1
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
2
|
Yu CJ, Park YH, An MY, Ryu B, Jung HS. Insights into Actin Isoform-Specific Interactions with Myosin via Computational Analysis. Molecules 2024; 29:2992. [PMID: 38998944 PMCID: PMC11242942 DOI: 10.3390/molecules29132992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Actin, which plays a crucial role in cellular structure and function, interacts with various binding proteins, notably myosin. In mammals, actin is composed of six isoforms that exhibit high levels of sequence conservation and structural similarity overall. As a result, the selection of actin isoforms was considered unimportant in structural studies of their binding with myosin. However, recent high-resolution structural research discovered subtle structural differences in the N-terminus of actin isoforms, suggesting the possibility that each actin isoform may engage in specific interactions with myosin isoforms. In this study, we aimed to explore this possibility, particularly by understanding the influence of different actin isoforms on the interaction with myosin 7A. First, we compared the reported actomyosin structures utilizing the same type of actin isoforms as the high-resolution filamentous skeletal α-actin (3.5 Å) structure elucidated using cryo-EM. Through this comparison, we confirmed that the diversity of myosin isoforms leads to differences in interaction with the actin N-terminus, and that loop 2 of the myosin actin-binding sites directly interacts with the actin N-terminus. Subsequently, with the aid of multiple sequence alignment, we observed significant variations in the length of loop 2 across different myosin isoforms. We predicted that these length differences in loop 2 would likely result in structural variations that would affect the interaction with the actin N-terminus. For myosin 7A, loop 2 was found to be very short, and protein complex predictions using skeletal α-actin confirmed an interaction between loop 2 and the actin N-terminus. The prediction indicated that the positively charged residues present in loop 2 electrostatically interact with the acidic patch residues D24 and D25 of actin subdomain 1, whereas interaction with the actin N-terminus beyond this was not observed. Additionally, analyses of the actomyosin-7A prediction models generated using various actin isoforms consistently yielded the same results regardless of the type of actin isoform employed. The results of this study suggest that the subtle structural differences in the N-terminus of actin isoforms are unlikely to influence the binding structure with short loop 2 myosin 7A. Our findings are expected to provide a deeper understanding for future high-resolution structural binding studies of actin and myosin.
Collapse
Affiliation(s)
- Chan Jong Yu
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
3
|
Sazzed S, Scheible P, He J, Wriggers W. Untangling Irregular Actin Cytoskeleton Architectures in Tomograms of the Cell with Struwwel Tracer. Int J Mol Sci 2023; 24:17183. [PMID: 38139012 PMCID: PMC10743648 DOI: 10.3390/ijms242417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, we established, validated, and optimized a novel computational framework for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was designed for highly complex intracellular architectures in which a long-range cytoskeleton network extends throughout the cell bodies and protrusions. The irregular organization of the actin network, as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel Tracer, accumulates densities along paths of a specific length in various directions, starting from locally determined seed points. The highest-density paths originating from the seed points form short linear candidate filament segments, which are further scrutinized and classified by users via inspection of a novel pruning map, which visualizes the likelihood of being a part of longer filaments. The pruned linear candidate filament segments are then iteratively fused into continuous, longer, and curved filaments based on their relative orientations, gap spacings, and extendibility. When applied to the simulated phantom tomograms of a Dictyostelium discoideum filopodium under experimental conditions, Struwwel Tracer demonstrated high efficacy, with F1-scores ranging from 0.85 to 0.90, depending on the noise level. Furthermore, when applied to a previously untraced experimental tomogram of mouse fibroblast lamellipodia, the filaments predicted by Struwwel Tracer exhibited a good visual agreement with the experimental map. The Struwwel Tracer framework is highly time efficient and can complete the tracing process in just a few minutes. The source code is publicly available with version 3.2 of the free and open-source Situs software package.
Collapse
Affiliation(s)
- Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Peter Scheible
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
4
|
Kola S, Kandadai RM, Kashyap M, Deepak S, Prasad VVSRK, Alugolu R, Borgohain R. Dystonia Deafness Syndrome: A Rare Deep Brain Stimulation Responsive Dystonia. Ann Indian Acad Neurol 2023; 26:766-768. [PMID: 38022471 PMCID: PMC10666884 DOI: 10.4103/aian.aian_319_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dystonia deafness syndrome (DDS) is a rare syndrome characterized by childhood onset sensorineural deafness followed by adult-onset dystonia. We here report the first case of DDS from India caused by ACTB gene mutation presented with deafness, generalized dystonia and scoliosis who showed improvement after Deep brain stimulation.
Collapse
Affiliation(s)
- Sruthi Kola
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - Rukmini Mridula Kandadai
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - Mansi Kashyap
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - Sai Deepak
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - VVSRK Prasad
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - Rajesh Alugolu
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| | - Rupam Borgohain
- Department of Parkinson's Disease and Movement Disorders Research Centre (PDMDRC), Citi Neuro Centre, Telangana, India
| |
Collapse
|
5
|
Smith CEL, Lake AVR, Johnson CA. Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please. Front Cell Dev Biol 2020; 8:622822. [PMID: 33392209 PMCID: PMC7773788 DOI: 10.3389/fcell.2020.622822] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular "antennae" in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.
Collapse
Affiliation(s)
| | | | - Colin A. Johnson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Lin H, Roh J, Woo JH, Kim SJ, Nam JH. TMEM16F/ANO6, a Ca 2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP. Biochem Biophys Res Commun 2018; 503:2348-2354. [PMID: 29964013 DOI: 10.1016/j.bbrc.2018.06.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 01/08/2023]
Abstract
Anoctamin 6 (ANO6/TMEM16F) is a recently identified membrane protein that has both phospholipid scramblase activity and anion channel function activated by relatively high [Ca2+]i. In addition to the low sensitivity to Ca2+, the activation of ANO6 Cl- conductance is very slow (>3-5 min to reach peak level at 10 μM [Ca2+]i), with subsequent inactivation. In a whole-cell patch clamp recording of ANO6 current (IANO6,w-c), disruption of the actin cytoskeleton with cytochalasin-D (cytoD) significantly accelerated the activation kinetics, while actin filament-stabilizing agents (phalloidin and jasplakinolide) commonly inhibited IANO6,w-c. Inside-out patch clamp recording of ANO6 (IANO6,i-o) showed immediate activation by raising [Ca2+]i. We also found that intracellular ATP (3 mM MgATP in pipette solution) decelerated the activation of IANO6,w-c, and also prevented the inactivation of IANO6,w-c. However, the addition of cytoD still accelerated both activation and inactivation of IANO6,w-c. We conclude that the actin cytoskeleton and intracellular ATP play major roles in the Ca2+-dependent activation and inactivation of IANO6,w-c, respectively.
Collapse
Affiliation(s)
- Haiyue Lin
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaewon Roh
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea
| | - Joo Han Woo
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
7
|
Skogseid IM, Røsby O, Konglund A, Connelly JP, Nedregaard B, Jablonski GE, Kvernmo N, Stray-Pedersen A, Glover JC. Dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity shows striatal dopaminergic dysfunction and response to pallidal stimulation. J Neurodev Disord 2018; 10:17. [PMID: 29788902 PMCID: PMC5964724 DOI: 10.1186/s11689-018-9235-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dystonia-deafness syndrome is a well-known clinical entity, with sensorineural deafness typically manifesting earlier than dystonia. ACTB p.Arg183Trp heterozygosity has been reported in six patients to cause combined infant-onset deafness and dystonia manifesting in adolescence or young adulthood. Three of these have received beneficial pallidal stimulation. Brain imaging to assess striatal function has not been reported previously, however. Nor has a comprehensive hypothesis been presented for how the pleiotropic manifestations of this specific beta-actin gene mutation originate developmentally. CASE PRESENTATION A 19-year-old girl with congenital mild dysmorphic facial features, cochlear implants for infant-onset deafness, and mild cognitive and emotional disability, presented with an adolescent-onset, severe generalized dystonia. Brain MRI and multiple single gene sequencing were inconclusive. Due to life-threatening dystonia, we implanted a neurostimulation device, targeting the postero-ventral internal pallidum bilaterally. The Burke-Fahn-Marsden Dystonia Rating Scale motor/disability scores improved from 87/25 to 21/13 at 2.5 months postoperatively, 26/14 at 3 years, and 30/14 at 4 years. Subsequent whole exome sequencing identified heterozygosity for the ACTB p.Arg183Trp variant. Brain imaging included 123I-ioflupane single photon emission computed tomography (Dopamine Transporter-SPECT), SPECT with 123I-epidepride (binds to dopamine type 2-receptors) and 18 Fluoro-Deoxy-Glucose (FDG)-PET. Both Epidepride-SPECT and FDG-PET showed reduced tracer uptake in the striatum bilaterally, particularly in the putamen. DaT-SPECT was slightly abnormal. CONCLUSIONS In this patient with dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity, unprecedented brain imaging findings strongly indicate striatal neuronal/dopaminergic dysfunction as the underlying cause of the dystonia. Pallidal stimulation provided a substantial improvement of the severe generalized dystonia, which is largely sustained at 4-year follow-up, and we advise this treatment to be considered in such patients. We hypothesize that the pleiotropic manifestations of the dystonia-deafness syndrome caused by this mutation derive from diverse developmental functions of beta-actin in neural crest migration and proliferation (facial dysmorphogenesis), hair cell stereocilia function (infant-onset deafness), and altered synaptic activity patterns associated with pubertal changes in striatal function (adolescent-onset dystonia). The temporal differences in developmental onset are likely due to varying degrees of susceptibility and of compensatory upregulation of other actin variants in the affected structures.
Collapse
Affiliation(s)
- Inger Marie Skogseid
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Po.box. 4950, Nydalen, 0424, Oslo, Norway.
| | - Oddveig Røsby
- Department of Medical Genetics, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Ane Konglund
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - James P Connelly
- Department of Nuclear Medicine, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Bård Nedregaard
- Department of Radiology, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Greg Eigner Jablonski
- Department of Otorhinolaryngology, Division of Head, Neck & Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadja Kvernmo
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Po.box. 4950, Nydalen, 0424, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, 77030, USA.,Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun 2017; 8:1981. [PMID: 29215007 PMCID: PMC5719408 DOI: 10.1038/s41467-017-02230-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Microtubule-associated proteins regulate microtubule dynamics, bundle actin filaments, and cross-link actin filaments with microtubules. In addition, aberrant interaction of the microtubule-associated protein Tau with filamentous actin is connected to synaptic impairment in Alzheimer’s disease. Here we provide insight into the nature of interaction between Tau and actin filaments. We show that Tau uses several short helical segments to bind in a dynamic, multivalent process to the hydrophobic pocket between subdomains 1 and 3 of actin. Although a single Tau helix is sufficient to bind to filamentous actin, at least two, flexibly linked helices are required for actin bundling. In agreement with a structural model of Tau repeat sequences in complex with actin filaments, phosphorylation at serine 262 attenuates binding of Tau to filamentous actin. Taken together the data demonstrate that bundling of filamentous actin and cross-linking of the cellular cytoskeleton depend on the metamorphic and multivalent nature of microtubule-associated proteins. The microtubule associated protein Tau also interacts with filamentous actin. Here the authors combine biophysical experiments and NMR studies to characterize the structural changes that occur in Tau upon binding to filamentous actin and show that phosphorylation of serine 262 attenuates actin binding of Tau.
Collapse
|
9
|
Kumar S, Mansson A. Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnol Adv 2017; 35:867-888. [PMID: 28830772 DOI: 10.1016/j.biotechadv.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
Abstract
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
10
|
Schwebach CL, Agrawal R, Lindert S, Kudryashova E, Kudryashov DS. The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins. J Mol Biol 2017; 429:2490-2508. [PMID: 28694070 DOI: 10.1016/j.jmb.2017.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/04/2023]
Abstract
The actin cytoskeleton is a complex network controlled by a vast array of intricately regulated actin-binding proteins. Human plastins (PLS1, PLS2, and PLS3) are evolutionary conserved proteins that non-covalently crosslink actin filaments into tight bundles. Through stabilization of such bundles, plastins contribute, in an isoform-specific manner, to the formation of kidney and intestinal microvilli, inner ear stereocilia, immune synapses, endocytic patches, adhesion contacts, and invadosomes of immune and cancer cells. All plastins comprise an N-terminal Ca2+-binding regulatory headpiece domain followed by two actin-binding domains (ABD1 and ABD2). Actin bundling occurs due to simultaneous binding of both ABDs to separate actin filaments. Bundling is negatively regulated by Ca2+, but the mechanism of this inhibition remains unknown. In this study, we found that the bundling abilities of PLS1 and PLS2 were similarly sensitive to Ca2+ (pCa50 ~6.4), whereas PLS3 was less sensitive (pCa50 ~5.9). At the same time, all three isoforms bound to F-actin in a Ca2+-independent manner, suggesting that binding of only one of the ABDs is inhibited by Ca2+. Using limited proteolysis and mass spectrometry, we found that in the presence of Ca2+ the EF-hands of human plastins bound to an immediately adjacent sequence homologous to canonical calmodulin-binding peptides. Furthermore, our data from differential centrifugation, Förster resonance energy transfer, native electrophoresis, and chemical crosslinking suggest that Ca2+ does not affect ABD1 but inhibits the ability of ABD2 to interact with actin. A structural mechanism of signal transmission from Ca2+ to ABD2 through EF-hands remains to be established.
Collapse
Affiliation(s)
- Christopher L Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richa Agrawal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci Rep 2016; 6:35449. [PMID: 27762277 PMCID: PMC5071871 DOI: 10.1038/srep35449] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 01/25/2023] Open
Abstract
Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.
Collapse
|
12
|
Janco M, Bonello TT, Byun A, Coster ACF, Lebhar H, Dedova I, Gunning PW, Böcking T. The impact of tropomyosins on actin filament assembly is isoform specific. BIOARCHITECTURE 2016; 6:61-75. [PMID: 27420374 DOI: 10.1080/19490992.2016.1201619] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.
Collapse
Affiliation(s)
- Miro Janco
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| | - Teresa T Bonello
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Alex Byun
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Adelle C F Coster
- c School of Mathematics and Statistics , University of New South Wales , Sydney , NSW , Australia
| | - Helene Lebhar
- d School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Irina Dedova
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Peter W Gunning
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Till Böcking
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| |
Collapse
|
13
|
Silván U, Hyotyla J, Mannherz HG, Ringler P, Müller SA, Aebi U, Maier T, Schoenenberger CA. Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. J Struct Biol 2016; 195:159-166. [PMID: 27189866 DOI: 10.1016/j.jsb.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022]
Abstract
Two distinct dimers are formed during the initial steps of actin polymerization. The first one, referred to as the 'lower dimer' (LD) was discovered many years ago by means of chemical crosslinking. Owing to its transient nature, a biological relevance had long been precluded when, using LD-specific antibodies, we detected LD-like contacts in actin assemblies that are associated with the endolysosomal compartment in a number of different cell lines. Moreover, immunofluorescence showed the presence of LD-related structures at the cell periphery of migrating fibroblasts, in the nucleus, and in association with the centrosome of interphase cells. Here, we explore contributions of the LD to the assembly of supramolecular actin structures in real time by total internal reflection fluorescence (TIRF) microscopy. Our data shows that while LD on its own cannot polymerize under filament forming conditions, it is able to incorporate into growing F-actin filaments. This incorporation of LD triggers the formation of X-shaped filament assemblies with barbed ends that are pointing in the same direction in the majority of cases. Similarly, an increased frequency of junction sites was observed when filaments were assembled in the presence of oxidized actin. This data suggests that a disulfide bridge between Cys374 residues might stabilize LD-contacts. Based on our findings, we propose two possible models for the molecular mechanism underlying the supramolecular actin patterning in LD-related structures.
Collapse
Affiliation(s)
- Unai Silván
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Janne Hyotyla
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Hans-Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
14
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
15
|
Qu Z, Silvan U, Jockusch BM, Aebi U, Schoenenberger CA, Mannherz HG. Distinct actin oligomers modulate differently the activity of actin nucleators. FEBS J 2015. [DOI: 10.1111/febs.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Qu
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | - Unai Silvan
- Institute for Biomechanics; Balgrist University Hospital; ETH and University of Zürich; Switzerland
| | - Brigitte M. Jockusch
- Department of Cell Biology; Institute of Zoology; Technical University; Braunschweig Germany
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Switzerland
| | | | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| |
Collapse
|
16
|
3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury. Sci Rep 2015; 5:10739. [PMID: 26030156 PMCID: PMC5377067 DOI: 10.1038/srep10739] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/27/2015] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1.
Collapse
|
17
|
Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 2015; 47:189-97. [PMID: 25631472 DOI: 10.1007/s10863-015-9604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Abstract
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
Collapse
|
18
|
Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife 2015; 4. [PMID: 25642645 PMCID: PMC4337605 DOI: 10.7554/elife.04806] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/02/2015] [Indexed: 01/12/2023] Open
Abstract
High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries. DOI:http://dx.doi.org/10.7554/eLife.04806.001 Actin is one of the most abundant proteins found inside all eukaryotic cells including plant, animal, and fungal cells. This protein is involved in a wide range of biological processes that are essential for an organism's survival. Actin proteins form long filaments that help cells to maintain their shape and also provide the force required for cells to divide and/or move. Actin filaments are helical in shape and are made up of many actin subunits joined together. Actin filaments are changeable structures that continuously grow and shrink as new actin subunits are added to or removed from the ends of the filaments. One end of an actin filament grows faster than the other; the fast-growing end is known as the barbed-end, while the slow-growing end is referred to as the pointed-end. Over 100 other proteins are known to bind to and work with actin to regulate its roles in cells and how it forms into filaments. Cofilin is one such protein that binds to and forms clusters on actin filaments and it can also sever actin filaments. Severing an actin filament can encourage the filament to disassemble, or it can help produce new barbed ends that can then grow into new filaments. Previous work had suggested that cofilin severs actin filaments at the junction between regions on the filament that are coated with cofilin and those that are not. It was also known that cofilin binding to a filament causes the filament to change shape, and that the shape change is propagated to neighboring sections of the filaments not coated with cofilin. However, the details of where cofilin binds and how changes in shape are propagated along an actin filament were not known. Furthermore, the findings of these previous studies were largely based on examining still images of actin filaments, which are unlike the constantly changing filaments of living cells. Ngo, Kodera et al. have now analyzed what happens when cofilin binds to and forms clusters along actin filaments using a recently developed imaging technique called high-speed atomic force microscopy. This technique can be used to directly visualize individual proteins in action. Consistent with previous findings, Ngo, Kodera et al. observed that filaments coated with cofilin are thicker than those filaments without cofilin; and that cofilin binding also substantially reduces the helical twist of the filament. Ngo, Kodera et al. also found that these changes in shape are propagated along the filament but in only one direction—towards the pointed-end. Moreover, cofilin clusters also only grew towards the pointed-end of the actin filament—and the filaments were often severed near, but not exactly at, the junctions between cofilin-coated and uncoated regions. Such one-directional changes in shape of the actin filaments presumably help to regulate how other actin binding proteins can interact with the filament and consequently regulate the roles of the filaments themselves. DOI:http://dx.doi.org/10.7554/eLife.04806.002
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Noriyuki Kodera
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Eisaku Katayama
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
19
|
A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat Commun 2014; 5:5573. [PMID: 25410769 PMCID: PMC4263135 DOI: 10.1038/ncomms6573] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/14/2014] [Indexed: 11/17/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging. Single-molecule localization microscopy depends on the use of photo-modulatable fluorescent probes; however, many cannot be used in live-cell studies due to poor cell permeability. Pan et al. present a strategy for constructing cell-permeable probes and use it to image actin filament dynamics and lysosomes.
Collapse
|
20
|
Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet 2014; 23:292-301. [PMID: 25052316 DOI: 10.1038/ejhg.2014.95] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 04/05/2014] [Accepted: 04/30/2014] [Indexed: 11/08/2022] Open
Abstract
Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode β- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity.
Collapse
|
21
|
Piorkowski G, Baronti C, de Lamballerie X, de Fabritus L, Bichaud L, Pastorino BA, Bessaud M. Development of generic Taqman PCR and RT-PCR assays for the detection of DNA and mRNA of β-actin-encoding sequences in a wide range of animal species. J Virol Methods 2014; 202:101-5. [DOI: 10.1016/j.jviromet.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
|
22
|
Stournaras C, Gravanis A, Margioris AN, Lang F. The actin cytoskeleton in rapid steroid hormone actions. Cytoskeleton (Hoboken) 2014; 71:285-93. [DOI: 10.1002/cm.21172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Christos Stournaras
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Achilles Gravanis
- Department of Pharmacology; University of Crete Medical School; Heraklion Greece
| | - Andrew N. Margioris
- Department of Clinical Chemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
23
|
Sooman L, Ekman S, Andersson C, Kultima HG, Isaksson A, Johansson F, Bergqvist M, Blomquist E, Lennartsson J, Gullbo J. Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines. Cancer Chemother Pharmacol 2013; 72:329-40. [PMID: 23736154 DOI: 10.1007/s00280-013-2197-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/18/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE The current treatment strategies for glioblastoma have limited health and survival benefits for the patients. A common obstacle in the treatment is chemoresistance. A possible strategy to evade this problem may be to combine chemotherapeutic drugs with agents inhibiting resistance mechanisms. The aim with this study was to identify molecular pathways influencing drug resistance in glioblastoma-derived cells and to evaluate the potential of pharmacological interference with these pathways to identify synergistic drug combinations. METHODS Global gene expressions and drug sensitivities to three chemotherapeutic drugs (imatinib, camptothecin and temozolomide) were measured in six human glioblastoma-derived cell lines. Gene expressions that correlated to drug sensitivity or resistance were identified and mapped to specific pathways. Selective inhibitors of these pathways were identified. The effects of six combinations of inhibitors and chemotherapeutic drugs were evaluated in glioblastoma-derived cell lines. Drug combinations with synergistic effects were also evaluated in non-cancerous epithelial cells. RESULTS Four drug combinations had synergistic effects in at least one of the tested glioblastoma-derived cell lines; camptothecin combined with gefitinib (epidermal growth factor receptor inhibitor) or NSC 23766 (ras-related C3 botulinum toxin substrate 1 inhibitor) and imatinib combined with DAPT (Notch signaling inhibitor) or NSC 23766. Of these, imatinib combined with DAPT or NSC 23766 did not have synergistic effects in non-cancerous epithelial cells. Two drug combinations had at least additive effects in one of the tested glioblastoma-derived cell lines; temozolomide combined with gefitinib or PF-573228 (focal adhesion kinase inhibitor). CONCLUSION Four synergistic and two at least additive drug combinations were identified in glioblastoma-derived cells. Pathways targeted by these drug combinations may serve as targets for future drug development with the potential to increase efficacy of currently used/evaluated chemotherapy.
Collapse
Affiliation(s)
- Linda Sooman
- Rudbeck Laboratory, Department of Radiation, Oncology and Radiation Science, Section of Oncology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vinculin and metavinculin: Oligomerization and interactions with F-actin. FEBS Lett 2013; 587:1220-9. [DOI: 10.1016/j.febslet.2013.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
|
25
|
Hoffman L, Farley MM, Waxham MN. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry 2013; 52:1198-207. [PMID: 23343535 DOI: 10.1021/bi3016586] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium-calmodulin-dependent protein kinase II (CaMKII) has been implicated in a wide variety of cellular processes, which include a critical regulatory role in actin cytoskeletal assembly. CaMKII is ubiquitous in cells, expressed as one of four isoforms termed α, β, γ, and δ. Characterization of the CaMKII-actin interaction has mainly focused on the β isoform, which has been shown to bundle actin filaments and sequester actin monomers in an activity-dependent manner. Much less is known about the interactions of other CaMKII isoforms with actin. In this work, isoform specific interactions of CaMKII with actin are described and reveal that the δ isoform of CaMKII bundles F-actin filaments like the β isoform while the γ isoform induces a novel layered structure in filaments. Using electron tomography, CaMKII holoenzymes are clearly identified in the complexes bridging the actin filaments, allowing direct visualization of the interactions between CaMKII isoforms and actin. In addition, we determined the isoform specificity of CaMKII-mediated inhibition of actin polymerization and discovered that all isoforms inhibit polymerization to varying degrees: β > γ ≈ δ > α (from most to least effective). Ca(2+)/CaM activation of all kinase isoforms produced a robust increase in actin polymerization that surpassed the rates of polymerization in the absence of kinase inhibition. These results indicate that diversity exists between the types of CaMKII-actin interactions mediated by the different isoforms and that the CaMKII isoform composition differentially impacts the formation and maintenance of the actin cytoskeleton.
Collapse
Affiliation(s)
- Laurel Hoffman
- The Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
26
|
Jurewicz E, Ostrowska Z, Jozwiak J, Redowicz MJ, Lesniak W, Moraczewska J, Filipek A. CacyBP/SIP as a novel modulator of the thin filament. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:761-6. [PMID: 23266554 DOI: 10.1016/j.bbamcr.2012.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/21/2023]
Abstract
The CacyBP/SIP protein interacts with several targets, including actin. Since the majority of actin filaments are associated with tropomyosin, in this work we characterized binding of CacyBP/SIP to the actin-tropomyosin complex and examined the effects of CacyBP/SIP on actin filament functions. By using reconstituted filaments composed of actin and AEDANS-labeled tropomyosin, we observed that binding of CacyBP/SIP caused an increase in tropomyosin fluorescence intensity indicating the occurrence of conformational changes within the filament. We also found that CacyBP/SIP bound directly to tropomyosin and that these proteins did not compete with each other for binding to actin. Electron microscopy showed that in the absence of tropomyosin CacyBP/SIP destabilized actin filaments, but tropomyosin reversed this effect. Actin-activated myosin S1 ATPase activity assays, performed using a colorimetric method, indicated that CacyBP/SIP reduced ATPase activity and that the presence of tropomyosin enhanced this inhibitory effect. Thus, our results suggest that CacyBP/SIP, through its interaction with both actin and tropomyosin, regulates the organization and functional properties of the thin filament.
Collapse
|
27
|
Müller M, Mazur AJ, Behrmann E, Diensthuber RP, Radke MB, Qu Z, Littwitz C, Raunser S, Schoenenberger CA, Manstein DJ, Mannherz HG. Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy. Cell Mol Life Sci 2012; 69:3457-79. [PMID: 22643837 PMCID: PMC11115188 DOI: 10.1007/s00018-012-1030-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
Abstract
Inherited cardiomyopathies are caused by point mutations in sarcomeric gene products, including α-cardiac muscle actin (ACTC1). We examined the biochemical and cell biological properties of the α-cardiac actin mutations Y166C and M305L identified in hypertrophic cardiomyopathy (HCM). Untagged wild-type (WT) cardiac actin, and the Y166C and M305L mutants were expressed by the baculovirus/Sf9-cell system and affinity purified by immobilized gelsolin G4-6. Their correct folding was verified by a number of assays. The mutant actins also displayed a disturbed intrinsic ATPase activity and an altered polymerization behavior in the presence of tropomyosin, gelsolin, and Arp2/3 complex. Both mutants stimulated the cardiac β-myosin ATPase to only 50 % of WT cardiac F-actin. Copolymers of WT and increasing amounts of the mutant actins led to a reduced stimulation of the myosin ATPase. Transfection of established cell lines revealed incorporation of EGFP- and hemagglutinin (HA)-tagged WT and both mutant actins into cytoplasmic stress fibers. Adenoviral vectors of HA-tagged WT and Y166C actin were successfully used to infect adult and neonatal rat cardiomyocytes (NRCs). The expressed HA-tagged actins were incorporated into the minus-ends of NRC thin filaments, demonstrating the ability to form hybrid thin filaments with endogenous actin. In NRCs, the Y166C mutant led after 72 h to a shortening of the sarcomere length when compared to NRCs infected with WT actin. Thus our data demonstrate that a mutant actin can be integrated into cardiomyocyte thin filaments and by its reduced mode of myosin interaction might be the basis for the initiation of HCM.
Collapse
Affiliation(s)
- Mirco Müller
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Antonina Joanna Mazur
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
- Present Address: Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Elmar Behrmann
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Ralph P. Diensthuber
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Michael B. Radke
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Zheng Qu
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christoph Littwitz
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, USA
| | - Stefan Raunser
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Cora-Ann Schoenenberger
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4046 Basel, Switzerland
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Gap junction proteins on the move: connexins, the cytoskeleton and migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:94-108. [PMID: 22613178 DOI: 10.1016/j.bbamem.2012.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 01/08/2023]
Abstract
Connexin43 (Cx43) has roles in cell-cell communication as well as channel independent roles in regulating motility and migration. Loss of function approaches to decrease Cx43 protein levels in neural cells result in reduced migration of neurons during cortical development in mice and impaired glioma tumor cell migration. In other cell types, correlations between Cx43 expression and cell morphology, adhesion, motility and migration have been noted. In this review we will discuss the common themes that have been revealed by a detailed comparison of the published results of neuronal cells with that of other cell types. In brief, these comparisons clearly show differences in the stability and directionality of protrusions, polarity of movement, and migration, depending on whether a) residual Cx43 levels remain after siRNA or shRNA knockdown, b) Cx43 protein levels are not detectable as in cells from Cx43(-/-) knockout mice or in cells that normally have no endogenous Cx43 expression, c) gain-of-function approaches are used to express Cx43 in cells that have no endogenous Cx43 and, d) Cx43 is over-expressed in cells that already have low endogenous Cx43 protein levels. What is clear from our comparisons is that Cx43 expression influences the adhesiveness of cells and the directionality of cellular processes. These observations are discussed in light of the ability of cells to rearrange their cytoskeleton and move in an organized manner. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
29
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|