1
|
Sreekumar S, Gangaraj KP, Kiran MS. Modulation of angiogenic switch in reprogramming browning and lipid metabolism in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159423. [PMID: 37956709 DOI: 10.1016/j.bbalip.2023.159423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Thermogenic activation via trans-and de novo browning of white adipocytes is a promising strategy to accelerate lipid metabolism for regulating obesity-related disorders. In this study, we investigated the intricate interplay between angiogenic regulation and browning in white adipocytes using the bioactive compound, resveratrol (Rsv). Rsv has previously been documented for its regulatory influence on the trans and de novo browning of white adipocytes. Our findings revealed that concurrent activation of angiogenesis is prerequisite for inducing browning within the microenvironment of white adipocytes when exposed to browning activators. Additionally, we observed a significant browning effect on white adipocytes when the local adipose tissue environment was prompted to undergo angiogenesis, notably facilitated by a proangiogenic molecule known as Vascular endothelial growth factor (VEGF). Intriguingly, this effect was reversed when angiogenesis was inhibited by treatment with the antiangiogenic agent thalidomide. Furthermore, the study revealed the role of VEGF in paracrine activation of white adipocytes resulting in the induction of browning in both 3T3-L1 cell lines and primary mouse white adipocytes. The cross-talk between angiogenesis and browning was found to be initiated via the transcriptional activation of Estrogen receptor α (ERα) triggering the VEGF/VEGFR2 signaling pathway leading to browning and a reconfiguration of lipid metabolism within adipocytes. In conclusion, this study sheds light on the intricate cross-talk between angiogenesis and browning of white adipocytes. Notably, the findings underscore the reciprocal relationship between these processes, wherein inhibition of one process exerts discernible effects on the other.
Collapse
Affiliation(s)
- Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Choudhary P, Ramalingam B, Das SK. Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing. Int J Biol Macromol 2023; 246:125347. [PMID: 37336371 DOI: 10.1016/j.ijbiomac.2023.125347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based antibacterial wound dressing would be a boon to the existing dressing as the moist environment will maintain the cooling temperate and proper exchange of atmosphere around the wound. In the present study, the multifunctional graphene with silver and ε-Poly-l-lysine reinforced into the chitosan matrix (CGAPL) was prepared as a nanobiocomposite wound dressing. The contact angle measurement depicted the hydrophilic property of CGAPL nanobiocomposite dressing (water contact angle 42°), while the mechanical property was 78.9 MPa. The antibacterial and cell infiltration study showed the antimicrobial property of CGAPL nanobiocomposite wound dressing. It also demonstrated no cytotoxicity to the L929 fibroblast cells. Chorioallantoic Membrane (CAM) assay showed the pro-angiogenic potential of CGAPL nanobiocomposite wound dressing. In-vitro scratch wound assay confirmed the migration of cells and increased cell adhesion and proliferation within 18 h of culture on the surface of CGAPL nanobiocomposite dressing. Later, the in-vivo study in the Wistar rat model showed that CGAPL nanobiocomposite dressing significantly enhanced the wound healing process as compared to the commercially available wound dressing Tegaderm (p-value <0.01) and Fibroheal@Ag (p-value <0.005) and obtained complete wound closure in 14 days. Histology study further confirmed the complete healing process, re-epithelization, and thick epidermis tissue formation. The proposed CGAPL nanobiocomposite wound dressing thus offers a novel wound dressing material with an efficient and faster wound healing property.
Collapse
Affiliation(s)
- Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Department of Civil Engineering, Anna University, Chennai 600020, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.
| |
Collapse
|
3
|
Zhao X, Xie Z, Rao N, Zhang S, Zhang Y. Effect of dermatopontin on osteogenic differentiation of periodontal ligament stem cells. Gene 2023; 858:147185. [PMID: 36632910 DOI: 10.1016/j.gene.2023.147185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Human periodontal ligament stem cells (hPDLSCs) are promising seed cells for oral bone tissue engineering. Dermatopontin (DPT) is a small-molecule protein recognized as a non-collagenous component of the extracellular matrix and is associated with a variety of biological processes. In this study, we first determined that DPT was elevated during the osteogenic differentiation of hPDLSCs. HPDLSCs interfering with DPT expression were established by lentiviral infection. It was found that the proliferation and osteogenic differentiation ability of hPDLSCs were inhibited after interfering DPT with lentivirus. Exogenous recombinant DPT treatment could not alter the proliferation of hPDLSCs. Coincidentally, exogenous DPT can only enhance the osteogenic differentiation of hPDLSCs in the control lentivirus group, but had no significant effect on the DPT interference group. This study expands the understanding of DPT function and implicates DPT as an important target for enhancing osteogenic differentiation of hPDLSCs.
Collapse
Affiliation(s)
- Xuechun Zhao
- Department of Oral Implantology, School and Hospital of Stomatology, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Stomatology, Kunming, PR China
| | - Zhigang Xie
- Department of Oral Implantology, School and Hospital of Stomatology, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Stomatology, Kunming, PR China
| | - Nanquan Rao
- Department of Oral Implantology, School and Hospital of Stomatology, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Stomatology, Kunming, PR China
| | - Shu Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Stomatology, Kunming, PR China
| | - Yunpeng Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Stomatology, Kunming, PR China.
| |
Collapse
|
4
|
Yang L, Liu X, Huang X, Li N, Zhang L, Yan H, Hou X, Wang L, Wang L. Integrated Proteotranscriptomics Reveals Differences in Molecular Immunity between Min and Large White Pig Breeds. BIOLOGY 2022; 11:biology11121708. [PMID: 36552219 PMCID: PMC9775064 DOI: 10.3390/biology11121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Long-term selection or evolution is an important factor governing the development of disease resistance in pigs. To better clarify the molecular mechanisms underlying different levels of disease resistance, we used transcriptomics and proteomics analysis to characterize differences in the immunities between six resistant (Min pig) and six susceptible (Large White, LW) pigs which were raised in the same environment. A total of 135 proteins and 791 genes were identified as being differentially expressed between the Large White and Min pig groups. Protein expression clustering and functional analysis revealed that proteins related to immune system process, humoral immune response, the B cell receptor signaling pathway, lymphocyte-mediated immunity, and innate immune responses were more highly expressed in Min pigs. Transcriptome gene set enrichment analysis was used to reveal that pathways of cell adhesion molecules and antigen processing and presentation are significantly enriched in Min pigs. Integrated proteomics and transcriptomics data analysis identified 16 genes that are differentially expressed at both the mRNA and protein levels. In addition, 13 out of these 16 genes were related to the quantitative trait loci of immune diseases, including neural EGFL-like 2 (NELL2) and lactate dehydrogenase B (LDHB), which are involved in innate immunity. Correlation analysis between the genes/proteins and cytokines shows upregulated proteins in LW pigs in association with immunosuppressive/pro-inflammatory cytokines, such as interleukin (IL) 10, IL6, and tumor necrosis factor alpha. This was further validated using parallel reaction monitoring analysis. In summary, we discovered several potential candidate pathways and key genes/proteins involved in determining differences in disease resistance between the two studied pig breeds, which could provide new insights into the breeding of pigs for disease resistance.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Huang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030800, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Longchao Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hua Yan
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| | - Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| |
Collapse
|
5
|
Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms231911928. [PMID: 36233230 PMCID: PMC9570000 DOI: 10.3390/ijms231911928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multi-potent cell populations and are capable of maintaining bone and body homeostasis. The stemness and potential therapeutic effect of BMSCs have been explored extensively in recent years. However, diverse cell surface antigens and complex gene expression of BMSCs have indicated that BMSCs represent heterogeneous populations, and the natural characteristics of BMSCs make it difficult to identify the specific subpopulations in pathological processes which are often obscured by bulk analysis of the total BMSCs. Meanwhile, the therapeutic effect of total BMSCs is often less effective partly due to their heterogeneity. Therefore, understanding the functional heterogeneity of the BMSC subpopulations under different physiological and pathological conditions could have major ramifications for global health. Here, we summarize the recent progress of functional heterogeneity of BMSC subpopulations in physiology and pathology. Targeting tissue-resident single BMSC subpopulation offers a potentially innovative therapeutic strategy and improves BMSC effectiveness in clinical application.
Collapse
|
6
|
Dermatopontin Influences the Development of Obesity-Associated Colon Cancer by Changes in the Expression of Extracellular Matrix Proteins. Int J Mol Sci 2022; 23:ijms23169222. [PMID: 36012487 PMCID: PMC9408942 DOI: 10.3390/ijms23169222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a case-control study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased (p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05) by inflammatory factors (LPS, TNF-α and TGF-β), whereas the anti-inflammatory IL-4 decreased (p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the colon together with the tendency towards increased levels in visceral AT in patients with CC and its influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC.
Collapse
|
7
|
Indrakumar J, Balan P, Murali P, Solaimuthu A, Vijayan AN, Korrapati PS. Applications of molybdenum oxide nanoparticles impregnated collagen scaffolds in wound therapeutics. J Trace Elem Med Biol 2022; 72:126983. [PMID: 35537228 DOI: 10.1016/j.jtemb.2022.126983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The highly complex pathophysiology of the wound micro-environment demands the development of a multi-faceted system which would enhance the wound healing cascade. Incorporation of nanotechnology in wound therapeutics has opened up new avenues to tourment the diseased condition. Amongst the various types of nanoparticles molybdenum oxide nanoparticles posses various inherent properties that makes it a versatile material to be used in healing. Incorporation of Molybdenum nanoparticles into collagen scaffolds would provide a synergistic and sequential healing process ensuring the formation of a fully functional tissue. MATERIALS AND METHODS The physico-chemical characterization of the synthesized materials were done using SEM and FT-IR techniques. The bicompatibility and cell proliferation were tested using HaCaT cell lines. Pro-angiogenic ability of the scaffold was tested using CAM assay and Chick aortic arch assay. Finally the in-vivo wound healing ability of the material was tested by creating wound of about 6 cm2 on the dorsal side of Wistar rats and observed for about 21 days. RESULTS The characterization of the scaffold revealed the presence MoO3 nanoparticles and their structural integrity within the scaffold. The synthesized MoO3-collagen nanocomposite was found to be biocompatible and hemocompatible. The in-vitro studies demonstrated that the MoO3-collagen scaffold significantly increased the cell adhesion and migration to nearly 2 fold. The MoO3 embedded collagen sheets synergistically favoured neovascularization and re-epithelization,which would potentially enhance therapeutic efficiency of the scaffold. The nanocomposite also encouraged results in in-vivo analysis, the Wistar rats treated with MoO3-collagen scaffolds showed complete healing in about 15 days. CONCLUSION The fabricated MoO3-collagen scaffold was found to play an important role in all major events of wound healing such as adhesion, migration, proliferation and angiogenesis. The in-vivo healing assay also proved that the healing rate of animals treated with the samples was comparatively faster. Further research using various trace elements would open up promising avenues in healing therapeutics.
Collapse
Affiliation(s)
- Janani Indrakumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Poornima Balan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Padmaja Murali
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | | | - Ane Nishitha Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India.
| |
Collapse
|
8
|
Rabaglino MB, Wakabayashi M, Pearson JT, Jensen LJ. Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice. Mech Ageing Dev 2021; 200:111594. [PMID: 34756926 DOI: 10.1016/j.mad.2021.111594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated with hypertension and brain blood flow dysregulation, which are major risk factors for cardiovascular and neurodegenerative diseases. Structural remodeling, endothelial dysfunction, or hypercontractility of resistance vessels may cause increased total peripheral resistance and hypertension. Recent studies showed that G protein- and RhoA/Rho-kinase pathways are involved in increased mean arterial pressure (MAP) and arterial tone in middle-aged mice. We aimed to characterize the age-dependent changes in the vascular proteome in normal laboratory mice using mass spectrometry and bioinformatics analyses on middle cerebral arteries and mesenteric resistance arteries from young (3 months) vs. middle-aged (14 months) mice. In total, 31 proteins were significantly affected by age whereas 172 proteins were differentially expressed by vessel type. Hierarchical clustering revealed that 207 proteins were significantly changed or clustered by age. Vitamin B6 pathway, Biosynthesis of antibiotics, Regulation of actin cytoskeleton and Endocytosis were the top enriched KEGG pathways by age. Several proteins in the RhoA/Rho-kinase pathway changed in a manner consistent with hypertension and dysregulation of cerebral perfusion. Although aging had a less profound effect than vessel type on the resistance artery proteome, regulation of actin cytoskeleton, including the RhoA/Rho-kinase pathway, is an important target for age-dependent hypertension.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Dept. of Applied Mathematics and Computer Science, Danish Technical University, Denmark
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - James Todd Pearson
- Dept. of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Lars Jørn Jensen
- Dept. of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Zhu D, Gao J, Tang C, Xu Z, Sun T. Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People. Int J Stem Cells 2021; 15:173-182. [PMID: 34711696 PMCID: PMC9148839 DOI: 10.15283/ijsc21042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.
Collapse
Affiliation(s)
- Dezhou Zhu
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengxuan Tang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Xu
- Department of Outpatient, The First Retired Cadre Sanitarium of Beijing Garrison in Fengtai District, Beijing, China.,School of Clinical Medicine, The Second Military Medical University, Shanghai, China
| | - Tiansheng Sun
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Huang H, Hao Z, Long L, Yin Z, Wu C, Zhou X, Zhang B. Dermatopontin as a potential pathogenic factor in endometrial cancer. Oncol Lett 2021; 21:408. [PMID: 33841569 PMCID: PMC8020378 DOI: 10.3892/ol.2021.12669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to determine the differential expression profiles of proteins in endometrial carcinoma and to screen the proteins associated with the occurrence and development of endometrial cancer (EC). In total, 15 samples of human EC and paracancerous tissues were selected for proteomic analysis using a label-free quantification method based on liquid chromatography-tandem mass spectrometry. The differential proteins were analysed using bioinformatics and verified using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Finally, the expression of differential proteins in 75 endometrial carcinoma samples and 30 normal endometrial tissue samples were detected using immunohistochemical staining, and the associations between differential protein expression and clinicopathological features were analysed. In total, 579 up-regulated proteins and 346 down-regulated proteins were identified between the two groups and seven proteins with the most significant differences were selected; these proteins included interferon-induced protein with tetratricopeptide repeats 3, poly(ADP-ribose) polymerase family member 9, solute carrier family 34 member 2, cytochrome b5 reductase 1, protein tyrosine phosphatase non-receptor type 1, dermatopontin (DPT) and secretory leukocyte peptidase inhibitor. RT-qPCR and western blotting showed that DPT expression was down-regulated (P<0.001), which was consistent with the mass spectrometry results. The immunohistochemical staining results showed that the positive expression of DPT in EC and normal endometrial tissues was statistically significant (P<0.001). The positive expression of DPT was significantly decreased in poorly differentiated, late stage, lymph node metastasis and myometrial invasion depth ≥1/2 samples (P<0.05). DPT expression was significantly lower in EC, which might play role in the pathogenesis of EC.
Collapse
Affiliation(s)
- Haiyun Huang
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lingyan Long
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zeyuan Yin
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chenyu Wu
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Bei Zhang
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
11
|
Seetaraman Amritha TM, Mahajan S, Subramaniam K, Chandramohan Y, Dhanasekaran A. Cloning, expression and purification of recombinant dermatopontin in Escherichia coli. PLoS One 2020; 15:e0242798. [PMID: 33253286 PMCID: PMC7703894 DOI: 10.1371/journal.pone.0242798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/09/2020] [Indexed: 12/03/2022] Open
Abstract
Dermatopontin (DPT) is an extracellular matrix (ECM) protein with diversified pharmaceutical applications. It plays important role in cell adhesion/migration, angiogenesis and ECM maintenance. The recombinant production of this protein will enable further exploration of its multifaceted functions. In this study, DPT protein has been expressed in Escherichia coli (E.coli) aiming at cost effective recombinant production. The E.coli GJ1158 expression system was transformed with constructed recombinant vector (pRSETA-DPT) and protein was expressed as inclusion bodies on induction with NaCl. The inclusion bodies were solubilised in urea and renaturation of protein was done by on-column refolding procedure in Nickel activated Sepharose column. The refolded Histidine-tagged DPT protein was purified and eluted from column using imidazole and its purity was confirmed by analytical techniques. The biological activity of the protein was confirmed by collagen fibril assay, wound healing assay and Chorioallantoic Membrane (CAM) angiogenesis assay on comparison with standard DPT. The purified DPT was found to enhance the collagen fibrillogenesis process and improved the migration of human endothelial cells. About 73% enhanced wound closure was observed in purified DPT treated endothelial cells as compared to control. The purified DPT also could induce neovascularisation in the CAM model. At this stage, scaling up the production process for DPT with appropriate purity and reproducibility will have a promising commercial edge.
Collapse
Affiliation(s)
| | - Shubham Mahajan
- SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kumar Subramaniam
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Shoba E, Lakra R, Kiran MS, Korrapati PS. 3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. J Mech Behav Biomed Mater 2020; 109:103822. [PMID: 32543397 DOI: 10.1016/j.jmbbm.2020.103822] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Chronic periodontal disease affect the tissues supporting around the teeth like gingival tissue, connective tissue, alveolar bone and periodontal ligaments. Hitherto, periodontal treatment was targeted to selectively repopulate the defect site with cell that has capability to regenerate lost tissue by promoting the concept of guided tissue regeneration but it requires second surgery due to non- biodegradability. The use of polymeric biodegradable nanofibrous coated scaffold that have the ability to deliver bioactives required for regeneration to occur is relatively a newer concept. The functionalization of polymeric scaffold with Bromelain and magnesium doped hydroxyapatite nanoparticle enhanced the mechanical, physico-chemical, thermal and biological properties of the scaffold by imitating the intricate extracellular matrix (ECM) architecture which provided the necessary bioactive cues that offered control over cellular functions by showing antibacterial potential, hemocompatibility and increasing the proliferation and migration rate in vitro. In addition, in ovo chicken chorioallantoic membrane assay and ex vivo aortic ring assay confirmed the efficacy of the developed scaffold by encouraging angiogenesis required for maintaining its viability after implanting onto the infected area. Further, the scaffold positively interacted with the host and actively contributed to the process of tissue regeneration in vivo in Wistar rat model.
Collapse
Affiliation(s)
- Ekambaram Shoba
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Chennai, 600 020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Chennai, 600 020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Chennai, 600 020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Chennai, 600 020, India.
| |
Collapse
|
13
|
Dermatopontin, A Novel Adipokine Promoting Adipose Tissue Extracellular Matrix Remodelling and Inflammation in Obesity. J Clin Med 2020; 9:jcm9041069. [PMID: 32283761 PMCID: PMC7230369 DOI: 10.3390/jcm9041069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Compelling evidence suggests that dermatopontin (DPT) regulates collagen and fibronectin fibril formation, the induction of cell adhesion and the prompting of wound healing. We aimed to evaluate the role of DPT on obesity and its associated metabolic alterations as well as its impact in visceral adipose tissue (VAT) inflammation and extracellular matrix (ECM) remodelling. Samples obtained from 54 subjects were used in a case-control study. Circulating and VAT expression levels of DPT as well as key ECM remodelling- and inflammation-related genes were analysed. The effect of pro- and anti-inflammatory mediators on the transcript levels of DPT in visceral adipocytes was explored. The impact of DPT on ECM remodelling and inflammation pathways was also evaluated in cultured adipocytes. We show that obesity and obesity-associated type 2 diabetes (T2D) increased (p < 0.05) circulating levels of DPT. In this line, DPT mRNA in VAT was increased (p < 0.05) in obese patients with and without T2D. Gene expression levels of DPT were enhanced (p < 0.05) in human visceral adipocytes after the treatment with lipopolysaccharide, tumour growth factor (TGF)-β and palmitic acid, whereas a downregulation (p < 0.05) was detected after the stimulation with interleukin (IL)-4 and IL-13, critical cytokines mediating anti-inflammatory pathways. Additionally, we revealed that DPT increased (p < 0.05) the expression of ECM- (COL6A3, ELN, MMP9, TNMD) and inflammation-related factors (IL6, IL8, TNF) in human visceral adipocytes. These findings provide, for the first time, evidence of a novel role of DPT in obesity and its associated comorbidities by influencing AT remodelling and inflammation.
Collapse
|
14
|
Indrakumar J, Korrapati PS. Steering Efficacy of Nano Molybdenum Towards Cancer: Mechanism of Action. Biol Trace Elem Res 2020; 194:121-134. [PMID: 31123924 PMCID: PMC7223681 DOI: 10.1007/s12011-019-01742-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Conventional cancer therapies possess a plethora of limitations which led to the awakening of nanotechnology and nanomedicine. However, technological success is widely dependent on complete understanding of the complexity and heterogeneity of tumor biology on one hand and nanobiointeractions associated with challenges of synthesis, translation, and commercialization on the other. The present study therefore deals with one such targeted approach aiming at synthesizing, characterizing, and understanding the efficacy of molybdenum oxide nanoparticles. The phase structure, morphology, and elemental composition of the synthesized nanoparticles were characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The cytotoxicity studies revealed that the IC50 vales of molybdenum trioxide (MoO3) particles against skin cancer cells (melanoma and non-melanoma) were around 200-300 μg. The nanoparticles were found to induce mitochondrial-mediated apoptosis driven by the apoptotic genes such as BAX and Bcl2. Molybdenum being a cofactor for the majority of metabolic enzymes could have triggered the selective internalization of the nanoparticles which in turn could have modified the granularity of the cytoplasm and subsequently lead to mitochondrial-mediated apoptosis. Further, the anti-angiogenic property of MoO3 nanoparticles was corroborated using Chick chorioallantoic membrane (CAM) assay and aortic ring assay. Taken together , unraveling the role of MoO3 nanoparticles in cancer and angiogenesis opens up venues for nano biological intervention of selective cancer cell targeting with minimal damage to the normal cells using natural trace elements that are generally known to influence various metabolic enzymes.
Collapse
Affiliation(s)
- Janani Indrakumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India.
| |
Collapse
|
15
|
Balan P, Indrakumar J, Murali P, Korrapati PS. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeutics. Int J Biol Macromol 2020; 142:201-211. [DOI: 10.1016/j.ijbiomac.2019.09.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
|
16
|
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid, Cyrtocara moorii. Sci Rep 2019; 9:20296. [PMID: 31889116 PMCID: PMC6937230 DOI: 10.1038/s41598-019-56771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
East African cichlid fishes represent a model to tackle adaptive changes and their connection to rapid speciation and ecological distinction. In comparison to bony craniofacial tissues, adaptive morphogenesis of soft tissues has been rarely addressed, particularly at the molecular level. The nuchal hump in cichlids fishes is one such soft-tissue and exaggerated trait that is hypothesized to play an innovative role in the adaptive radiation of cichlids fishes. It has also evolved in parallel across lakes in East Africa and Central America. Using gene expression profiling, we identified and validated a set of genes involved in nuchal hump formation in the Lake Malawi dolphin cichlid, Cyrtocara moorii. In particular, we found genes differentially expressed in the nuchal hump, which are involved in controlling cell proliferation (btg3, fosl1a and pdgfrb), cell growth (dlk1), craniofacial morphogenesis (dlx5a, mycn and tcf12), as well as regulators of growth-related signals (dpt, pappa and socs2). This is the first study to identify the set of genes associated with nuchal hump formation in cichlids. Given that the hump is a trait that evolved repeatedly in several African and American cichlid lineages, it would be interesting to see if the molecular pathways and genes triggering hump formation follow a common genetic track or if the trait evolved in parallel, with distinct mechanisms, in other cichlid adaptive radiations and even in other teleost fishes.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Institute of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| |
Collapse
|
17
|
Satish A, Korrapati PS. Nanofiber-Mediated Sustained Delivery of Triiodothyronine: Role in Angiogenesis. AAPS PharmSciTech 2019; 20:110. [PMID: 30756201 DOI: 10.1208/s12249-019-1326-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a vital component of the orchestrated wound healing cascade and tissue regeneration process, which has a therapeutic prominence in treatment of ischemic vascular diseases and certain cardiac conditions. Based on its eminence, several strategies using growth factors have been studied to initiate angiogenesis. However, growth factors are expensive and have short half-life. In this work, sustained release of triiodothyronine, which plays a crucial role in stimulating growth factors and other signaling pathways that are instrumental in initiating angiogenesis, has been attempted through electrospun polycaprolactone nanofibers. This delivery system enabled the slow and sustained delivery of triiodothyronine into the micro-environment, reducing seepage of excess into systemic circulation and eliminating the necessity of repeated dosage forms. It was observed that triiodothyronine-incorporated nanofibers exhibited favorable interaction with cells (phalloidin staining of actin filaments) and also enhanced the rate of endothelial proliferation, migration, and adhesion. The angiogenic potential of these nanofibers was further corroborated through chorioallantoic membrane and rat aortic ring assay (demonstrating cell sprouting area of 3.3 ± 0.71 mm2 compared to 1.2 ± 0.01 mm2 in control). The nanofiber matrix thus fabricated demonstrated a vibrant therapeutic potential to induce angiogenesis. Triiodothyronine also plays a significant role in wound healing independent of initiating angiogenesis. This further substantiates the positive impact of this delivery system as a dressing material for chronic wound therapeutics, ischemic vascular diseases, and certain cardiac conditions.
Collapse
|
18
|
Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|