1
|
Geng X, Xia X, Liang Z, Li S, Yue Z, Zhang H, Guo L, Ma S, Jiang S, Lian X, Zhou J, Sung LA, Wang X, Yao W. Tropomodulin1 exacerbates inflammatory response in macrophages by negatively regulating LPS-induced TLR4 endocytosis. Cell Mol Life Sci 2024; 81:402. [PMID: 39276234 PMCID: PMC11401823 DOI: 10.1007/s00018-024-05424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-β (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-β. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.
Collapse
Affiliation(s)
- Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Xue Xia
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, Jiangsu Province, China
| | - Zhenhui Liang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Shuo Li
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zejun Yue
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Huan Zhang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Guo
- Department of Rehabilitation Medicine, Caoxian People's Hospital, Heze, 274400, Shandong Province, China
| | - Shan Ma
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Siyu Jiang
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Xiang Lian
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China.
| |
Collapse
|
2
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
3
|
Yang X, Cheng S, Li C, Pan C, Liu L, Meng P, Chen Y, Zhang J, Zhang Z, Zhang H, Zhao Y, Cai Q, He D, Chu X, Shi S, Hui J, Cheng B, Wen Y, Jia Y, Zhang F. Evaluating the interaction between 3'aQTL and alcohol consumption/smoking on anxiety and depression: 3'aQTL-by-environment interaction study in UK Biobank cohort. J Affect Disord 2023; 338:518-525. [PMID: 37390921 DOI: 10.1016/j.jad.2023.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Smoking and alcohol consumption were associated with the development of depression and anxiety. 3'UTR APA quantitative trait loci (3'aQTLs) have been associated with multiple health states and conditions. Our aim is to evaluate the interactive effects of 3'aQTLs-alcohol consumption/tobacco smoking on the risk of anxiety and depression. METHODS The 3'aQTL data of 13 brain regions were extracted from the large-scale 3'aQTL atlas. The phenotype data (frequency of cigarette smoking and alcohol drinking, anxiety score, self-reported anxiety, depression score and self-reported depression) of 90,399-103,011 adults aged 40-69 years living in the UK and contributing to the UK Biobank during 2006-2010, were obtained from the UK Biobank cohort. The frequency of cigarette smoking and alcohol drinking of each subject were defined by the amount of smoking and alcohol drinking of self-reported, respectively. The continuous alcohol consumption/smoking terms were further categorized in tertiles. 3'aQTL-by-environmental interaction analysis was then performed to evaluate the associations of gene-smoking/alcohol consumption interactions with anxiety and depression using generalized linear model (GLM) of PLINK 2.0 with an additive mode of inheritance. Furthermore, GLM was also used to explore the relationship between alcohol consumption/smoking with hazard of anxiety/depression stratified by allele for the significant genotyped SNPs that modified the alcohol consumption/smoking-anxiety/depression association. RESULTS The interaction analysis identified several candidate 3'aQTLs-alcohol consumption interactions, such as rs7602638 located in PPP3R1 (β = 0.08, P = 6.50 × 10-6) for anxiety score; rs10925518 located in RYR2 (OR = 0.95, P = 3.06 × 10-5) for self-reported depression. Interestingly, we also observed that the interactions between TMOD1 (β = 0.18, P = 3.30 × 10-8 for anxiety score; β = 0.17, P = 1.42 × 10-6 for depression score), ZNF407 (β = 0.17, P = 2.11 × 10-6 for anxiety score; β = 0.15, P = 4.26 × 10-5 for depression score) and alcohol consumption was not only associated with anxiety, but related to depression. Besides, we found that relationship between alcohol consumption and hazard of anxiety/depression was significantly different for different SNPs genotypes, such as rs34505550 in TMOD1 (AA: OR = 1.03, P = 1.79 × 10-6; AG: OR = 1.00, P = 0.94; GG: OR = 1.00, P = 0.21) for self-reported anxiety. LIMITATIONS The identified 3'aQTLs-alcohol consumption/smoking interactions were associated with depression and anxiety, and its potential biological mechanisms need to be further revealed. CONCLUSIONS Our study identified important interactions between candidate 3'aQTL and alcohol consumption/smoking on depression and anxiety, and found that the 3'aQTL may modify the associations between consumption/smoking with depression and anxiety. These findings may help to further explore the pathogenesis of depression and anxiety.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Kuruba B, Starks N, Josten MR, Naveh O, Wayman G, Mikhaylova M, Kostyukova AS. Effects of Tropomodulin 2 on Dendritic Spine Reorganization and Dynamics. Biomolecules 2023; 13:1237. [PMID: 37627302 PMCID: PMC10515316 DOI: 10.3390/biom13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Dendritic spines are actin-rich protrusions that receive a signal from the axon at the synapse. Remodeling of cytoskeletal actin is tightly connected to dendritic spine morphology-mediated synaptic plasticity of the neuron. Remodeling of cytoskeletal actin is required for the formation, development, maturation, and reorganization of dendritic spines. Actin filaments are highly dynamic structures with slow-growing/pointed and fast-growing/barbed ends. Very few studies have been conducted on the role of pointed-end binding proteins in the regulation of dendritic spine morphology. In this study, we evaluated the role played by tropomodulin 2 (Tmod2)-a brain-specific isoform, on the dendritic spine re-organization. Tmod2 regulates actin nucleation and polymerization by binding to the pointed end via actin and tropomyosin (Tpm) binding sites. We studied the effects of Tmod2 overexpression in primary hippocampal neurons on spine morphology using confocal microscopy and image analysis. Tmod2 overexpression decreased the spine number and increased spine length. Destroying Tpm-binding ability increased the number of shaft synapses and thin spine motility. Eliminating the actin-binding abilities of Tmod2 increased the number of mushroom spines. Tpm-mediated pointed-end binding decreased F-actin depolymerization, which may positively affect spine stabilization; the nucleation ability of Tmod2 appeared to increase shaft synapses.
Collapse
Affiliation(s)
- Balaganesh Kuruba
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Nickolas Starks
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Mary Rose Josten
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA; (M.R.J.); (G.W.)
| | - Ori Naveh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Gary Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA; (M.R.J.); (G.W.)
| | - Marina Mikhaylova
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| |
Collapse
|
5
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
6
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
7
|
Tong K, Zhang C, Yang T, Guo R, Wang X, Guan R, Jin T. Suggestive evidence of the genetic association of TMOD1 and PTCSC2 polymorphisms with thyroid carcinoma in the Chinese Han population. BMC Endocr Disord 2022; 22:263. [PMID: 36316666 PMCID: PMC9620653 DOI: 10.1186/s12902-022-01177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to survey the associations of six single nucleotide polymorphisms (SNPs) in the TMOD1 and PTCSC2 genes with thyroid carcinoma (TC). METHOD Peripheral blood samples were obtained from 510 patients with TC and 509 normal controls. Six SNPs were genotyped by the Agena MassARRAY platform. Logistic regression was used to evaluate the association between SNPs and TC susceptibility by calculating odds ratios (ORs) and 95% confidence intervals (CIs). SNP-SNP interactions were analyzed by multifactor dimensionality reduction (MDR). RESULTS Our study showed that rs925489 (OR = 1.45, p = 0.011) and rs965513 (OR = 1.40, p = 0.021) were significantly associated with an increased risk of TC. Rs10982622 decreased TC risk (OR = 0.74, p = 0.025). Further stratification analysis showed that rs10982622 reduced the susceptibility to TC in patients aged ≤ 45 years (OR = 0.69, p = 0.019) and in females (OR = 0.61, p = 0.014). Rs925489 increased TC risk in people aged > 45 years (OR = 1.54, p = 0.044) and in males (OR = 2.34, p = 0.003). In addition, rs965513 was related to an increased risk of TC in males (OR = 2.14, p = 0.007). Additionally, haplotypes in the block (rs925489|rs965513) significantly increased TC risk (p < 0.05). The best predictive model for TC was the combination of rs1052270, rs10982622, rs1475545, rs16924016, and rs925489. CONCLUSION TMOD1 and PTCSC2 polymorphisms were separately correlated with a remarkable decrease and increase in TC risk based on the analysis.
Collapse
Affiliation(s)
- Kaijun Tong
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Chang Zhang
- Department of Clinical Laboratory, People's Hospital of Wanning, Hainan Province, Wanning, China
| | - Tingting Yang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Rongbiao Guo
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Xinyuan Wang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Renyang Guan
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 710069, Xi'an, Shaanxi, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, 229 North Taibai Road, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Gao G, Hu S, Zhang K, Wang H, Xie Y, Zhang C, Wu R, Zhao X, Zhang H, Wang Q. Genome-Wide Gene Expression Profiles Reveal Distinct Molecular Characteristics of the Goose Granulosa Cells. Front Genet 2021; 12:786287. [PMID: 34992633 PMCID: PMC8725158 DOI: 10.3389/fgene.2021.786287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Granulosa cells (GCs) are decisive players in follicular development. In this study, the follicle tissues and GCs were isolated from the goose during the peak-laying period to perform hematoxylin-eosin staining and RNA-seq, respectively. Moreover, the dynamic mRNA and lncRNA expression profiles and mRNA-lncRNA network analysis were integrated to identify the important genes and lncRNAs. The morphological analysis showed that the size of the GCs did not significantly change, but the thickness of the granulosa layer cells differed significantly across the developmental stages. Subsequently, 14,286 mRNAs, 3,956 lncRNAs, and 1,329 TUCPs (transcripts with unknown coding potential) were detected in the GCs. We identified 37 common DEGs in the pre-hierarchical and hierarchical follicle stages, respectively, which might be critical for follicle development. Moreover, 3,089 significant time-course DEGs (Differentially expressed genes) and 13 core genes in 4 clusters were screened during goose GCs development. Finally, the network lncRNA G8399 with CADH5 and KLF2, and lncRNA G8399 with LARP6 and EOMES were found to be important for follicular development in GCs. Thus, the results would provide a rich resource for elucidating the reproductive biology of geese and accelerate the improvement of the egg-laying performance of geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keshan Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Changlian Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| |
Collapse
|
9
|
Lu F, Cui D, Mu B, Zhao L, Mu P. Downregulation of TMOD1 promotes cell motility and cell proliferation in cervical cancer cells. Oncol Lett 2020; 19:3339-3348. [PMID: 32218869 DOI: 10.3892/ol.2020.11410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Tropomodulin-1 (TMOD1) is a key regulator of actin dynamics, which caps the pointed end of actin filaments. TMOD1 has been reported to be involved in several cellular processes, including neurite outgrowth, spine formation and cell migration. Increasing evidence demonstrates that TMOD1 is implicated in several aspects of cancer development. The present study aimed to investigate the role of TMOD1 in cervical cancer. HeLa and CaSki cell lines, derived from human cervical cancer, were used to evaluate the function of TMOD1. Cell motility was measured via a wound-healing assay, with the TMOD1 short hairpin (sh)RNAs transfected cells. Subsequently, cell proliferation was assessed using low serum cell culture condition, while cell cycle distribution was analyzed via flow cytometry. The results demonstrated that downregulated TMOD1 promoted cell motility and proliferation, which is attributed to promotion of G1/S phase transition in HeLa and CaSki cells. Furthermore, it was indicated that co-expression of shRNA resistant TMOD1 rescued these phenomena. The clinical data demonstrated that high TMOD1 expression is associated with good pathological status in patients with cervical cancer. Overall, the results of the present study indicated that TMOD1 may act as a tumor suppressor in cervical cancer, whereby its downregulated expression was demonstrated to have direct effects on cell motility and cell proliferation. These results provide new evidence for the prognostic prediction of cervical cancer, which may serve as a promising therapeutic strategy for patients with cervical cancer.
Collapse
Affiliation(s)
- Fangjin Lu
- Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Dandan Cui
- Department of Maternity, Shenyang Women and Children's Health Hospital, Shenyang, Liaoning 110014, P.R. China
| | - Bin Mu
- Shanghai Zhaohui Pharmaceutical Co., Ltd., Shanghai 201900, P.R. China
| | - Lu Zhao
- Department of Biochemistry and Molecular Biology, Basic Medical School, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Ping Mu
- Department of Biochemistry and Molecular Biology, Basic Medical School, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China.,Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 4660065, Japan
| |
Collapse
|
10
|
McClintick JN, Tischfield JA, Deng L, Kapoor M, Xuei X, Edenberg HJ. Ethanol activates immune response in lymphoblastoid cells. Alcohol 2019; 79:81-91. [PMID: 30639126 PMCID: PMC6616005 DOI: 10.1016/j.alcohol.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
The short-term effects of alcohol on gene expression in brain tissue cannot directly be studied in humans. Because neuroimmune signaling is altered by alcohol, immune cells are a logical, accessible choice to study and may provide biomarkers. RNAseq was used to study the effects of 48-h exposure to ethanol on lymphoblastoid cell lines (LCLs) from 20 alcoholic subjects and 20 control subjects. Ethanol exposure resulted in differential expression of 4456 of the 12,503 genes detectably expressed in the LCLs (FDR [false discovery rate] ≤ 0.05); 52% of these showed increased expression. Cells from alcoholic subjects and control subjects responded similarly. The genes whose expression changed fell into many pathways: NFκB, neuroinflammation, IL6, IL2, IL8, and dendritic cell maturation pathways were activated, consistent with increased signaling by NFκB, TNF, IL1, IL4, IL18, TLR4, and LPS. Signaling by Interferons A and B decreased, as did EIF2 signaling, phospholipase C signaling, and glycolysis. Baseline gene expression patterns were similar in LCLs from alcoholic subjects and control subjects. At relaxed stringency (p < 0.05), 465 genes differed, 230 of which were also affected by ethanol. There was a suggestion of compensation because baseline differences (no ethanol) were in the opposite direction of differences due to ethanol exposure in 78% of these genes. Pathways with IL8, phospholipase C, and α-adrenergic signaling were significant. The pattern of expression was consistent with increased signaling by several cytokines, including interferons, TLR2, and TLR3 in alcoholics. Expression of genes in the cholesterol biosynthesis pathway, including the rate-limiting enzyme HMGCR, was lower in alcoholic subjects. LCLs show many effects of ethanol exposure, some of which might provide biomarkers for alcohol use disorders. Identifying genes and pathways altered by ethanol can aid in interpreting which genes within loci identified by GWAS might play functional roles.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Li Deng
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Manav Kapoor
- Departments of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| |
Collapse
|
11
|
Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation. J Neurosci 2018; 38:10271-10285. [PMID: 30301754 DOI: 10.1523/jneurosci.3325-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types. Three members of the Tmod family, Tmod1, Tmod2, and Tmod3 are expressed in the vertebrate CNS, but their function in neuronal development is largely unknown. In this study, we present evidence that Tmod1 and Tmod2 exhibit distinct roles in regulating spine development and dendritic arborization, respectively. Using rat hippocampal tissues from both sexes, we find that Tmod1 and Tmod2 are expressed with distinct developmental profiles: Tmod2 is expressed early during hippocampal development, whereas Tmod1 expression coincides with synaptogenesis. We then show that knockdown of Tmod2, but not Tmod1, severely impairs dendritic branching. Both Tmod1 and Tmod2 are localized to a distinct subspine region where they regulate local F-actin stability. However, the knockdown of Tmod1, but not Tmod2, disrupts spine morphogenesis and impairs synapse formation. Collectively, these findings demonstrate that regulation of the actin cytoskeleton by different members of the Tmod family plays an important role in distinct aspects of dendrite and spine development.SIGNIFICANCE STATEMENT The Tropomodulin family of molecules is best known for controlling the length and stability of actin myofilaments in skeletal muscles. While several Tropomodulin members are expressed in the brain, fundamental knowledge about their role in neuronal function is limited. In this study, we show the unique expression profile and subcellular distribution of Tmod1 and Tmod2 in hippocampal neurons. While both Tmod1 and Tmod2 regulate F-actin stability, we find that they exhibit isoform-specific roles in dendrite development and synapse formation: Tmod2 regulates dendritic arborization, whereas Tmod1 is required for spine development and synapse formation. These findings provide novel insight into the actin regulatory mechanisms underlying neuronal development, thereby shedding light on potential pathways disrupted in a number of neurological disorders.
Collapse
|
12
|
Gray KT, Stefen H, Ly TNA, Keller CJ, Colpan M, Wayman GA, Pate E, Fath T, Kostyukova AS. Tropomodulin's Actin-Binding Abilities Are Required to Modulate Dendrite Development. Front Mol Neurosci 2018; 11:357. [PMID: 30356860 PMCID: PMC6190845 DOI: 10.3389/fnmol.2018.00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/11/2018] [Indexed: 01/22/2023] Open
Abstract
There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States.,Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Holly Stefen
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuronal Culture Core Facility, University of New South Wales, Sydney, NSW, Australia
| | - Thu N A Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Christopher J Keller
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Gary A Wayman
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Edward Pate
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuronal Culture Core Facility, University of New South Wales, Sydney, NSW, Australia.,Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
Bettinsoli P, Ferrari-Toninelli G, Bonini SA, Guarienti M, Cangelosi D, Varesio L, Memo M. Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget 2018; 9:27092-27103. [PMID: 29930753 PMCID: PMC6007461 DOI: 10.18632/oncotarget.25491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 (TMOD1) and tropomodulin 2 (TMOD2) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.
Collapse
Affiliation(s)
- Paola Bettinsoli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michela Guarienti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
14
|
Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W, Chen SH, Watkins D, Pastinen T, Skovby F, Appel B, Rosenblatt DS, Shaikh TH. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet 2018; 26:2838-2849. [PMID: 28449119 DOI: 10.1093/hmg/ddx157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 11/14/2022] Open
Abstract
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Hung-Chun Yu
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alison Brebner
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elizabeth A Geiger
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abigail Watson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Victoria L Castro
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Warren Cheung
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shu-Huang Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Flemming Skovby
- Department of Clinical Genetics, Rigshospitalet, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tamim H Shaikh
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Omotade OF, Pollitt SL, Zheng JQ. Actin-based growth cone motility and guidance. Mol Cell Neurosci 2017; 84:4-10. [PMID: 28268126 DOI: 10.1016/j.mcn.2017.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022] Open
Abstract
Nerve growth cones, the dilated tip of developing axons, are equipped with exquisite abilities to sense environmental cues and to move rapidly through complex terrains of developing brain, leading the axons to their specific targets for precise neuronal wiring. The actin cytoskeleton is the major component of the growth cone that powers its directional motility. Past research has provided significant insights into the mechanisms by which growth cones translate extracellular signals into directional migration. In this review, we summarize the actin-based mechanisms underlying directional growth cone motility, examine novel findings, and discuss the outstanding questions concerning the actin-based growth cone behaviors.
Collapse
Affiliation(s)
- Omotola F Omotade
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Stephanie L Pollitt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
17
|
The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway. Acta Pharmacol Sin 2017; 38:29-40. [PMID: 27840407 DOI: 10.1038/aps.2016.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Recent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro. ARDD (1, 10 μmol/L) significantly enhanced neurite outgrowth in NGF-treated PC12 cells and N1E115 cells in a time-dependent manner. In cultured primary cortical neurons, ARDD (5, 10 μmol/L) not only significantly increased neurite outgrowth but also increased the number of neurites on the soma and the number of bifurcations. Further analyses showed that ARDD (10 μmol/L) significantly increased the phosphorylation of ERK1/2 and the downstream GSK-3β, subsequently induced β-catenin expression and up-regulated the gene expression of the Wnt ligands Fzd1 and Wnt3a in neuronal cells. The neurite outgrowth-promoting effect of ARDD in neuronal cells was abolished by pretreatment with the specific ERK1/2 inhibitor PD98059, but was partially reversed by XAV939, an inhibitor of the Wnt/β-catenin pathway. ARDD also increased the expression of BDNF, CREB and GAP-43 in N1E115 cells, which was reversed by pretreatment with PD98059. In N1E115 cells subjected to oxygen and glucose deprivation (OGD), pretreatment with ARDD (1-10 μmol/L) significantly enhanced the phosphorylation of ERK1/2 and induced neurite outgrowth. These results demonstrated that the natural product ARDD exhibits neurite outgrowth-inducing activity in neurons via activation of the ERK signaling pathway, which may be beneficial to the treatment of brain diseases.
Collapse
|
18
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
19
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Gray KT, Suchowerska AK, Bland T, Colpan M, Wayman G, Fath T, Kostyukova AS. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development. Cytoskeleton (Hoboken) 2016; 73:316-28. [PMID: 27126680 DOI: 10.1002/cm.21304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Alexandra K Suchowerska
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tyler Bland
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Gary Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Colpan M, Moroz NA, Gray KT, Cooper DA, Diaz CA, Kostyukova AS. Tropomyosin-binding properties modulate competition between tropomodulin isoforms. Arch Biochem Biophys 2016; 600:23-32. [PMID: 27091317 DOI: 10.1016/j.abb.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| | - Natalia A Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dillon A Cooper
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Christian A Diaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
22
|
Leite SC, Sousa MM. The neuronal and actin commitment: Why do neurons need rings? Cytoskeleton (Hoboken) 2016; 73:424-34. [DOI: 10.1002/cm.21273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Sérgio Carvalho Leite
- Nerve Regeneration Group, IBMC - Instituto De Biologia Molecular E Celular; Porto Portugal
- Instituto De Investigação E Inovação Em Saúde, Universidade Do Porto; Porto Portugal
- ICBAS, Universidade Do Porto; Porto Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC - Instituto De Biologia Molecular E Celular; Porto Portugal
- Instituto De Investigação E Inovação Em Saúde, Universidade Do Porto; Porto Portugal
| |
Collapse
|
23
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
24
|
Dukala DE, Soliven B. S1P1deletion in oligodendroglial lineage cells: Effect on differentiation and myelination. Glia 2015; 64:570-82. [DOI: 10.1002/glia.22949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Danuta E. Dukala
- Department of Neurology; the University of Chicago; Chicago Illinois
| | - Betty Soliven
- Department of Neurology; the University of Chicago; Chicago Illinois
| |
Collapse
|
25
|
Selvaraj P, Huang JSW, Chen A, Skalka N, Rosin-Arbesfeld R, Loh YP. Neurotrophic factor-α1 modulates NGF-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and cortical neurons. Mol Cell Neurosci 2015; 68:222-33. [PMID: 26276171 DOI: 10.1016/j.mcn.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Wnt-3a and Wnt-5a signaling activities inhibit and promote neurite outgrowth, respectively, to regulate dendritic and axonal genesis during neurodevelopment. NF-α1, a neurotrophic factor, has been shown to modulate dendritic remodeling and negatively regulate the canonical Wnt-3a pathway. Here, we investigated whether NF-α1 could modify nerve growth factor (NGF)-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and mouse primary cortical neurons. We showed that NGF-induced neurite outgrowth was inhibited by Wnt-3a, and this inhibition was prevented by NF-α1. Western blot analysis revealed that NF-α1 reduced the expression of both β-catenin in the canonical Wnt-3a pathway and Rho, a downstream effector of Wnt-3a's non-canonical signaling pathway. Treatment of PC12 cells with a ROCK inhibitor prevented the inhibition of NGF-induced neurite outgrowth by Wnt-3a, suggesting that NF-α1 promotes neurite outgrowth in the presence of Wnt-3a by down-regulating its canonical and non-canonical activities. Interestingly, treatment of PC12 cells with Wnt-5a, which formed a complex with NF-α1, induced neurite outgrowth that was enhanced by treatment with the combination of Wnt-5a, NGF, and NF-α1. These effects of NF-α1 on Wnt 3a's and Wnt 5a's regulation of neurite outgrowth in PC12 cells were also demonstrated in primary cultures of mouse cortical neurons. In addition, we showed in PC12 cells that NF-α1 acts by upregulating adenomatous polyposis coli (APC) accumulation at neurite tips, thereby providing positive and negative Wnt-3a/Wnt-5a mediated cues to modulate neurite outgrowth, a process important during neurodevelopment.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jane S W Huang
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Chen
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nir Skalka
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
27
|
Frausto RF, Wang C, Aldave AJ. Transcriptome analysis of the human corneal endothelium. Invest Ophthalmol Vis Sci 2014; 55:7821-30. [PMID: 25377225 DOI: 10.1167/iovs.14-15021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To comprehensively characterize human corneal endothelial cell (HCEnC) gene expression and age-dependent differential gene expression and to identify expressed genes mapped to chromosomal loci associated with the corneal endothelial dystrophies posterior polymorphous corneal dystrophy (PPCD)1, Fuchs endothelial corneal dystrophy (FECD)4, and X-linked endothelial dystrophy (XECD). METHODS Total RNA was isolated from ex vivo corneal endothelium obtained from six pediatric and five adult donor corneas. Complementary DNA was hybridized to the Affymetrix GeneChip 1.1ST array. Data analysis was performed using Partek Genomics Suite software, and differentially expressed genes were validated by digital molecular barcoding technology. RESULTS Transcripts corresponding to 12,596 genes were identified in HCEnC. Nine genes displayed the most significant differential expression between pediatric and adult HCEnC: CAPN6, HIST1H3A, HIST1H4E, and HSPA2 were expressed at higher levels in pediatric HCEnC, while ITGBL1, NALCN, PREX2, TAC1, and TMOD1 were expressed at higher levels in adult HCEnC. Analysis of the PPCD1, FECD4 and XECD loci demonstrated transcription of 53/95 protein-coding genes in the PPCD1 locus, 27/40 in the FECD4 locus, and 35/68 in the XECD locus. CONCLUSIONS An analysis of the HCEnC transcriptome reveals the expression of almost 13,000 genes, with less than 1% mapped to chromosomal loci associated with PPCD1, FECD4, and XECD. At least nine genes demonstrated significant differential expression between pediatric and adult HCEnC, defining specific functional properties distinct to each age group. These data will serve as a resource for vision scientists investigating HCEnC gene expression and can be used to focus the search for the genetic basis of the corneal endothelial dystrophies for which the genetic basis remains unknown.
Collapse
Affiliation(s)
- Ricardo F Frausto
- The Jules Stein Eye Institute, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States
| | - Cynthia Wang
- The Jules Stein Eye Institute, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States
| | - Anthony J Aldave
- The Jules Stein Eye Institute, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
28
|
Sotnikov OS, Vasyagina NY, Sergeeva SS. Simultaneous opposite axonal currents in neural process. Retraction hypothesis. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo. Kidney Int 2014; 86:1116-29. [PMID: 24940801 PMCID: PMC4245460 DOI: 10.1038/ki.2014.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022]
Abstract
Identifying new biomarkers and therapeutic targets for podocytopathies such as focal segmental glomerulosclerosis (FSGS) requires a detailed analysis of transcriptional changes in podocytes over the course of disease. Here we used translating ribosome affinity purification (TRAP) to isolate and profile podocyte-specific mRNA in two different models of FSGS. Expressed eGFP-tagged ribosomal protein L10a in podocytes under the control of the Collagen-1α1 promoter enabled podocyte-specific mRNA isolation in a one-step process over the course of disease. This TRAP protocol robustly enriched known podocyte-specific mRNAs. We crossed col1α1-L10a mice with the actn4−/− and actn4+/K256E models of FSGS and analyzed podocyte transcriptional profiles at 2, 6 and 44 weeks of age. Two upregulated podocyte genes in murine FSGS (CXCL1 and DMPK) were found to be upregulated at the protein level in biopsies from patients with FSGS, validating this approach. There was no dilution of podocyte-specific transcripts during disease. These are the first podocyte-specific RNA expression datasets during aging and in two models of FSGS. This approach identified new podocyte proteins that are upregulated in FSGS and help define novel biomarkers and therapeutic targets for human glomerular disease.
Collapse
|
30
|
Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 2014; 31:941-52. [PMID: 23341249 DOI: 10.1002/stem.1334] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/24/2012] [Indexed: 01/07/2023]
Abstract
Astrocytes can be generated from various tissue sources including human pluripotent stem cells (PSC). In this manuscript, we describe a chemically defined xeno-free medium culture system for rapidly generating astrocytes from neural stem cells derived from PSC. We show that astrocyte development in vitro, mimics normal development in vivo, and also passes through a CD44(+) astrocyte precursor stage. Astrocytes generated by our method display similar gene expression patterns, morphological characteristics and functional properties to primary astrocytes, and they survive and integrate after xenotransplantation. Whole genome expression profiling of astrocyte differentiation was performed at several time points of differentiation, and the results indicate the importance of known regulators and identify potential novel regulators and stage-specific lineage markers.
Collapse
|
31
|
Guillaud L, Gray KT, Moroz N, Pantazis C, Pate E, Kostyukova AS. Role of tropomodulin's leucine rich repeat domain in the formation of neurite-like processes. Biochemistry 2014; 53:2689-700. [PMID: 24746171 PMCID: PMC4018078 DOI: 10.1021/bi401431k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Actin dynamics is fundamental for neurite development; monomer depolymerization from pointed ends is rate-limiting in actin treadmilling. Tropomodulins (Tmod) make up a family of actin pointed end-capping proteins. Of the four known isoforms, Tmod1-Tmod3 are expressed in brain cells. We investigated the role of Tmod's C-terminal (LRR) domain in the formation of neurite-like processes by overexpressing Tmod1 and Tmod2 with deleted or mutated LRR domains in PC12 cells, a model system used to study neuritogenesis. Tmod1 overexpression results in a normal quantity and a normal length of processes, while Tmod2 overexpression reduces both measures. The Tmod2 overexpression phenotype is mimicked by overexpression of Tmod1 with the LRR domain removed or with three point mutations in the LRR domain that disrupt exposed clusters of conserved residues. Removal of Tmod2's LRR domain does not significantly alter the outgrowth of neurite-like processes compared to that of Tmod2. Overexpression of chimeras with the N-terminal and C-terminal domains switched between Tmod1 and Tmod2 reinforces the idea that Tmod1's LRR domain counteracts the reductive effect of the Tmod N-terminal domain upon formation of processes while Tmod2's LRR domain does not. We suggest that the TM-dependent actin capping ability of both Tmods inhibits the formation of processes, but in Tmod1, this inhibition can be controlled via its LRR domain. Circular dichroism, limited proteolysis, and molecular dynamics demonstrate structural differences in the C-terminal region of the LRR domains of Tmod1, Tmod2, and the Tmod1 mutant.
Collapse
Affiliation(s)
- Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, OIST Graduate University , 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Mi J, Shaw AE, Pak CW, Walsh KP, Minamide LS, Bernstein BW, Kuhn TB, Bamburg JR. A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons. PLoS One 2013; 8:e83609. [PMID: 24391794 PMCID: PMC3877059 DOI: 10.1371/journal.pone.0083609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/05/2013] [Indexed: 01/18/2023] Open
Abstract
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30-60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.
Collapse
Affiliation(s)
- Jianjie Mi
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chi W. Pak
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara W. Bernstein
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
33
|
The switch role of the Tmod4 in the regulation of balanced development between myogenesis and adipogenesis. Gene 2013; 532:263-71. [PMID: 24036428 DOI: 10.1016/j.gene.2013.08.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022]
Abstract
Tmod4 (Tropomodulin 4) is a member of Tmod family that plays important role in thin filament length regulation and myofibril assembly. We found that the expression levels of Tmod4 were higher in skeletal muscle and adipose tissues. However, the function and regulation of the Tmod4 gene in the myogenesis and adipogenesis remains unclear. In this study, we found that the expression of Tmod4 was decreased in myogenesis while increased in adipogenesis. Then, the transcriptional regulation analysis of Tmod4 promoter showed that Tmod4 could be regulated directly by myogenic factors and adipogenic factors. Furthermore, the roles of Tmod4 in the myogenesis and adipogenesis were confirmed by its over-expression in C2C12 cells and 3T3 cells, which suggested that Tmod4 could promote adipogenesis by up-regulating the adipogenic factors but moderately delay the myogenesis. These results indicated that the Tmod4 gene may play as a switch between myogenesis and adipogenesis, which resulted in the balanced development between skeletal muscle and adipose tissue. Therefore, the model for switch role of the Tmod4 in the balanced regulation between myogenesis and adipogenesis was proposed. It is showed that the expression of Tmod4 was activated in adipogenesis by adipogenic factors while inhibited in myogenesis by myogenic factors. Moreover, Tmod4 could promote adipogenesis by up-regulating the expression of adipogenic factors while moderately delaying the myogenesis. Our study provides an important basis for further understanding the regulation and function of porcine Tmod4 in muscle and fat development.
Collapse
|
34
|
Colpan M, Moroz NA, Kostyukova AS. Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 2013; 34:247-60. [PMID: 23828180 DOI: 10.1007/s10974-013-9349-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
Collapse
Affiliation(s)
- Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall, Spokane St., Pullman, WA, 99164, USA
| | | | | |
Collapse
|
35
|
Moroz N, Guillaud L, Desai B, Kostyukova AS. Mutations changing tropomodulin affinity for tropomyosin alter neurite formation and extension. PeerJ 2013; 1:e7. [PMID: 23638401 PMCID: PMC3628370 DOI: 10.7717/peerj.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/15/2012] [Indexed: 11/20/2022] Open
Abstract
Assembly of the actin cytoskeleton is an important part of formation of neurites in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein for the pointed end of the actin filament, is one of the key players in this process. Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2, tropomodulin isoforms found in neurons, were overexpressed in PC12 cells, a model system for neuronal differentiation. Tmod1 did not affect neuronal differentiation; while cells expressing Tmod2 showed a significant reduction in the number and the length of neurites. Both tropomodulins bind short α-, γ- and δ-tropomyosin isoforms. Mutations in one of the tropomyosin-binding sites of Tmod1, which increased its affinity to short γ- and δ-tropomyosin isoforms, caused a decrease in binding short α-tropomyosin isoforms along with a 2-fold decrease in the length of neurites. Our data demonstrate that Tmod1 is involved in neuronal differentiation for proper neurite formation and outgrowth, and that Tmod2 inhibits these processes. The mutations in the tropomyosin-binding site of Tmod1 impair neurite outgrowth, suggesting that the integrity of this binding site is critical for the proper function of Tmod1 during neuronal differentiation.
Collapse
Affiliation(s)
- Natalia Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Kunigami, Okinawa, Japan
| | - Brinda Desai
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
36
|
Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:95-156. [PMID: 23317818 DOI: 10.1016/b978-0-12-407704-1.00003-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Filopodia are finger-like cellular protrusions found throughout the metazoan kingdom and perform fundamental cellular functions during development and cell migration. Neurons exhibit a wide variety of extremely complex morphologies. In the nervous system, filopodia underlie many major morphogenetic events. Filopodia have roles spanning the initiation and guidance of neuronal processes, axons and dendrites to the formation of synaptic connections. This chapter addresses the mechanisms of the formation and dynamics of neuronal filopodia. Some of the major lessons learned from the study of neuronal filopodia are (1) there are multiple mechanisms that can regulate filopodia in a context-dependent manner, (2) that filopodia are specialized subcellular domains, (3) that filopodia exhibit dynamic membrane recycling which also controls aspects of filopodial dynamics, (4) that neuronal filopodia contain machinery for the orchestration of the actin and microtubule cytoskeleton, and (5) localized protein synthesis contributes to neuronal filopodial dynamics.
Collapse
Affiliation(s)
- Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Castaño EM, Maarouf CL, Wu T, Leal MC, Whiteside CM, Lue LF, Kokjohn TA, Sabbagh MN, Beach TG, Roher AE. Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem Int 2012; 62:145-56. [PMID: 23231993 DOI: 10.1016/j.neuint.2012.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/26/2012] [Accepted: 12/01/2012] [Indexed: 12/13/2022]
Abstract
The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer's disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes. In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n=4) and NDC (n=5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases. Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α- and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools. Our experiments suggest that WM activities become globally impaired during the course of AD with significant morphological, biochemical and functional consequential implications for gray matter function and cognitive deficits. These observations may endorse the hypothesis that WM dysfunction is not only a consequence of AD pathology, but that it may precipitate and/or potentiate AD dementia.
Collapse
Affiliation(s)
- Eduardo M Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cox-Paulson EA, Walck-Shannon E, Lynch AM, Yamashiro S, Zaidel-Bar R, Eno CC, Ono S, Hardin J. Tropomodulin protects α-catenin-dependent junctional-actin networks under stress during epithelial morphogenesis. Curr Biol 2012; 22:1500-5. [PMID: 22771044 DOI: 10.1016/j.cub.2012.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/09/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
α-catenin is central to recruitment of actin networks to the cadherin-catenin complex, but how such networks are subsequently stabilized against stress applied during morphogenesis is poorly understood. To identify proteins that functionally interact with α-catenin in this process, we performed enhancer screening using a weak allele of the C. elegans α-catenin, hmp-1, thereby identifying UNC-94/tropomodulin. Tropomodulins (Tmods) cap the minus ends of F-actin in sarcomeres. They also regulate lamellipodia, can promote actin nucleation, and are required for normal cardiovascular development and neuronal growth-cone morphology. Tmods regulate the morphology of cultured epithelial cells, but their role in epithelia in vivo remains unexplored. We find that UNC-94 is enriched within a HMP-1-dependent junctional-actin network at epidermal adherens junctions subject to stress during morphogenesis. Loss of UNC-94 leads to discontinuity of this network, and high-speed filming of hmp-1(fe4);unc-94(RNAi) embryos reveals large junctional displacements that depend on the Rho pathway. In vitro, UNC-94 acts in combination with HMP-1, leading to longer actin bundles than with HMP-1 alone. Our data suggest that Tmods protect actin filaments recruited by α-catenin from minus-end subunit loss, enabling them to withstand the stresses of morphogenesis.
Collapse
Affiliation(s)
- Elisabeth A Cox-Paulson
- Department of Biology, State University of New York at Geneseo, 353 Integrated Science Center, 1 College Circle, Geneseo, NY 14454, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
40
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|