1
|
Guo Z, Zhang H, Huang T, Liu C. CCN3/NOV inhibition attenuates oxidative stress-induced apoptosis of mouse neural stem/progenitor cells by blocking the activation of p38 MAPK: An in vitro study. Brain Res 2024; 1827:148756. [PMID: 38199307 DOI: 10.1016/j.brainres.2024.148756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Neural stem/progenitor cells (NSPCs) hold immense promise in clinical applications, yet the harsh conditions resulting from central nervous system (CNS) injuries, particularly oxidative stress, lead to the demise of both native and transplanted NSPCs. Cellular communication network factor 3 (CCN3) exhibits a protective effect against oxidative stress in various cell types. This study investigates the impact of CCN3 on NSPCs apoptosis induced by oxidative stress. To establish models of primary cultured mouse NSPCs under oxidative stress, we exposed them to 50 μM H2O2 for 4 h. Remarkably, pre-exposing CCN3 exacerbated the H2O2-induced decline in cell viability in a concentration-dependent manner. However, employing gene-targeted siRNA to inhibit CCN3 protected NSPCs against H2O2-induced cell death. Conversely, CCN3 replenishment reversed this protective effect, as evidenced by TUNEL staining, the ratio of Cleaved-caspase-3 to Pro-caspase-3, and Bcl-2/Bax. Further investigations revealed that CCN3 pretreatment increased the phosphorylation level of p38 MAPK, while silencing CCN3 diminished p38 MAPK activation. Ultimately, the impact of changes in CCN3 protein expression on H2O2-induced apoptosis was nullified using anisomycin (a p38 activator) and SB 203580 (a p38 inhibitor). Our findings suggest that CCN3 inhibition prevents H2O2-induced cell death in cultured mouse NSPCs via the p38 pathway. These discoveries may contribute to the development of strategies aimed at enhancing the survival of both endogenous and transplanted NSPCs following CNS oxidative stress insults.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tingqin Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chongxiao Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
The Role of Platelets in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158270. [PMID: 35955405 PMCID: PMC9368651 DOI: 10.3390/ijms23158270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is among the most common microvascular complications in patients with diabetes, and it currently accounts for the majority of end-stage kidney disease cases worldwide. The pathogenesis of DKD is complex and multifactorial, including systemic and intra-renal inflammatory and coagulation processes. Activated platelets play a pivotal role in inflammation, coagulation, and fibrosis. Mounting evidence shows that platelets play a role in the pathogenesis and progression of DKD. The potentially beneficial effects of antiplatelet agents in preventing progression of DKD has been studied in animal models and clinical trials. This review summarizes the current knowledge on the role of platelets in DKD, including the potential therapeutic effects of antiplatelet therapies.
Collapse
|
3
|
Wang J, Yang L, You J, Wen D, Yang B, Jiang C. Platelet-Derived Growth Factor Regulates the Biological Behavior of Oral Mucosal Fibroblasts by Inducing Cell Autophagy and Its Mechanism. J Inflamm Res 2021; 14:3405-3417. [PMID: 34305405 PMCID: PMC8297405 DOI: 10.2147/jir.s313910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Objective To explore the effect of platelet-derived growth factor (PDGF) on oral mucosal fibroblast autophagy and further elucidate the molecular mechanism by which PDGF-BB regulates the biological behavior of oral mucosal fibroblasts by inducing autophagy. Methods Primary oral mucosal fibroblasts were isolated and cultured by the tissue block and trypsin methods and identified by indirect immunofluorescence vimentin detection. We detected the autophagy marker Beclin-1 and fibrosis marker Col-I of the primary oral mucosal fibroblasts at different time points after stimulating the fibroblasts with different PDGF-BB concentrations by Western blotting and determined the best experimental concentration and stimulation time of PDGF-BB. Then, indirect immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction (PCR) were used to detect the effect of PDGF-BB on the expression of autophagy-related and fibrotic proteins before and after 3-methyladenine (3-MA) intervention. Additionally, the effect of 3-MA on the proliferation and migration of primary oral mucosal fibroblasts stimulated by PDGF-BB was detected by the MTT method and a scratch experiment. The effect of PDGF-BB on Beclin-1 and phosphatidylinositol-3 kinase class 3 (PI3KC3) interaction was detected by co-immunoprecipitation. Results The results demonstrated that PDGF-BB could induce autophagy of the oral mucosal fibroblasts, showing a certain time and dose correlation. It induced cell autophagy through Beclin-1 and PI3KC3 interaction to promote the proliferation, migration, conversion, and collagen synthesis of the fibroblasts. However, 3-MA inhibited the combination of Beclin-1 and PI3KC3 and weakened the fibroblasts' proliferation, migration, conversion, and collagen synthesis activities. Conclusion Overall, PDGF-BB induces autophagy through the Beclin-1 pathway to regulate the biological behavior of oral mucosal fibroblasts.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Lina Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Jialing You
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Dada Wen
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Bo Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China
| |
Collapse
|
4
|
Immunopathogenesis of ANCA-Associated Vasculitis. Int J Mol Sci 2020; 21:ijms21197319. [PMID: 33023023 PMCID: PMC7584042 DOI: 10.3390/ijms21197319] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is an autoimmune disorder which affects small- and, to a lesser degree, medium-sized vessels. ANCA-associated vasculitis encompasses three disease phenotypes: granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). This classification is largely based on clinical presentations and has several limitations. Recent research provided evidence that genetic background, risk of relapse, prognosis, and co-morbidities are more closely related to the ANCA serotype, proteinase 3 (PR3)-ANCA and myeloperoxidase (MPO)-ANCA, compared to the disease phenotypes GPA or MPA. This finding has been extended to the investigation of biomarkers predicting disease activity, which again more closely relate to the ANCA serotype. Discoveries related to the immunopathogenesis translated into clinical practice as targeted therapies are on the rise. This review will summarize the current understanding of the immunopathogenesis of ANCA-associated vasculitis and the interplay between ANCA serotype and proposed disease biomarkers and illustrate how the extending knowledge of the immunopathogenesis will likely translate into development of a personalized medicine approach in the management of ANCA-associated vasculitis.
Collapse
|
5
|
Kamal A, Salman B, Razak NHA, Samsudin ABR. A Comparative Clinical Study between Concentrated Growth Factor and Low-Level Laser Therapy in the Management of Dry Socket. Eur J Dent 2020; 14:613-620. [PMID: 32777838 PMCID: PMC7535966 DOI: 10.1055/s-0040-1714765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE A dry socket is a well-recognized complication of wound healing following tooth extraction. Its etiology is poorly understood and commonly occur among healthy patients. As such, management strategies for dry socket has always been empirical rather than scientific with varying outcome. The aim of this study is to investigate the efficacy of concentrated growth factor (CGF) and low-level laser therapy (LLLT) and compared them to the conventional treatment in the management of dry socket. MATERIALS AND METHODS Sixty patients with one dry socket each, at University Dental Hospital Sharjah, were divided into three treatment groups based on their choice. In group I (n = 30), conventional treatment comprising of gentle socket curettage and saline irrigation was done. Group II (n = 15) dry sockets were treated with CGF and group III (n = 15) sockets were lased with LLLT. All dry socket patients were seen at day 0 for treatment and subsequently followed-up at 4, 7, 14, and 21 days. Pain score, perisocket inflammation, perisocket tenderness, and amount of granulation tissue formation were noted. STATISTICAL ANALYSIS Data were analyzed as mean values for each treatment group. Comparisons were made for statistical analysis within the group and among the three groups to rank the efficacy of treatment using one-way analysis of variance (ANOVA). Statistically significant difference is kept at p < 0.05. RESULTS Conventional treatment group I took more than 7 days to match the healing phase of group II CGF treated socket and group III LLLT irradiated socket (p = 0.001). When healing rate between CGF and LLLT are compared, LLLT group III showed a delay of 4 days compared with CGF in granulation tissue formation and pain control. CONCLUSION CGF treated socket was superior to LLLT in its ability to generate 75% granulation tissue and eliminate pain symptom by day 7 (p = 0.001).
Collapse
Affiliation(s)
- Aqsa Kamal
- College of Dental Medicine, University of Sharjah, UAE.,School of Dental Sciences, Universiti Sains Malaysia, Malaysia
| | | | | | | |
Collapse
|
6
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
7
|
Affinity binding-mediated fluorometric protein assay based on the use of target-triggered DNA assembling probes and aptamers labelled with upconversion nanoparticles: application to the determination of platelet derived growth factor-BB. Mikrochim Acta 2019; 187:9. [PMID: 31797061 DOI: 10.1007/s00604-019-4024-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
The target-triggered DNA assembling probe is presented for highly selective protein detection. Target-triggered DNA assembling is used in an amplification strategy based on affinity binding for identification and determination of proteins in general. Specifically, it was applied to the platelet derived growth factor-BB (PDGF-BB). A hairpin DNA (H-DNA) probe was designed containing (a) an aptamer domain for protein recognition and (b) a blocked DNAzyme domain for DNAzyme cleavage. An assistant DNA (A-DNA) probe containing aptamer and complementary domains was also employed to recognize protein and to induce DNA assembly. Once H-DNA and A-DNA recognize the same protein, H-DNA and A-DNA are in close proximity to each other. This induces DNA assembling for protein-triggered complex (Protein-Complex) with free DNAzyme domains. The free DNAzymes trigger the circular cleavage of molecular beacons for amplified signals. The assay is performed by fluorometry at an excitation wavelength of 980 nm and by collecting fluorescence at 545 nm. The platelet derived growth factor-BB (PDGF-BB) was accurately identified and selectively determined by this assay with a 22 pM detection limit (using the 3σ criterion). The responses for PDGF-BB is nearly 6-fold higher than for PDGF-AB, and 16-fold higher than PDGF-AA. This upconversion assay avoids any interference by the autofluorescence of biological fluids. Graphical abstractSchematic representation of the principle of the target-triggered DNA assembling probes mediated amplification strategy based on affinity binding for PDGF-BB. The UCNP probe is used for the quantitation of PDGF-BB with high selectivity.
Collapse
|
8
|
Lazareth H, Henique C, Lenoir O, Puelles VG, Flamant M, Bollée G, Fligny C, Camus M, Guyonnet L, Millien C, Gaillard F, Chipont A, Robin B, Fabrega S, Dhaun N, Camerer E, Kretz O, Grahammer F, Braun F, Huber TB, Nochy D, Mandet C, Bruneval P, Mesnard L, Thervet E, Karras A, Le Naour F, Rubinstein E, Boucheix C, Alexandrou A, Moeller MJ, Bouzigues C, Tharaux PL. The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nat Commun 2019; 10:3303. [PMID: 31341160 PMCID: PMC6656772 DOI: 10.1038/s41467-019-11013-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 06/07/2019] [Indexed: 01/02/2023] Open
Abstract
The mechanisms driving the development of extracapillary lesions in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN) remain poorly understood. A key question is how parietal epithelial cells (PECs) invade glomerular capillaries, thereby promoting injury and kidney failure. Here we show that expression of the tetraspanin CD9 increases markedly in PECs in mouse models of CGN and FSGS, and in kidneys from individuals diagnosed with these diseases. Cd9 gene targeting in PECs prevents glomerular damage in CGN and FSGS mouse models. Mechanistically, CD9 deficiency prevents the oriented migration of PECs into the glomerular tuft and their acquisition of CD44 and β1 integrin expression. These findings highlight a critical role for de novo expression of CD9 as a common pathogenic switch driving the PEC phenotype in CGN and FSGS, while offering a potential therapeutic avenue to treat these conditions. In both focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN), kidney injury is characterised by the invasion of glomerular tufts by parietal epithelial cells (PECs). Here Lazareth et al. identify the tetraspanin CD9 as a key regulator of PEC migration, and find its upregulation in FSGS and CGN contributes to kidney injury in both diseases.
Collapse
Affiliation(s)
- Hélène Lazareth
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France.,Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Carole Henique
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France. .,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France. .,Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe 21, Université Paris Est Créteil, Créteil, F-94010, France.
| | - Olivia Lenoir
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Victor G Puelles
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany.,Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Department of Nephrology and Center for Inflammatory Diseases, Monash University, Melbourne, VIC 3168, Australia
| | - Martin Flamant
- Xavier Bichat University Hospital, Université de Paris, Paris, F-75018, France
| | - Guillaume Bollée
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Cécile Fligny
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Marine Camus
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Lea Guyonnet
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, L-4354, Luxembourg
| | - Corinne Millien
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - François Gaillard
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Anna Chipont
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Blaise Robin
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Sylvie Fabrega
- Université de Paris, Institut Imagine, Plateforme Vecteurs Viraux et Transfert de Gènes, IFR94, Hôpital Necker Enfants-Malades, Paris, F-75015, France
| | - Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, Scotland, UK
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Florian Grahammer
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Fabian Braun
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Tobias B Huber
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Dominique Nochy
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Chantal Mandet
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Patrick Bruneval
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Laurent Mesnard
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Unité Mixte de Recherche S1155, Pierre and Marie Curie University, Paris, F-75020, France
| | - Eric Thervet
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France
| | - Alexandre Karras
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France
| | | | - Eric Rubinstein
- Inserm U935, Université Paris-Sud, Villejuif, F-94800, France
| | - Claude Boucheix
- Inserm U935, Université Paris-Sud, Villejuif, F-94800, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Cédric Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Pierre-Louis Tharaux
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France. .,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France. .,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France.
| |
Collapse
|
9
|
Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy. Cell Death Dis 2018; 9:776. [PMID: 29991677 PMCID: PMC6039566 DOI: 10.1038/s41419-018-0792-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Duchenne muscle dystrophy (DMD) is a genetic disorder characterized by progressive skeletal muscle weakness. Dystrophin deficiency induces instability of the sarcolemma during muscle contraction that leads to muscle necrosis and replacement of muscle by fibro-adipose tissue. Several therapies have been developed to counteract the fibrotic process. We report the effects of nintedanib, a tyrosine kinase inhibitor, in the mdx murine model of DMD. Nintedanib reduced proliferation and migration of human fibroblasts in vitro and decreased the expression of fibrotic genes such as COL1A1, COL3A1, FN1, TGFB1, and PDGFA. We treated seven mdx mice with 60 mg/kg/day nintedanib for 1 month. Electrophysiological studies showed an increase in the amplitude of the motor action potentials and an improvement of the morphology of motor unit potentials in the animals treated. Histological studies demonstrated a significant reduction of the fibrotic areas present in the skeletal muscles. Analysis of mRNA expression from muscles of treated mice showed a reduction in Col1a1, Col3a1, Tgfb1, and Pdgfa. Western blot showed a reduction in the expression of collagen I in skeletal muscles. In conclusion, nintedanib reduced the fibrotic process in a murine model of dystrophinopathy after 1 month of treatment, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
|
10
|
Chen JY, Li CF, Chu PY, Lai YS, Chen CH, Jiang SS, Hou MF, Hung WC. Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1. Oncotarget 2018; 7:27689-710. [PMID: 27029061 PMCID: PMC5053681 DOI: 10.18632/oncotarget.8381] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Alterations of histone methylation dynamically regulated by methyltransferases and demethylases are frequently found in human cancers. Here, we showed that expression of lysine demethylase 2A (KDM2A) is markedly increased in human breast cancer and its overexpression is associated with tumor progression and poor prognosis. Knockdown of KDM2A in breast cancer cells reduced proliferation but not viability. Gene set enrichment analysis revealed that inhibition of KDM2A down-regulates angiogenic genes with concurrent reduction of Jagged1 (JAG1), NOTCH1 and HEY1 in the NOTCH signaling. Chromatin immunoprecipitation- quantitative polymerase chain reaction (ChIP-qPCR) demonstrated the binding of KDM2A to the JAG1 promoter and the increase of methylation of Lys-36 of histone H3 (H3K36) in KDM2A-depleted MDA-MB-231 cells. Tumorsphere formation was significantly reduced in KDM2A-depleted cells which could be reversed by ectopic expression of JAG1. A selective KDM2A inhibitor daminozide also decreased the number of tumorsphere and the number of CD24-/CD44hi cells. In addition, daminozide acted synergistically with cisplatin in cell killing. We identified SOX2 as a direct transcriptional target of KDM2A to promote cancer stemness. Depletion of KDM2A in MDA-MB-231 cells attenuated NOTCH activation and tube formation in co-cultured endothelial cells. Two pro-angiogenic factors JAG1 and PDGFA are key mediators for KDM2A to enhance angiogenesis. Finally, inhibition of KDM2A significantly decreased tumor growth and angiogenesis in orthotopic animal experiments. Collectively, we conclude that KDM2A functions as an oncogene in breast cancer by upregulating JAG1 to promote stemness, chemoresistance and angiogenesis.
Collapse
Affiliation(s)
- Jing-Yi Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, Tainan 710, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.,Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 2017; 42:44-53. [PMID: 28951244 DOI: 10.1016/j.cellsig.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, UT Health at San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health at San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
12
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
13
|
Lu J, Shi J, Gui B, Yao G, Wang L, Ou Y, Zhu D, Ma L, Ge H, Fu R. Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts. Eur J Pharmacol 2016; 789:222-228. [DOI: 10.1016/j.ejphar.2016.06.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022]
|
14
|
Abstract
Peritoneal dialysis (PD) is a modality for treatment of patients with end-stage renal disease (ESRD) that depends on the structural and functional integrity of the peritoneal membrane. However, long-term PD can lead to morphological and functional changes in the peritoneum; in particular, peritoneal fibrosis has become one of the most common complications that ultimately results in ultrafiltration failure (UFF) and discontinuation of PD. Several factors and mechanisms such as inflammation and overproduction of transforming growth factor-β1 have been implicated in the development of peritoneal fibrosis, but there is no effective therapy to prevent or delay this process. Recent studies have shown that activation of multiple receptor tyrosine kinases (RTKs) is associated with the development and progression of tissue fibrosis in various organs, and there are also reports indicating the involvement of some RTKs in peritoneal fibrosis. This review will describe the role and mechanisms of RTKs in peritoneal fibrosis and discuss the possibility of using them as therapeutic targets for prevention and treatment of this complication.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Petrosyan A, Zanusso I, Lavarreda-Pearce M, Leslie S, Sedrakyan S, De Filippo RE, Orlando G, Da Sacco S, Perin L. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:183-92. [PMID: 26653996 DOI: 10.1089/ten.teb.2015.0368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past years, extracellular matrix (ECM) obtained from whole organ decellularization has been investigated as a platform for organ engineering. The ECM is composed of fibrous and nonfibrous molecules providing structural and biochemical support to the surrounding cells. Multiple decellularization techniques, including ours, have been optimized to maintain the composition, microstructure, and biomechanical properties of the native renal ECM that are difficult to obtain during the generation of synthetic substrates. There are evidences suggesting that in vivo implanted renal ECM has the capacity to induce formation of vasculature-like structures, but long-term in vivo transplantation and filtration activity by these tissue-engineered constructs have not been investigated or reported. Therefore, even if the process of renal decellularization is possible, the repopulation of the renal matrix with functional renal cell types is still very challenging. This review aims to summarize the current reports on kidney tissue engineering with the use of decellularized matrices and addresses the challenges in creating functional kidney units. Finally, this review discusses how future studies investigating cell-matrix interaction may aid the generation of a functional renal unit that would be transplantable into patients one day.
Collapse
Affiliation(s)
- Astgik Petrosyan
- 1 Department of Development, Stem Cells and Regenerative Medicine, University of Southern California , Los Angeles, California
| | - Ilenia Zanusso
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | | | - Scott Leslie
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Sargis Sedrakyan
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Roger E De Filippo
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Giuseppe Orlando
- 3 Department of General Surgery, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - Stefano Da Sacco
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Laura Perin
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| |
Collapse
|
16
|
Liu L, Zhang J, Zhu Y, Xiao X, Peng X, Yang G, Zang J, Liu S, Li T. Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 307:H1277-87. [PMID: 25172895 DOI: 10.1152/ajpheart.00006.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that local application of platelet-derived growth factor (PDGF) can be used for the treatment of acute and chronic wounds. We investigated if systemic application of PDGF has a protective effect on acute hemorrhagic shock in rats in the present study. Using hemorrhagic shock rats and isolated superior mesenteric arteries, the effects of PDGF-BB on hemodynamics, animal survival, and vascular reactivity as well as the roles of the gap junction proteins connexin (Cx)40 and Cx43, PKC, and Rho kinase were observed. PDGF-BB (1–15 μg/kg iv) significantly improved the hemodynamics and blood perfusion to vital organs (liver and kidney) as well as vascular reactivity and improved the animal survival in hemorrhagic shock rats. PDGF recovering shock-induced vascular hyporeactivity depended on the integrity of the endothelium and myoendothelial gap junction. Cx43 antisense oligodeoxynucleotide abolished these improving effects of PDGF, whereas Cx40 oligodeoxynucleotide did not. Further study indicated that PDGF increased the activity of Rho kinase and PKC as well as vascular Ca2+ sensitivity, whereas it did not interfere with the intracellular Ca2+ concentration in hypoxia-treated vascular smooth muscle cells. In conclusion, systemic application of PDGF-BB may exert beneficial effects on hemorrhagic shock, which are closely related to the improvement of vascular reactivity and hemodynamics. The improvement of PDGF-BB in vascular reactivity is vascular endothelium and myoendothelial gap junction dependent. Cx43, Rho kinase, and PKC play very important role in this process. These findings suggest that PDGF may be a potential measure to treat acute clinical critical diseases such as severe trauma, shock, and sepsis.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Angiogenesis Inducing Agents/therapeutic use
- Animals
- Becaplermin
- Calcium Signaling
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/genetics
- Connexins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Hemodynamics/drug effects
- Liver Circulation
- Mesenteric Artery, Superior/cytology
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/therapeutic use
- Rats
- Rats, Wistar
- Renal Circulation
- Shock, Hemorrhagic/drug therapy
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/physiopathology
- rho-Associated Kinases/metabolism
- Gap Junction alpha-5 Protein
Collapse
|
17
|
Abstract
Renal fibrosis is the hallmark of chronic kidney disease progression and is characterized by an exaggerated wound-healing process with the production of renal scar tissue. It comprises both the glomerular and the tubulointerstitial compartments. Among the factors that contribute to kidney fibrosis, the members of the platelet-derived growth factor (PDGF) family are among the best characterized ones. They appear to be the key factors in driving renal fibrosis, independent of the underlying kidney disease. The PDGF family consists of four isoforms (PDGF-A, -B, -C, and -D) and two receptor chains (PDGFR-α and -β), which are constitutively or inducibly expressed in most renal cells. These components have an irreplaceable role in kidney development by recruitment of mesenchymal cells to the glomerular and tubulointerstitial compartments. They further regulate multiple pathophysiologic processes including cell proliferation, cell migration, expression and accumulation of extracellular matrix, production and secretion of pro- and anti-inflammatory mediators, vascular permeability, and hemodynamics. This review provides a brief update on the role of different PDGF isoforms in the development of glomerulosclerosis and tubulointerstitial fibrosis, newly identified endogeneous PDGF antagonists, and resulting potential therapies.
Collapse
|
18
|
Bera A, Das F, Ghosh-Choudhury N, Li X, Pal S, Gorin Y, Kasinath BS, Abboud HE, Ghosh Choudhury G. A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. Am J Physiol Cell Physiol 2014; 306:C1089-100. [PMID: 24740537 DOI: 10.1152/ajpcell.00387.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor BB and its receptor (PDGFRβ) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Pathology, University of Texas Health Science Center, San Antonio, Texas;
| | - Xiaonan Li
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Sanjay Pal
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Balakuntalam S Kasinath
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Hanna E Abboud
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Goutam Ghosh Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
19
|
Wang Y, Liu D, Zhao H, Jiang H, Luo C, Wang M, Yin H. Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF-β1/Smad pathways. Mol Cell Endocrinol 2014; 382:979-88. [PMID: 24309234 DOI: 10.1016/j.mce.2013.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/29/2013] [Accepted: 11/25/2013] [Indexed: 12/18/2022]
Abstract
CPS-2, a Cordyceps sinensis polysaccharide, has been demonstrated to have significant therapeutic activity against chronic renal failure. However, little is known about the underlying molecular mechanism. In this study, we found that CPS-2 could inhibit PDGF-BB-induced human mesangial cells (HMCs) proliferation in a dose-dependent manner. In addition, CPS-2 notably suppressed the expression of α-SMA, PDGF receptor-beta (PDGFRβ), TGF-β1, and Smad 3 in PDGF-BB-treated HMCs. Furthermore, PDGF-BB-stimulated ERK activation was significantly inhibited by CPS-2, and this inhibitory effect was synergistically potentiated by U0126. CPS-2 could prevent the PDGFRβ promoter activity induced by PDGF-BB, and return expression of PDGFRβ, TGF-β1, and TGFβRI to normal levels while cells were under PDGFRβ and ERK silencing conditions and transfected with DN-ERK. Taken together, these findings demonstrated that CPS-2 reduces PDGF-BB-induced cell proliferation through the PDGF/ERK and TGF-β1/Smad pathways, and it may have bi-directional regulatory effects on the PDGF/ERK cellular signaling pathway.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Dan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Huan Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Huixing Jiang
- First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing Traditional Chinese Medicine Hospital, Nanjing 210010, Jiangsu, People's Republic of China
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China.
| | - Hongping Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Eisel F, Boosen M, Beck M, Heide H, Wittig I, Beck KF, Pfeilschifter J. Platelet-derived growth factor triggers PKA-mediated signalling by a redox-dependent mechanism in rat renal mesangial cells. Biochem Pharmacol 2012; 85:101-8. [PMID: 23103565 DOI: 10.1016/j.bcp.2012.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Inflammatory glomerular kidney diseases are often accompanied with a massive production of reactive oxygen species (ROS) that affect the function of the glomerular filtration barrier and contribute to mesangiolysis via the induction of cell death in mesangial cells. Intriguingly, ROS also trigger fine-tuned signalling processes that affect gene expression and cell proliferation or migration. To define such redox-driven signalling devices, a proteomics approach was performed to identify the formation of protein complexes induced by ROS. To this end, protein lysates of human podocytes were treated with or without hydrogen peroxide (250 μM). Thereafter cell lysates were subjected to diagonal 2D gel electrophoresis and putative redox-affected proteins were analysed by MS/MS analysis. Among others, the regulatory subunit of protein kinase A (PKA) could be identified that forms homodimers under oxidative conditions. To evaluate whether ROS dependent dimerization of PKA also occurs in a more physiological setting, rat mesangial cells were treated with platelet-derived growth factor-BB (PDGF-BB) to induce ROS formation. This regimen resulted in a redox dependent dimerization of the R-subunits of PKA. To demonstrate whether PDGF-BB induced ROS formation affects PKA dependent pathways, the effects of PDGF-BB on phosphorylation of serine 157 of vasodilator stimulated protein (VASP) a classical target of PKA were analysed. Interestingly PDGF-BB induced VASP phosphorylation in a ROS dependent manner but independent of changes in cAMP levels. Taken together, we demonstrate a redox-mediated activation of PKA by PDGF-BB thus highlighting a physiological role of ROS as regulator of PKA activity in rat mesangial cells.
Collapse
Affiliation(s)
- Florian Eisel
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|