2023]
Abstract
We demonstrate that global induction of apoptosis in primary bovine lens epithelial (LEC) or fibroblastic mouse NIH-3T3 cells by staurosporine, puromycin, cycloheximide, or etoposide is accompanied by a decrease in coupling by gap junctions. Cell coupling as tested by neurobiotin spreading was maintained when the LEC or NIH-3T3 cells were pre-incubated with the pan-caspase inhibitor zVAD or the caspase-3 inhibiting tetrapeptide DEVD. Immunohistochemistry using anti-connexin-43 antibodies showed a reduction of plasma membrane integrated connexin-43 in both cell lines when undergoing apoptosis. Western blotting indicated degradation of connexin-43 that was inhibited by zVAD or DEVD. Cell coupling at single cell level was tested by direct microinjecting into LEC apoptosis-inducing agents of low molecular mass like staurosporine, etoposide and puromycin or the high molecular mass proteins caspase-3 and -8 in activated state. Microinjection of puromycin or etoposide induced apoptotic morphological changes of only the injected cell within 90 or 180 min, but did not affect adjacent cells. In contrast, microinjection of staurosporine led to a rapid induction of apoptosis of the injected and a number of adjacent cells suggesting spreading of staurosporine most probably through gap junction pores held open by dephosphorylation of connexin-43 as verified by immunoblotting and staining using a phospho-serine368-specific anti-connexin-43 antibody. Microinjection of active caspase-8 led after 3 h to morphological apoptotic alterations of only the injected cell, but did not inhibit spreading of co-injected neurobiotin to neighboring cells during the first hour. In contrast, microinjection of active caspase-3-induced apoptosis only of the injected cell after 60 min and rapidly and completely suppressed coupling to neighboring cells.
Collapse
Affiliation(s)
- Carsten Theiss
- Department of Cytology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
19
|
Pelling AE, Veraitch FS, Pui-Kei Chu C, Nicholls BM, Hemsley AL, Mason C, Horton MA. Mapping correlated membrane pulsations and fluctuations in human cells. J Mol Recognit 2007; 20:467-75. [PMID: 17712774 DOI: 10.1002/jmr.832] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cell membrane and cytoskeleton are dynamic structures that are strongly influenced by the thermo-mechanical background in addition to biologically driven mechanical processes. We used atomic force microscopy (AFM) to measure the local membrane motion of human foreskin fibroblasts (HFFs) which were found to be governed by random and non-random correlated mechanical processes. Interphase cells displayed distinct membrane pulsations in which the membrane was observed to slowly contract upwards followed by a recovery to its initial position. These pulsations occurred one to three times per minute with variable amplitudes (20-100 pN) separated by periods of random baseline fluctuations with amplitudes of <20 pN. Cells were exposed to actin and microtubule (MT) destabilizing drugs and induced into early apoptosis. Mechanical pulsations (20-80 pN) were not prevented by actin or MT depolymerization but were prevented in early apoptotic cells which only displayed small amplitude baseline fluctuations (<20 pN). Correlation analysis revealed that the cell membrane motion is largely random; however several non-random processes, with time constants varying between approximately 2 and 35 s are present. Results were compared to measured cardiomyocyte motion which was well defined and highly correlated. Employing automated positioning of the AFM tip, interphase HFF correlation time constants were also mapped over a 10 microm2 area above the nucleus providing some insights into the spatial variability of membrane correlations. Here, we are able to show that membrane pulsations and fluctuations can be linked to physiological state and cytoskeletal dynamics through distinct sets of correlation time constants in human cells.
Collapse
Affiliation(s)
- Andrew E Pelling
- The London Centre for Nanotechnology, Centre for Nanomedicine, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lock EA, Reed CJ, Kinsey GR, Schnellmann RG. Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells. Toxicology 2006; 229:79-90. [PMID: 17097791 DOI: 10.1016/j.tox.2006.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 02/02/2023]
Abstract
Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak(i)-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak(i)-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A(2) inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak(i)-1 renal cancer cells primarily through a caspase-dependent mechanism and that externalization of phosphatidylserine during apoptosis produced by staurosporine in the renal cancer cell line A-498 is independent of many of the common signaling pathways known to be involved in this process.
Collapse
Affiliation(s)
- Edward A Lock
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|