1
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
2
|
Wang HC, Phan TN, Kao CL, Yeh CK, Lin YC. Genetically encoded mediators for sonogenetics and their applications in neuromodulation. Front Cell Neurosci 2023; 17:1326279. [PMID: 38188668 PMCID: PMC10766825 DOI: 10.3389/fncel.2023.1326279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
Collapse
Affiliation(s)
- Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ling Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Chu YC, Lim J, Chien A, Chen CC, Wang JL. Activation of Mechanosensitive Ion Channels by Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1981-1994. [PMID: 35945063 DOI: 10.1016/j.ultrasmedbio.2022.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensitive channels (MSCs) play an important role in how cells transduce mechanical stimuli into electrical or chemical signals, which provides an interventional possibility through the manipulation of ion channel activation using different mechanical stimulation conditions. With good spatial resolution and depth of penetration, ultrasound is often proposed as the tool of choice for such therapeutic applications. Despite the identification of many ion channels as mechanosensitive in recent years, only a limited number of MSCs have been reported to be activated by ultrasound with substantial evidence. Furthermore, although many therapeutic implications using ultrasound have been explored, few offered insights into the molecular basis and the biological effects induced by ultrasound in relieving pain and accelerate tissue healing. In this review, we examined the literature, in particular studies that provided evidence of cellular responses to ultrasound, with and without the target ion channels. The ultrasound activation conditions were then summarized for these ion channels, and these conditions were related to their mode of activation based on the current biological concepts. The overall goal is to bridge the results relating to the activation of MSCs that is specific for ultrasound with the current knowledge in molecular structure and the available physiological evidence that may have facilitated such phenomena. We discussed how collating the information revealed by available scientific investigations helps in the design of a more effective stimulus device for the proposed translational purposes. Traditionally, studies on the effects of ultrasound have focused largely on its mechanical and physical interaction with the targeted tissue through thermal-based therapies as well as non-thermal mechanisms including ultrasonic cavitation; gas body activation; the direct action of the compressional, tensile and shear stresses; radiation force; and acoustic streaming. However, the current review explores and attempts to establish whether the application of low-intensity ultrasound may be associated with the activation of specific MSCs, which in turn triggers relevant cell signaling as its molecular mechanism in achieving the desired therapeutic effects. Non-invasive brain stimulation has recently become an area of intense research interest for rehabilitation, and the implication of low-intensity ultrasound is particularly critical given the need to minimize heat generation to preserve tissue integrity for such applications.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Gowda VK, Srinivasan VM, Reddy VM, Vamyanmane DK, Shivappa SK, Ramesh RH, Vishwanathan GB. Compressive Myelopathy Secondary to TRPV4 Skeletal Dysplasia: Spondylometaphyseal Dysplasia, Kozlowski Type. J Pediatr Genet 2022. [DOI: 10.1055/s-0041-1741424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTransient receptor potential vanilloid 4 channel (TRPV4) gene mutations have been described in skeletal system and peripheral nervous system pathology. The case described here is a 9-year-old male child patient, born to a nonconsanguineous marriage with normal birth history who had difficulty in walking and stiffness of joints for the last 7 years, and progressive weakness of all four limbs and urine incontinence for 1 year following falls. Physical examination showed below-average weight and height and short trunk. Musculoskeletal examination revealed bony prominence bilaterally in the knee joints and contractures in knee and elbow joints with brachydactyly; muscle tone was increased, with brisk deep tendon reflexes. Skeletal survey showed platyspondyly with anterior beaking with metaphyseal dysplasia. Magnetic resonance imaging of the spine revealed atlantoaxial instability with hyperintense signal changes at a cervicomedullary junction and upper cervical cord with thinning and spinal canal stenosis suggestive of compressive myelopathy with platyspondyly and anterior beaking of the spine at cervical, thoracic and lumbar vertebrae. Exome sequencing revealed a heterozygous de novo variant c.2389G > A in exon 15 of TRPV4, which results in the amino acid substitution p.Glu797Lys in the encoded protein. The characteristics observed indicated spondylometaphyseal dysplasia, Kozlowski type (SMD-K). The child underwent surgical intervention for compressive myelopathy by reduction of atlantoaxial dislocation with C1 lateral mass and C2 pars fusion using rib graft and fixation using screws and rods. To conclude, for any child presenting with progressive kyphoscoliosis, short stature, platyspondyly, and metaphyseal changes, a diagnosis of SMD-K should be considered and the patient and family should be advised to avoid spinal injuries.
Collapse
Affiliation(s)
- Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Varunvenkat M. Srinivasan
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Varsha M. Reddy
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Dhananjaya K. Vamyanmane
- Department of Pediatric Radiology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Sanjay K. Shivappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Rohih H. Ramesh
- Deparment of Pediatrics, BGS Global Institute of Medical Sciences, Bengaluru, India
| | | |
Collapse
|
6
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
7
|
Matrix Mechanosensation in the Erythroid and Megakaryocytic Lineages. Cells 2020; 9:cells9040894. [PMID: 32268541 PMCID: PMC7226728 DOI: 10.3390/cells9040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
The biomechanical properties of the bone marrow microenvironment emerge from a combination of interactions between various extracellular matrix (ECM) structural proteins and soluble factors. Matrix stiffness directs stem cell fate, and both bone marrow stromal and hematopoietic cells respond to biophysical cues. Within the bone marrow, the megakaryoblasts and erythroblasts are thought to originate from a common progenitor, giving rise to fully mature magakaryocytes (the platelet precursors) and erythrocytes. Erythroid and megakaryocytic progenitors sense and respond to the ECM through cell surface adhesion receptors such as integrins and mechanosensitive ion channels. While hematopoietic stem progenitor cells remain quiescent on stiffer ECM substrates, the maturation of the erythroid and megakaryocytic lineages occurs on softer ECM substrates. This review surveys the major matrix structural proteins that contribute to the overall biomechanical tone of the bone marrow, as well as key integrins and mechanosensitive ion channels identified as ECM sensors in context of megakaryocytosis or erythropoiesis.
Collapse
|
8
|
Alessandra G, Algerta M, Paola M, Carsten S, Cristina L, Paolo M, Elisa M, Gabriella T, Carla P. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020; 9:E413. [PMID: 32053947 PMCID: PMC7072458 DOI: 10.3390/cells9020413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Embryonic and pluripotent stem cells hold great promise in generating β-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these β-like cells still fail to fully mirror the adult β-cell physiology. For their proper growth and functioning, β-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where β-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in β-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that β-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the β-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of β-cell differentiation capacity in vitro.
Collapse
Affiliation(s)
- Galli Alessandra
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marku Algerta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marciani Paola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Schulte Carsten
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lenardi Cristina
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Milani Paolo
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tedeschi Gabriella
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Perego Carla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
9
|
Yu J, Zhu C, Yin J, Yu D, Wan F, Tang X, Jiang X. Tetrandrine Suppresses Transient Receptor Potential Cation Channel Protein 6 Overexpression- Induced Podocyte Damage via Blockage of RhoA/ROCK1 Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:361-370. [PMID: 32095070 PMCID: PMC6995298 DOI: 10.2147/dddt.s234262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
Objective Podocyte damage is common in many renal diseases characterized by proteinuria. Transient receptor potential cation channel protein 6 (TRPC6) plays an important role in renal function through its regulation of intracellular Ca2+ influx and RhoA/ROCK pathways. Chinese herb Stephania tetrandra, with the main active component being tetrandrine, has been used for the treatment of various kidney diseases for several years and has shown a positive effect. This study aimed at investigating the effect and mechanism of tetrandrine in podocyte damage induced by high expression of TRPC6. Methods Immortalized, differentiated murine podocytes, MPC5 were treated with valsartan (0–800 μM) and tetrandrine (0–40 μM) for 48 h. The maximum safe concentrations of valsartan and tetrandrine were selected using a cell viability assay. MPC5 podocytes stably expressing TRPC6 were constructed using a lentivirus packaging system, followed by treatment with valsartan, tetrandrine, and Y-27632 for 48 h and U73122 (10 μM) for 10 min. The RhoA/ROCK pathway and podocyte-specific proteins (nephrin and synaptopodin) levels were quantified. Podocyte apoptosis and intracellular Ca2+ concentration were measured. Results Maximum safe concentrations of 100 μM valsartan and 10 μM tetrandrine showed no observable toxicity in podocytes. MPC5 podocytes stably expressing TRPC6 had higher intracellular Ca2+ influx, apoptotic percentages, and expression of RhoA/ROCK proteins, but lower expression of nephrin and synaptopodin proteins. U73122 treatment for 10 min did not inhibit TRPC6, but suppressed RhoA/ROCK protein. Y-27632 decreased ROCK1 expression, but did not influence the expression of TRPC6 protein. Both 100 μM valsartan and 10 μM tetrandrine for 48 h significantly inhibited intracellular Ca2+ influx, apoptosis, and RhoA/ROCK pathway, and increased nephrin and synaptopodin proteins in podocytes stably expressing TRPC6. Conclusion Elevated TRPC6 expression can lead to podocyte injury by inducing intracellular Ca2+ influx and apoptosis of podocytes, and this effect may be mediated by activation of the RhoA/ROCK1 pathway. Tetrandrine can alleviate podocyte injury induced by TRPC6 expression through inhibition of the RhoA/ROCK pathway, suggesting a protective role in podocyte damage.
Collapse
Affiliation(s)
- Jin Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Caifeng Zhu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Jiazhen Yin
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Dongrong Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Feng Wan
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xue Jiang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| |
Collapse
|
10
|
Nakazawa Y, Donaldson PJ, Petrova RS. Verification and spatial mapping of TRPV1 and TRPV4 expression in the embryonic and adult mouse lens. Exp Eye Res 2019; 186:107707. [PMID: 31229503 DOI: 10.1016/j.exer.2019.107707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
The transient receptor protein vanilloid channels, TRPV1 and TRPV4, have recently been shown to be mechanosensors in the ocular lens that act to transduce physical changes in lens volume and internal hydrostatic pressure into the activation of signalling pathways in lens epithelial cells. These pathways in turn regulate ion and water transport to ensure that the optical properties of the lens remain constant. Despite the functional evidence that implicate the roles of TRPV1 and TRPV4 in the lens, their respective cellular expression patterns in the different regions of the lens has to date not been fully characterised. Using Western blotting we have confirmed that TRPV1 and TRPV4 are expressed throughout all regions (epithelium, outer cortex, inner cortex/core) of the adult mouse lens. Subsequent immunolabeling of lens cryosections confirmed that TRPV1 and TRPV4 are expressed throughout all regions of the lens, but revealed differentiation-dependent differences in the subcellular expression of the two channels in the different regions. In the epithelium and outer cortex, intense TRPV1 and TRPV4 labeling was predominately associated with the cytoplasm. In a discrete zone in the inner cortex, labeling for both proteins was greatly diminished, but could be enhanced by incubating sections with the detergent Triton X-100 to reveal TRPV1 and TRPV4 labelling that was associated with the membrane. This suggests that in this region of the lens there is a potential interacting protein that masks the binding of the TRPV1 and TRPV4 antibodies to their respective epitopes in the lens inner cortex. In the core of the lens, which contains the embryonic nucleus, TRPV1 and TRPV4 labelling was associated exclusively with fibre cell membranes. This labelling in the lens core of the adult mouse lens appeared to originate in early development as a similar membrane labelling was observed at embryonic day 10 (E10) of the cells in the lens vesicle that subsequently forms the embryonic nucleus in the adult lens. During subsequent stages of embryonic development TRPV1 and TRPV4 remained membranous in the inner cortex and core, while showing labelling that was associated with the cytoplasm in the superficial outer cortical region. The extent of cytoplasmic labelling for TRPV4, but not TRPV1, in this cortical region could however be dynamically regulated by cutting the zonules that normally attach the lens to the ciliary body. We have shown an early onset and continuous expression of TRPV1 and TRPV4 across all lens regions, and that TRPV4 can be dynamically trafficked into the membranes of differentiating fibre cells, results that suggests that these mechanosensitive channels may also be functionally active in lens fibre cells.
Collapse
Affiliation(s)
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
11
|
TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2409-2419. [DOI: 10.1016/j.bbadis.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/04/2023]
|
12
|
Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 2017; 7:3-17. [PMID: 28119804 PMCID: PMC5237760 DOI: 10.1016/j.apsb.2016.11.001] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
The intracellular calcium ions (Ca2+) act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca2+ homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca2+ signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca2+ channels, transporters and Ca2+-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca2+ channels/transporters or Ca2+-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca2+ signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca2+ channels or transporters.
Collapse
Key Words
- 20-GPPD, 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
- Apoptosis
- CBD, cannabidiol
- CBG, cannabigerol
- CPZ, capsazepine
- CRAC, Ca2+ release-activated Ca2+ channel
- CTL, cytotoxic T cells
- CYP3A4, cytochrome P450 3A4
- Ca2+ channels
- CaM, calmodulin
- CaMKII, calmodulin-dependent protein kinase II
- Cancer therapy
- Cell proliferation
- Channel blockers;
- ER/SR, endoplasmic/sarcoplasmic reticulum
- HCX, H+/Ca2+ exchangers
- IP3, inositol 1,4,5-trisphosphate
- IP3R (1, 2, 3), IP3 receptor (type 1, type 2, type 3)
- MCU, mitochondrial Ca2+ uniporter
- MCUR1, MCU uniporter regulator 1
- MICU (1, 2, 3), mitochondrial calcium uptake (type 1, type 2, type 3)
- MLCK, myosin light-chain kinase
- Migration
- NCX, Na+/Ca2+ exchanger
- NF-κB, nuclear factor-κB
- NFAT, nuclear factor of activated T cells
- NSCLC, non-small cell lung cancer
- OSCC, oral squamous cell carcinoma cells
- PKC, protein kinase C
- PM, plasma membrane
- PMCA, plasma membrane Ca2+-ATPase
- PTP, permeability transition pore
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SERCA, SR/ER Ca2+-ATPase
- SOCE, store-operated Ca2+ entry
- SPCA, secretory pathway Ca2+-ATPase
- Store-operated Ca2+ entry
- TEA, tetraethylammonium
- TG, thapsigargin
- TPC2, two-pore channel 2
- TRIM, 1-(2-(trifluoromethyl) phenyl) imidazole
- TRP (A, C, M, ML, N, P, V), transient receptor potential (ankyrin, canonical, melastatin, mucolipin, no mechanoreceptor potential C, polycystic, vanilloid)
- VGCC, voltage-gated Ca2+ channel
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Chaochu Cui
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Merritt
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zui Pan
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
13
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
14
|
Vrenken KS, Jalink K, van Leeuwen FN, Middelbeek J. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1436-46. [DOI: 10.1016/j.bbamcr.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
|
15
|
Mechanoreception at the cell membrane: More than the integrins. Arch Biochem Biophys 2015; 586:20-6. [DOI: 10.1016/j.abb.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/14/2023]
|
16
|
Watanabe M, Suzuki Y, Uchida K, Miyazaki N, Murata K, Matsumoto S, Kakizaki H, Tominaga M. Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium. J Biol Chem 2015; 290:29882-92. [PMID: 26504086 DOI: 10.1074/jbc.m115.667899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 11/06/2022] Open
Abstract
Trpm7 is a divalent cation-permeable channel that has been reported to be involved in magnesium homeostasis as well as cellular adhesion and migration. We generated urothelium-specific Trpm7 knock-out (KO) mice to reveal the function of Trpm7 in vivo. A Trpm7 KO was induced by tamoxifen and was confirmed by genomic PCR and immunohistochemistry. By using patch clamp recordings in primary urothelial cells, we observed that Mg(2+)-inhibitable cation currents as well as acid-inducible currents were significantly smaller in Trpm7 KO urothelial cells than in cells from control mice. Assessment of voiding behavior indicated a significantly smaller voided volume in Trpm7 KO mice (mean voided volume 0.28 ± 0.08 g in KO mice and 0.36 ± 0.04 g in control mice, p < 0.05, n = 6-8). Histological analysis showed partial but substantial edema in the submucosal layer of Trpm7 KO mice, most likely due to inflammation. The expression of proinflammatory cytokines TNF-α and IL-1β was significantly higher in Trpm7 KO bladders than in controls. In transmission electron microscopic analysis, immature intercellular junctions were observed in Trpm7 KO urothelium but not in control mice. These results suggest that Trpm7 is involved in the formation of intercellular junctions in mouse urothelium. Immature intercellular junctions in Trpm7 knock-out mice might lead to a disruption of barrier function resulting in inflammation and hypersensitive bladder afferent nerves that may affect voiding behavior in vivo.
Collapse
Affiliation(s)
- Masaki Watanabe
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, the Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa 078-8510
| | - Yoshiro Suzuki
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, and
| | - Kunitoshi Uchida
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, and
| | - Naoyuki Miyazaki
- the National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Kazuyoshi Murata
- the National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Seiji Matsumoto
- the Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa 078-8510
| | - Hidehiro Kakizaki
- the Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa 078-8510
| | - Makoto Tominaga
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, and
| |
Collapse
|
17
|
Developmental changes in the expression and function of TRPC6 channels related the F-actin organization during differentiation in podocytes. Cell Calcium 2015; 58:541-8. [PMID: 26363733 DOI: 10.1016/j.ceca.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022]
Abstract
The transient receptor potential canonical (TRPC) 6 channel is an important ion channel located in podocytes, which plays an essential role in regulating calcium homeostasis of the cell signaling. Podocytes are specialized, terminally differentiated cells surrounding glomerular capillaries, and are the subject of keen interest because of their key roles in kidney development and disease. Here we wonder whether TRPC6 channels undergo developmental changes in the expression and function during the podocyte differentiation, and whether they contribute to the maturation of podocytes. Using morphological, immunohistochemical and electrophysiological techniques, we investigated the development of distribution and expression of TRPC6 in conditionally immortalized mouse podocyte cell line. Our results showed that the distribution of TRPC6 channels changed with the maturity of podocyte differentiation. The fluorescent intensity of TRPC6 on cell surface increased, which was accompanied by a corresponding increase in the density of current flowing through the channels. TRPC6 inhibition by TRPC6 siRNA or SKF-96365, a blocker or TRP cation channels, resulted in F-actin cytoskeleton disruption only on the developmental stage of podocytes. These results strongly support the conclusion that TPRC6 is an essential component of the slit diaphragm and is required for development of glomerulus.
Collapse
|
18
|
Cáceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva-Salcedo E, Varela D, Rivas J, Silva I, Morales D, Campusano C, Almarza O, Simon F, Toledo H, Park KS, Trimmer JS, Cerda O. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 2015; 10:e0130540. [PMID: 26110647 PMCID: PMC4482413 DOI: 10.1371/journal.pone.0130540] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.
Collapse
Affiliation(s)
- Mónica Cáceres
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Liliana Ortiz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tatiana Recabarren
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Anibal Romero
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Elías Leiva-Salcedo
- Section on Cellular Signaling, Program in Developmental Biology, National Institute of Child Health and Human Development (NICHD), National Institute of Health, Bethesda, Maryland, United States of America
| | - Diego Varela
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Rivas
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camilo Campusano
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Almarza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Hector Toledo
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Kang-Sik Park
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhao B, Yang H, Zhang R, Sun H, Liao C, Xu J, Meng K, Jiao J. The role of TRPC6 in oxidative stress-induced podocyte ischemic injury. Biochem Biophys Res Commun 2015; 461:413-20. [PMID: 25896763 DOI: 10.1016/j.bbrc.2015.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Increasing evidence suggests that ischemia and hypoxia serve important functions in the development of renal diseases. However, the underlying mechanism of ischemic injury has not been fully understood. In this study, we found that renal ischemia-reperfusion injury induced podocyte effacement and the upregulation of TRPC6 mRNA and protein expression. In in vitro experiments, oxygen glucose deprivation (OGD) treatment enhanced the expression of TRPC6 and TRPC6-dependent Ca(2+) influx. TRPC6 knockdown by siRNA interference attenuated the OGD-induced [Ca(2+)]i and actin assembly. OGD treatment also increased ROS production. Furthermore, inhibition of ROS activity by N-acetyl-l-cysteine (NAC) eliminated the OGD-induced increase in TRPC6 expression and Ca(2+) influx. H2O2 treatment, which results in oxidative stress, also increased TRPC6 expression and Ca(2+) influx. We conclude that TRPC6 upregulation is involved in Ca(2+) signaling and actin reorganization in podocytes after OGD. These findings provide new insight into the mechanisms underlying the cellular response of podocytes to ischemic injury.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - He Yang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Institute of Nephrology, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
22
|
Song Y, Zhan L, Yu M, Huang C, Meng X, Ma T, Zhang L, Li J. TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells. PLoS One 2014; 9:e101179. [PMID: 25013893 PMCID: PMC4094468 DOI: 10.1371/journal.pone.0101179] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023] Open
Abstract
TRPV4, one of the TRP channels, is implicated in diverse physiological and pathological processes including cell proliferation. However, the role of TRPV4 in liver fibrosis is largely unknown. Here, we characterized the role of TRPV4 in regulating HSC-T6 cell proliferation. TRPV4 mRNA and protein were measured by RT-PCR and Western blot in patients and rat model of liver fibrosis in vivo and TGF-β1-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPV4 were dramatically increased in liver fibrotic tissues of both patients and CCl4-treated rats. Stimulation of HSC-T6 cells with TGF-β1 resulted in increase of TRPV4 mRNA and protein. However, TGF-β1-induced HSC-T6 cell proliferation was inhibited by Ruthenium Red (Ru) or synthetic siRNA targeting TRPV4, and this was accompanied by downregulation of myofibroblast markers including α-SMA and Col1α1. Moreover, our study revealed that miR-203 was downregulated in liver fibrotic tissues and TGF-β1-treated HSC-T6 cell. Bioinformatics analyses predict that TRPV4 is the potential target of miR-203. In addition, overexpression of miR-203 in TGF-β1-induced HSC significantly reduced TRPV4 expression, indicating TRPV4, which was regulated by miR-203, may function as a novel regulator to modulate TGF-β1-induced HSC-T6 proliferation.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhan
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Mingzhe Yu
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Taotao Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, China
- * E-mail:
| |
Collapse
|
23
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
24
|
Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 2013; 4:311. [PMID: 24204345 PMCID: PMC3817680 DOI: 10.3389/fphys.2013.00311] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023] Open
Abstract
Transient Receptor Potential (TRP) channels modulate intracellular Ca(2+) concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the vascular and cancer cell migration process, and we will systematically discuss relevant molecular mechanism involved.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino Torino, Italy ; Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | | |
Collapse
|
25
|
Stiber JA, Tang Y, Li T, Rosenberg PB. Cytoskeletal regulation of TRPC channels in the cardiorenal system. Curr Hypertens Rep 2013; 14:492-7. [PMID: 23054893 DOI: 10.1007/s11906-012-0313-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels have been implicated in several aspects of cardiorenal physiology including regulation of blood pressure, vasoreactivity, vascular remodeling, and glomerular filtration. Gain and loss of function studies also support the role of TRPC channels in adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses TRP channels in the cardiovascular and glomerular filtration systems and their role in disease pathogenesis. We describe the regulation of gating of TRPC channels in the cardiorenal system as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of TRP channels in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.
Collapse
Affiliation(s)
- Jonathan A Stiber
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
26
|
Schäfer C, Rymarczyk G, Ding L, Kirber MT, Bolotina VM. Role of molecular determinants of store-operated Ca(2+) entry (Orai1, phospholipase A2 group 6, and STIM1) in focal adhesion formation and cell migration. J Biol Chem 2012; 287:40745-57. [PMID: 23043102 DOI: 10.1074/jbc.m112.407155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Store-operated Ca(2+) entry is important for cell migration. RESULTS This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration. CONCLUSION Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly. SIGNIFICANCE Results uncovered new parameters of Orai1, STIM1, and PLA2g6 involvement in cell migration. Store-operated Ca(2+) entry and its major determinants are known to be important for cell migration, but the mechanism of their involvement in this complex process is unknown. This study presents a detailed characterization of distinct roles of Orai1, STIM1, and PLA2g6 in focal adhesion (FA) formation and migration. Using HEK293 cells, we discovered that although molecular knockdown of Orai1, STIM1, or PLA2g6 resulted in a similar reduction in migration velocity, there were profound differences in their effects on number, localization, and lifetime of FAs. Knockdown of STIM1 caused an increase in lifetime and number of FAs, their redistribution toward lamellae region, and an increase in cell tail length. In contrast, the number of FAs in Orai1- or PLA2g6-deficient cells was significantly reduced, and FAs accumulated closer to the leading edge. Assembly rate and Vinculin phosphorylation of FAs was similarly reduced in Orai1, PLA2g6, or STIM1-deficient cells. Although Orai1 and PLA2g6 accumulated and co-localized at the leading edge, STIM1 distribution was more complex. We found STIM1 protrusions in lamellipodia, which co-localized with FAs, whereas major accumulation could be seen in central and retracting parts of the cell. Interestingly, knockdown of Orai1 and PLA2g6 produced similar and non-additive effect on migration, whereas knockdown of STIM1 simultaneously with either Orai1 or PLA2g6 produced additional inhibition. Together these data suggest that although Orai1, PLA2g6, and STIM1 play major roles in formation of new FAs at the leading edge, STIM1 may also be involved in Orai1- and PLA2g6-independent disassembly of FAs in the back of cells.
Collapse
Affiliation(s)
- Claudia Schäfer
- Ion Channel and Calcium Signaling Unit, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
27
|
Martinsen A, Yerna X, Rath G, Gomez EL, Dessy C, Morel N. Different effect of Rho kinase inhibition on calcium signaling in rat isolated large and small arteries. J Vasc Res 2012; 49:522-33. [PMID: 22948674 DOI: 10.1159/000341230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022] Open
Abstract
In addition to its role in the regulation of artery contraction, Rho kinase (ROCK) was reported to be involved in the cytosolic calcium response to vasoconstrictor agonists in rat aorta and superior mesenteric artery (SMA). However, it remains to be determined whether ROCK also contributes to calcium signaling in resistance arteries, which play a major role in blood pressure regulation. The investigation of the effect of ROCK inhibition on the calcium and contractile responses of rat resistance mesenteric artery (RMA), in comparison with aorta and SMA, indicated that the calcium response to noradrenaline was inhibited by the ROCK inhibitor Y-27632 in aorta and SMA but not in RMA. The effect of Y-27632 on the calcium signal was unaffected by cytochalasin-D. ROCK activation in noradrenaline-stimulated arteries was confirmed by the inhibition of myosin light chain phosphorylation by Y-27632. Moreover, noradrenaline-induced calcium signaling was similarly inhibited by nimodipine in aorta, SMA and RMA, but nimodipine sensitivity of the contraction increased from the aorta to the RMA, suggesting that the contraction was controlled by different sources of calcium. In pressurized RMA, Y-27632 and H-1152 depressed pressure-induced calcium responses and abolished myogenic contraction. These results stress the important differences in calcium signaling between conductance and resistance arteries.
Collapse
Affiliation(s)
- Anneloes Martinsen
- Department of Cellular Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Goswami C. TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy. J Neurochem 2012; 123:1-13. [PMID: 22845740 DOI: 10.1111/j.1471-4159.2012.07892.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/18/2022]
Abstract
Existence of microtubule cytoskeleton at the membrane and submembranous regions, referred as 'membrane tubulin' has remained controversial for a long time. Since we reported physical and functional interaction of Transient Receptor Potential Vanilloid Sub Type 1 (TRPV1) with microtubules and linked the importance of TRPV1-tubulin complex in the context of chemotherapy-induced peripheral neuropathy, a few more reports have characterized this interaction in in vitro and in in vivo condition. However, the cross-talk between TRPs with microtubule cytoskeleton, and the complex feedback regulations are not well understood. Sequence analysis suggests that other than TRPV1, few TRPs can potentially interact with microtubules. The microtubule interaction with TRPs has evolutionary origin and has a functional significance. Biochemical evidence, Fluorescence Resonance Energy Transfer analysis along with correlation spectroscopy and fluorescence anisotropy measurements have confirmed that TRPV1 interacts with microtubules in live cell and this interaction has regulatory roles. Apart from the transport of TRPs and maintaining the cellular structure, microtubules regulate signaling and functionality of TRPs at the single channel level. Thus, TRPV1-tubulin interaction sets a stage where concept and parameters of 'membrane tubulin' can be tested in more details. In this review, I critically analyze the advancements made in biochemical, pharmacological, behavioral as well as cell-biological observations and summarize the limitations that need to be overcome in the future.
Collapse
Affiliation(s)
- Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, Orissa, India.
| |
Collapse
|
29
|
Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, Wieringa B, Canisius SV, Zwart W, Wessels LF, Sweep FCGJ, Bult P, Span PN, van Leeuwen FN, Jalink K. TRPM7 is required for breast tumor cell metastasis. Cancer Res 2012; 72:4250-61. [PMID: 22871386 DOI: 10.1158/0008-5472.can-11-3863] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer. Mechanistic investigation revealed that TRPM7 regulated myosin II-based cellular tension, thereby modifying focal adhesion number, cell-cell adhesion and polarized cell movement. Our findings therefore suggest that TRPM7 is part of a mechanosensory complex adopted by cancer cells to drive metastasis formation.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kuipers AJ, Middelbeek J, van Leeuwen FN. Mechanoregulation of cytoskeletal dynamics by TRP channels. Eur J Cell Biol 2012; 91:834-46. [PMID: 22727433 DOI: 10.1016/j.ejcb.2012.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 01/29/2023] Open
Abstract
The ability of cells to respond to mechanical stimulation is crucial to a variety of biological processes, including cell migration, axonal outgrowth, perception of pain, cardiovascular responses and kidney physiology. The translation of mechanical cues into cellular responses, a process known as mechanotransduction, typically takes place in specialized multiprotein structures such as cilia, cell-cell or cell-matrix adhesions. Within these structures, mechanical forces such as shear stress and membrane stretch activate mechanosensitive proteins, which set off a series of events that lead to altered cell behavior. Members of the transient receptor potential (TRP) family of cation channels are emerging as important players in mechanotransductory pathways. Localized within mechanosensory structures, they are activated by mechanical stimuli and trigger fast as well as sustained cytoskeletal responses. In this review, we will provide an overview of how TRP channels affect cytoskeletal dynamics in various mechano-regulated processes.
Collapse
Affiliation(s)
- Arthur J Kuipers
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, The Netherlands
| | | | | |
Collapse
|
31
|
Hara M, Tabata K, Suzuki T, Do MKQ, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 2012; 302:C1741-50. [PMID: 22460715 DOI: 10.1152/ajpcell.00068.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures. When applied to 1-h stretch cultures with individual inhibitors for MS and L-VGC channels (GsMTx-4 and nifedipine, respectively) or with a less specific inhibitor (gadolinium chloride, Gd), satellite cell activation and upstream HGF release were abolished, as revealed by bromodeoxyuridine-incorporation assays and Western blotting of conditioned media, respectively. The inhibition was dose dependent with a maximum at 0.1 μM (GsMTx-4), 10 μM (nifedipine), or 100 μM (Gd) and canceled by addition of HGF to the culture media; a potent inhibitor for transient-type VGC channels (NNC55-0396, 100 μM) did not show any significant inhibitory effect. The stretch response was also abolished when calcium-chelator EGTA (1.8 mM) was added to the medium, indicating the significance of extracellular free calcium ions in our present activation model. Finally, cation/calcium channel dependencies were further documented by calcium-imaging analyses on stretched cells; results clearly demonstrated that calcium ion influx was abolished by GsMTx-4, nifedipine, and EGTA. Therefore, these results provide an additional insight that calcium ions may flow in through L-VGC channels by possible coupling with adjacent MS channel gating that promotes the local depolarization of cell membranes to initiate the satellite cell activation cascade.
Collapse
Affiliation(s)
- Minako Hara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Interaction of transient receptor potential vanilloid 4 with annexin A2 and tubulin beta 5. Neurosci Lett 2012; 512:22-7. [DOI: 10.1016/j.neulet.2012.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/07/2012] [Accepted: 01/20/2012] [Indexed: 01/31/2023]
|
33
|
Manivannan M, Suresh PK. On the somatosensation of vision. Ann Neurosci 2012; 19:31-9. [PMID: 25205961 PMCID: PMC4117078 DOI: 10.5214/ans.0972.7531.180409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 11/23/2022] Open
Abstract
The interconnection between vision and somatosensation is already well-established and is further supplemented by the evolutionary link between eyes and photoreceptors, and the functional connection between photosensation and thermoreception. However, our analysis shows that the relation between vision and somatosensation is much deeper and suggests that somatosensation may possibly be the basis of vision. Surprisingly, our photoreceptor itself needs somatosensory proteins for its functioning, and our entire visual pathway depends on somatosensory cues for its functioning.
Collapse
Affiliation(s)
- M Manivannan
- Department of Applied Mechanics, IIT Madras, Chennai, TN 600 036
| | | |
Collapse
|
34
|
Squecco R, Garella R, Luciani G, Francini F, Baccari MC. Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies. J Physiol 2011; 589:5231-46. [PMID: 21911618 DOI: 10.1113/jphysiol.2011.214940] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orexin A (OXA) has been reported to influence gastrointestinal motility, acting at both central and peripheral neural levels. The aim of the present study was to evaluate whether OXA also exerts direct effects on the duodenal smooth muscle. The possible mechanism of action involved was investigated by employing a combined mechanical and electrophysiological approach. Duodenal segments were mounted in organ baths for isometric recording of the mechanical activity. Ionic channel activity was recorded in current- and voltage-clamp conditions by a single microelectrode inserted in a duodenal longitudinal muscle cell. In the duodenal preparations, OXA (0.3 μM) caused a TTX-insensitive transient contraction. Nifedipine (1 μM), as well as 2-aminoethyl diphenyl borate (10 μM), reduced the amplitude and shortened the duration of the response to OXA, which was abolished by Ni(2+) (50 μM) or TEA (1 mM). Electrophysiological studies in current-clamp conditions showed that OXA caused an early depolarization, which paralleled in time the contractile response, followed by a long-lasting depolarization. Such a depolarization was triggered by activation of receptor-operated Ca(2+) channels and enhanced by activation of T- and L-type Ca(2+) channels and store-operated Ca(2+) channels and by inhibition of K(+) channels. Experiments in voltage-clamp conditions demonstrated that OXA affects not only receptor-operated Ca(2+) channels, but also the maximal conductance and kinetics of activation and inactivation of Na(+), T- and L-type Ca(2+) voltage-gated channels. The results demonstrate, for the first time, that OXA exerts direct excitatory effects on the mouse duodenal smooth muscle. Finally, this work demonstrates new findings related to the expression and kinetics of the voltage-gated channel types, as well as store-operated Ca(2+) channels.
Collapse
Affiliation(s)
- Roberta Squecco
- Dipartimento di Scienze Fisiologiche, Università di Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
35
|
Hirschler-Laszkiewicz I, Tong Q, Waybill K, Conrad K, Keefer K, Zhang W, Chen SJ, Cheung JY, Miller BA. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem 2011; 286:30636-30646. [PMID: 21757714 DOI: 10.1074/jbc.m111.238360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Modulation of intracellular calcium ([Ca(2+)](i)) by erythropoietin (Epo) is an important signaling pathway controlling erythroid proliferation and differentiation. Transient receptor potential (TRP) channels TRPC3 and homologous TRPC6 are expressed on normal human erythroid precursors, but Epo stimulates an increase in [Ca(2+)](i) through TRPC3 but not TRPC6. Here, the role of specific domains in the different responsiveness of TRPC3 and TRPC6 to erythropoietin was explored. TRPC3 and TRPC6 TRP domains differ in seven amino acids. Substitution of five amino acids (DDKPS) in the TRPC3 TRP domain with those of TRPC6 (EERVN) abolished the Epo-stimulated increase in [Ca(2+)](i). Substitution of EERVN in TRPC6 TRP domain with DDKPS in TRPC3 did not confer Epo responsiveness. However, substitution of TRPC6 TRP with DDKPS from TRPC3 TRP, as well as swapping the TRPC6 distal C terminus (C2) with that of TRPC3, resulted in a chimeric TRPC6 channel with Epo responsiveness similar to TRPC3. Substitution of TRPC6 with TRPC3 TRP and the putative TRPC3 C-terminal AMP-activated protein kinase (AMPK) binding site straddling TRPC3 C1/C2 also resulted in TRPC6 activation. In contrast, substitution of the TRPC3 C-terminal leucine zipper motif or TRPC3 phosphorylation sites Ser-681, Ser-708, or Ser-764 with TRPC6 sequence did not affect TRPC3 Epo responsiveness. TRPC3, but not TRPC6, and TRPC6 chimeras expressing TRPC3 C2 showed significantly increased plasma membrane insertion following Epo stimulation and substantial cytoskeletal association. The TRPC3 TRP domain, distal C terminus (C2), and AMPK binding site are critical elements that confer Epo responsiveness. In particular, the TRPC3 C2 and AMPK site are essential for association of TRPC3 with the cytoskeleton and increased channel translocation to the cell surface in response to Epo stimulation.
Collapse
Affiliation(s)
| | - Qin Tong
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | | | | | - Kerry Keefer
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Wenyi Zhang
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Shu-Jen Chen
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Joseph Y Cheung
- Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | - Barbara A Miller
- Departments of Pediatrics, Hershey, Pennsylvania 17033; Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
36
|
Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol 2011; 23:554-61. [PMID: 21665456 DOI: 10.1016/j.ceb.2011.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/31/2022]
Abstract
Calcium (Ca(2+)) and the cAMP-dependent protein kinase (PKA) are pleiotropic cellular regulators and both exert powerful, diverse effects on cytoskeletal dynamics, cell adhesion, and cell migration. Localization, by A-kinase-anchoring proteins (AKAPs), of PKA activity to the protrusive leading edge, integrins, and other regulators of cytoskeletal dynamics has emerged as an important facet of its role in cell migration. Additional recent work has firmly established the importance of Ca(2+) influx through mechanosensitive transient receptor potential (TRP) channels and through store-operated Ca(2+) entry (SOCE) in cell migration. Finally, there is considerable evidence showing that these mechanisms of Ca(2+) influx and PKA regulation intersect--and often interact--and thus may work in concert to translate complex extracellular cues into the intracellular biochemical anisotropy required for directional cell migration.
Collapse
|
37
|
Jiang L, Ding J, Tsai H, Li L, Feng Q, Miao J, Fan Q. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med (Maywood) 2011; 236:184-93. [PMID: 21321315 DOI: 10.1258/ebm.2010.010237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential cation channel 6 (TRPC6) is one of the key molecules for filtration barrier function of podocytes. Over-expression of TRPC6 in podocytes is frequently found in acquired or inherited proteinuric kidney diseases, and animal model over-expression of TRPC6 may lead to proteinuria. To investigate the impact of TRPC6 over-expression in podocytes on its function and its relation to proteinuria in kidney diseases, we over-expressed TRPC6 in mouse podocytes by transient transfection of TRPC6 cDNA plasmid, and observed their changes in foot processes, intracellular F-actin distribution, nephrin and synaptopodin expression, electrophysiology, RhoA activity and intracellular Ca2+. In podocytes over-expressing TRPC6, cell processes were reduced remarkably in association with the derangement of cytoskeleton demonstrated by the abnormal distribution of intracellular F-actin. These cells also displayed a higher increase of intracellular Ca2+ ion to the TRPC6 agonist 1-oleoyl-acetyl- sn-glycerol and a higher current in the patch-clamp experiment, down-regulation of nephrin and synaptopodin expression and increase of activated RhoA. These changes could be rescued by the treatment of the cells with U73122 to block TRPC6 channel or BAPTA-AM to chelate intracellular Ca2+ ion. Additionally, the podocytes over-expressing TRPC6 treated with RhoA inhibitor Y-27632 showed an improvement in F-actin arrangement in the cells and increase of nephrin and synaptopodin expression. From these results, we therefore propose that over-expression of TRPC6 in podocytes may be one of the fundamental changes relating to the dysfunction of the slit diaphragm and proteinuria. Podocytes over-expressing TRPC6 may lead to higher intracellular Ca2+ ion concentration in the presence of stimuli. The increase of intracellular Ca2+ down-regulates the expression of two important molecules, nephrin on slit diaphragm and synaptopodin in cytoskeleton, and stimulates RhoA activity, which in turn causes F-actin derangement and the decrease of foot processes.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Pediatrics, Peking University First Hospital
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital
| | - Haojan Tsai
- The Central Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Lin Li
- The Central Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Quancheng Feng
- Department of Pediatrics, Peking University First Hospital
| | - Jing Miao
- Department of Pediatrics, Peking University First Hospital
| | - Qingfeng Fan
- Department of Pediatrics, Peking University First Hospital
| |
Collapse
|
38
|
Wong CO, Yao X. TRP channels in vascular endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:759-80. [PMID: 21290326 DOI: 10.1007/978-94-007-0265-3_40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial cells regulate multiple vascular functions, such as vascular tone, permeability, remodeling, and angiogenesis. It is known for long that cytosolic Ca(2+) level ([Ca(2+)](i)) and membrane potential of endothelial cells are crucial factors to initiate the signal transduction cascades, leading to diverse vascular functions. Among the various kinds of endothelial ion channels that regulate ion homeostasis, transient receptor potential (TRP) channels emerge as the prime mediators for a diverse range of vascular signaling. The characteristics of TRP channels, including subunit heteromultimerization, diverse ion selectivity, and multiple modes of activation, permit their versatile functional roles in vasculatures. Substantial amount of evidence demonstrates that many TRP channels in endothelial cells participate in physiological and pathophysiological processes of vascular system. In this article, we summarize the recent findings of TRP research in endothelial cells, aiming at providing up-to-date information to the researchers in this rapidly growing field.
Collapse
Affiliation(s)
- Ching-On Wong
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
39
|
Abstract
The skeletal dysplasias (osteochondrodysplasias) are a heterogeneous group of more than 350 disorders frequently associated with orthopedic complications and varying degrees of dwarfism or short stature. These disorders are diagnosed based on radiographic, clinical, and molecular criteria. The molecular mechanisms have been elucidated in many of these disorders providing for improved clinical diagnosis and reproductive choices for affected individuals and their families. An increasing variety of medical and surgical treatment options can be offered to affected individuals to try to improve their quality of life and lifespan.
Collapse
|
40
|
Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH. Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 2010; 152A:1169-77. [PMID: 20425821 DOI: 10.1002/ajmg.a.33392] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metatropic dysplasia is a clinical heterogeneous skeletal dysplasia characterized by short extremities, a short trunk with progressive kyphoscoliosis, and craniofacial abnormalities that include a prominent forehead, midface hypoplasia, and a squared-off jaw. Dominant mutations in the gene encoding TRPV4, a calcium permeable ion channel, were identified all 10 of a series of metatropic dysplasia cases, ranging in severity from mild to perinatal lethal. These data demonstrate that the lethal form of the disorder is dominantly inherited and suggest locus homogeneity in the disease. Electrophysiological studies demonstrated that the mutations activate the channel, indicating that the mechanism of disease may result from increased calcium in chondrocytes. Histological studies in two cases of lethal metatropic dysplasia revealed markedly disrupted endochondral ossification, with reduced numbers of hypertrophic chondrocytes and presence of islands of cartilage within the zone of primary mineralization. These data suggest that altered chondrocyte differentiation in the growth plate leads to the clinical findings in metatropic dysplasia.
Collapse
Affiliation(s)
- Natalia Camacho
- Department of Orthopedic Surgery, University of California at Los Angeles, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang ZY, Han YF, Huang X, Lu HL, Guo X, Kim YC, Xu WX. Actin microfilament involved in regulation of pacemaking activity in cultured interstitial cells of Cajal from murine intestine. J Membr Biol 2010; 234:217-25. [PMID: 20349180 DOI: 10.1007/s00232-010-9248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/27/2022]
Abstract
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 +/- 160.33 pA and 11.73 +/- 0.79 cycles/min to 233.12 +/- 92.00 pA and 10.29 +/- 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 +/- 0.08 (DeltaF/F0) and 2.75 +/- 0.17 cycles/min to 0.02 +/- 0.01 (DeltaF/F0) and 1.20 +/- 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 +/- 282.82 pA and 13.93 +/- 1.00 cycles/min to 1234.34 +/- 607.83 pA and 14.68 +/- 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 +/- 0.01 (DeltaF/F0) and 2.27 +/- 0.18 cycles/min to 0.43 +/- 0.03 (DeltaF/F0) and 2.87 +/- 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP(3) receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP(3)-induced calcium release signaling pathway.
Collapse
Affiliation(s)
- Zuo Yu Wang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Middelbeek J, Clark K, Venselaar H, Huynen MA, van Leeuwen FN. The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci 2010; 67:875-90. [PMID: 20012461 PMCID: PMC2827801 DOI: 10.1007/s00018-009-0215-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 01/19/2023]
Abstract
The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg(2+) homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kristopher Clark
- MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland UK
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank N. van Leeuwen
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
43
|
Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 2009; 42:170-4. [PMID: 20037586 DOI: 10.1038/ng.512] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/03/2009] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth disease type 2C (CMT2C) is an autosomal dominant neuropathy characterized by limb, diaphragm and laryngeal muscle weakness. Two unrelated families with CMT2C showed significant linkage to chromosome 12q24.11. We sequenced all genes in this region and identified two heterozygous missense mutations in the TRPV4 gene, C805T and G806A, resulting in the amino acid substitutions R269C and R269H. TRPV4 is a well-known member of the TRP superfamily of cation channels. In TRPV4-transfected cells, the CMT2C mutations caused marked cellular toxicity and increased constitutive and activated channel currents. Mutations in TRPV4 were previously associated with skeletal dysplasias. Our findings indicate that TRPV4 mutations can also cause a degenerative disorder of the peripheral nerves. The CMT2C-associated mutations lie in a distinct region of the TRPV4 ankyrin repeats, suggesting that this phenotypic variability may be due to differential effects on regulatory protein-protein interactions.
Collapse
|
44
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:567-87. [PMID: 19363786 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
45
|
Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 2009; 122:1322-33. [DOI: 10.1242/jcs.035402] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels provide cation and Ca2+ entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-operated channel, represents an essential component of stretch-activated channels in C2C12 skeletal myoblasts, as assayed by whole-cell patch-clamp and atomic force microscopic pulling. The channel's activity and stretch-induced Ca2+ influx were modulated by sphingosine 1-phosphate (S1P), a bioactive lipid involved in satellite cell biology and tissue regeneration. We also found that TRPC1 was functionally assembled in lipid rafts, as shown by the fact that cholesterol depletion resulted in the reduction of transmembrane ion current and conductance. Association between TRPC1 and lipid rafts was increased by formation of stress fibres, which was elicited by S1P and abolished by treatment with the actin-disrupting dihydrocytochalasin B, suggesting a role for cytoskeleton in TRPC1 membrane recruitment. Moreover, TRPC1 expression was significantly upregulated during myogenesis, especially in the presence of S1P, implicating a crucial role for TRPC1 in myoblast differentiation. Collectively, these findings may offer new tools for understanding the role of TRPC1 and sphingolipid signalling in skeletal muscle regeneration and provide new therapeutic approaches for skeletal muscle disorders.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Physiological Sciences, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| | - Francesca Bini
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Maria Martinesi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Giorgia Luciani
- Department of Physiological Sciences, University of Florence, Florence, Italy
| | - Francesca Sbrana
- C.S.D.C. Department of Physics, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| | - Fabio Francini
- Department of Physiological Sciences, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| | - Elisabetta Meacci
- Department of Biochemical Sciences, University of Florence, Florence, Italy
- Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy
| |
Collapse
|
46
|
Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 2009; 84:307-15. [PMID: 19232556 DOI: 10.1016/j.ajhg.2009.01.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/28/2022] Open
Abstract
The spondylometaphyseal dysplasias (SMDs) are a group of short-stature disorders distinguished by abnormalities in the vertebrae and the metaphyses of the tubular bones. SMD Kozlowski type (SMDK) is a well-defined autosomal-dominant SMD characterized by significant scoliosis and mild metaphyseal abnormalities in the pelvis. The vertebrae exhibit platyspondyly and overfaced pedicles similar to autosomal-dominant brachyolmia, which can result from heterozygosity for activating mutations in the gene encoding TRPV4, a calcium-permeable ion channel. Mutation analysis in six out of six patients with SMDK demonstrated heterozygosity for missense mutations in TRPV4, and one mutation, predicting a R594H substitution, was recurrent in four patients. Similar to autosomal-dominant brachyolmia, the mutations altered basal calcium channel activity in vitro. Metatropic dysplasia is another SMD that has been proposed to have both clinical and genetic heterogeneity. Patients with the nonlethal form of metatropic dysplasia present with a progressive scoliosis, widespread metaphyseal involvement of the appendicular skeleton, and carpal ossification delay. Because of some similar radiographic features between SMDK and metatropic dysplasia, TRPV4 was tested as a disease gene for nonlethal metatropic dysplasia. In two sporadic cases, heterozygosity for de novo missense mutations in TRPV4 was found. The findings demonstrate that mutations in TRPV4 produce a phenotypic spectrum of skeletal dysplasias from the mild autosomal-dominant brachyolmia to SMDK to autosomal-dominant metatropic dysplasia, suggesting that these disorders should be grouped into a new bone dysplasia family.
Collapse
Affiliation(s)
- Deborah Krakow
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|