1
|
Dey S, Zhou HX. Why Does Synergistic Activation of WASP, but Not N-WASP, by Cdc42 and PIP 2 Require Cdc42 Prenylation? J Mol Biol 2023; 435:168035. [PMID: 36863659 PMCID: PMC10079582 DOI: 10.1016/j.jmb.2023.168035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA. https://twitter.com/SouvikDeyUIC
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Quintela-Carvalho G, Goicochea AMC, Mançur-Santos V, Viana SDM, Luz YDS, Dias BRS, Lázaro-Souza M, Suarez M, de Oliveira CI, Saraiva EM, Brodskyn CI, Veras PT, de Menezes JP, Andrade BB, Lima JB, Descoteaux A, Borges VM. Leishmania infantum Defective in Lipophosphoglycan Biosynthesis Interferes With Activation of Human Neutrophils. Front Cell Infect Microbiol 2022; 12:788196. [PMID: 35463648 PMCID: PMC9019130 DOI: 10.3389/fcimb.2022.788196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite–vector–host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Alagoinhas, Brazil
| | - Astrid Madeleine Calero Goicochea
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vanessa Mançur-Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Sayonara de Melo Viana
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Yasmin da Silva Luz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Beatriz Rocha Simões Dias
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Milena Lázaro-Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Martha Suarez
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila Indiani de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Elvira M. Saraiva
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia I. Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Patrícia T. Veras
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Juliana P.B. de Menezes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Jonilson Berlink Lima
- Núcleo de Agentes Infecciosos e Vetores (NAIVE), Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique (INRS)–Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| | - Valéria M. Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| |
Collapse
|
3
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, Seggewiß J, Stock C, Ebnet K, Kiesel L, Riethmüller C, Götte M. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements. PLoS One 2015; 10:e0143993. [PMID: 26657485 PMCID: PMC4675527 DOI: 10.1371/journal.pone.0143993] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3’-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer.
Collapse
Affiliation(s)
- Alexander Schwickert
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Esther Weghake
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Kathrin Brüggemann
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Annika Engbers
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Benjamin F. Brinkmann
- Institute-associated Research Group "Cell adhesion and cell polarity”, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Muenster, Muenster, Germany
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute for Human Genetics, Medical Faculty of the University of Münster, Münster, Germany
| | - Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity”, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
- * E-mail:
| |
Collapse
|
5
|
Linder S, Wiesner C. Feel the force: Podosomes in mechanosensing. Exp Cell Res 2015; 343:67-72. [PMID: 26658516 DOI: 10.1016/j.yexcr.2015.11.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 01/27/2023]
Abstract
Cells interact with their environment through highly localized contact structures. Podosomes represent a subgroup of cell-matrix contacts, which is especially prominent in cells of the monocytic lineage such as monocytes, macrophages and dendritic cells, but also in a variety of other cell types. Comparable to other adhesion structures, podosomes feature a complex architecture, which forms the basis for their extensive repertoire of sensory and effector functions. These functions are mainly linked to interactions with the extracellular matrix and comprise well known properties such as cell-matrix adhesion and extracellular matrix degradation. A more recent discovery is the ability of podosomes to act as mechanosensory devices, by detecting rigidity and topography of the substratum. In this review, we focus especially on the molecular events involved in mechanosensing by podosomes, the structural elements of podosomes that enable this function, as well as the intra- and extracellular signals generated downstream of podosome mechanosensing.
Collapse
Affiliation(s)
- Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Wiesner C, Le-Cabec V, El Azzouzi K, Maridonneau-Parini I, Linder S. Podosomes in space: macrophage migration and matrix degradation in 2D and 3D settings. Cell Adh Migr 2015; 8:179-91. [PMID: 24713854 DOI: 10.4161/cam.28116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migration of macrophages is a key process for a variety of physiological functions, such as pathogen clearance or tissue homeostasis. However, it can also be part of pathological scenarios, as in the case of tumor-associated macrophages. This review presents an overview of the different migration modes macrophages can adopt, depending on the physical and chemical properties of specific environments, and the constraints they impose upon cells. We discuss the importance of these environmental and also of cellular parameters, as well as their relative impact on macrophage migration and on the formation of matrix-lytic podosomes in 2D and 3D. Moreover, we present an overview of routinely used and also newly developed assays for the study of macrophage migration in both 2D and 3D contexts, their respective advantages and limitations, and also their potential to reliably mimic in vivo situations.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Véronique Le-Cabec
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Karim El Azzouzi
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France; These authors contributed equally to this work
| | - Stefan Linder
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany; These authors contributed equally to this work
| |
Collapse
|
7
|
Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:940-52. [PMID: 25601713 DOI: 10.1016/j.bbamcr.2015.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.
Collapse
|
8
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|
9
|
The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 2014; 123:2703-14. [PMID: 24421327 DOI: 10.1182/blood-2013-07-516948] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.
Collapse
|
10
|
Marco M, Fortin C, Fulop T. Membrane-type matrix metalloproteinases: key mediators of leukocyte function. J Leukoc Biol 2013; 94:237-46. [PMID: 23695309 DOI: 10.1189/jlb.0612267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukocytes are major cellular effectors of the immune response. To accomplish this task, these cells display a vast arsenal of proteinases, among which, members of the MMP family are especially important. Leukocytes express several members of the MMP family, including secreted- and membrane-anchored MT- MMPs, which synergistically orchestrate an appropriate proteolytic reaction that ultimately modulates immunological responses. The MT-MMP subfamily comprises TM- and GPI-anchored proteinases, which are targeted to well-defined membrane microdomains and exhibit different substrate specificities. Whereas much information exists on the biological roles of secreted MMPs in leukocytes, the roles of MT-MMPs remain relatively obscure. This review summarizes the current knowledge on the expression of MT-MMPs in leukocyte and their contribution to the immune responses and to pathological conditions.
Collapse
Affiliation(s)
- Marta Marco
- Departamento de Bioquímica Clínica Facultad de Química, Gral. Flores 2124, Universidad de la República, Montevideo, Uruguay CP 11800.
| | | | | |
Collapse
|
11
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
12
|
Site-specific cellular functions of MT1-MMP. Eur J Cell Biol 2012; 91:889-95. [DOI: 10.1016/j.ejcb.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/20/2022] Open
|
13
|
Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol 2012; 91:878-88. [PMID: 22823952 DOI: 10.1016/j.ejcb.2012.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023] Open
Abstract
In the past decade, substantial progress has been made in understanding how Src family kinases regulate the formation and function of invadosomes. Invadosomes are organized actin-rich structures that contain an F-actin core surrounded by an adhesive ring and mediate invasive migration. Src kinases orchestrate, either directly or indirectly, each phase of the invadosome life cycle including invadosome assembly, maturation and matrix degradation and disassembly. Complex arrays of Src effector proteins are involved at different stages of invadosome maturation and their spatiotemporal activity must be tightly regulated to achieve effective invasive migration. In this review, we highlight some recent progress and the challenges of understanding how Src is regulated temporally and spatially to orchestrate the dynamics of invadosomes and mediate cell invasion.
Collapse
|
14
|
Burger KL, Davis AL, Isom S, Mishra N, Seals DF. The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011; 68:694-711. [PMID: 22021214 PMCID: PMC3240724 DOI: 10.1002/cm.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023]
Abstract
Tks5 is a Src substrate and adaptor protein previously recognized for its regulation of cancer cell invasion through modulation of specialized adhesion structures called podosomes/invadopodia. Here we show for the first time that Tks5 localizes to the podosomes of primary macrophages, and that Tks5 protein levels increase concurrently with podosome deposition during the differentiation of monocytes into macrophages. Similar results are reported for model THP-1 cells, which differentiate into macrophages and form proteolytically active podosomes in response to a PKC signaling agonist (PMA) and with sensitivity to a PKC inhibitor (bisindolylmaleimide). Genetic manipulation of Tks5 expression (silencing and overexpression) in stable THP-1 cell lines does not independently alter this macrophage differentiation process. Nor do these cells lose the ability to focalize F-actin and its accessory proteins into podosome-like structures following PMA treatment. However, Tks5 directly controls podosome-associated gelatin degradation and invasion through collective changes in adhesion, chemotaxis, and the expression/proteolytic activity of MMP9. The Src family kinase-dependent phosphorylation of Tks5 is also implicated in the regulation of THP-1 macrophage invasive behavior. These results therefore define a previously unappreciated function of Tks5 signaling specific to the functional attributes of the macrophage podosome in adhesion, motility, and extracellular matrix-remodeling.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Amanda L. Davis
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott Isom
- Department of Department of Biostatistical Sciences-Section on Biostatistics, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Nilamadhab Mishra
- Department of Internal Medicine-Section on Rheumatology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Darren F. Seals
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
15
|
Vérollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I. Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. Eur J Immunol 2011; 41:2805-13. [DOI: 10.1002/eji.201141538] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|