1
|
Garbero OV, Sardelli L, Butnarasu CS, Frasca E, Medana C, Dal Bello F, Visentin S. Tracing the path of Quorum sensing molecules in cystic fibrosis mucus in a biomimetic in vitro permeability platform. Sci Rep 2024; 14:25907. [PMID: 39472521 PMCID: PMC11522324 DOI: 10.1038/s41598-024-77375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
P. aeruginosa employs specific quorum sensing (QS) mechanisms to orchestrate biofilm formation, enhancing resistance to host defences. In physiological conditions, QS molecules permeate the lung environment and cellular membrane to reach the cytoplasmic Aryl Hydrocarbon Receptor (AhR) that is pivotal for activating the immune response against infection. In pathological conditions like cystic fibrosis (CF) this interkingdom communication is altered, favouring P. aeruginosa persistence and chronic infection. Here, we aim to investigate the molecular journey of QS molecules from CF-like environments to the cytoplasm by quantifying via HPLC-MS the permeability of selected QS molecules (quinolones, lactones, and phenazines) through in vitro models of the two main biological lung barriers: CF-mucus and cellular membrane. While QS molecules not activating AhR exhibit intermediate permeability through the cellular membrane model (PAMPA) (1.0-4.0 × 10-6 cm/s), the AhR-activating molecule (pyocyanin) shows significantly higher permeability (8.6 ± 1.4 × 10-6 cm/s). Importantly, combining the CF mucus model with PAMPA induces a 50% decrease in pyocyanin permeability, indicating a strong mucus-shielding effect with pathological implications in infection eradication. This study underscores the importance of quantitatively describing the AhR-active bacterial molecules, even in vitro, to offer new perspectives for understanding P. aeruginosa virulence mechanisms and for proposing new antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Lorenzo Sardelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Cosmin Stefan Butnarasu
- Institute of Pharmacy Biopharmaceuticals, SupraFAB, Freie Universität Berlin, Altensteinstr 23a, 14195, Berlin, Germany
| | - Enrica Frasca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy.
| |
Collapse
|
2
|
Loffredo MR, Cappiello F, Cappella G, Capuozzo E, Torrini L, Diaco F, Di YP, Mangoni ML, Casciaro B. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics (Basel) 2024; 13:701. [PMID: 39200001 PMCID: PMC11350779 DOI: 10.3390/antibiotics13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Giacomo Cappella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Elisabetta Capuozzo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Luisa Torrini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Fabiana Diaco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| |
Collapse
|
3
|
Feng Q, Bennett Z, Grichuk A, Pantoja R, Huang T, Faubert B, Huang G, Chen M, DeBerardinis RJ, Sumer BD, Gao J. Severely polarized extracellular acidity around tumour cells. Nat Biomed Eng 2024; 8:787-799. [PMID: 38438799 DOI: 10.1038/s41551-024-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Bennett
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Grichuk
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raymundo Pantoja
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongyi Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gang Huang
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Baran D Sumer
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinming Gao
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
5
|
Pompilio A, Kaya E, Lupetti V, Catelli E, Bianchi M, Maisetta G, Esin S, Di Bonaventura G, Batoni G. Cell-free supernatants from Lactobacillus strains exert antibacterial, antibiofilm, and antivirulence activity against Pseudomonas aeruginosa from cystic fibrosis patients. Microbes Infect 2024; 26:105301. [PMID: 38237656 DOI: 10.1016/j.micinf.2024.105301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa play a significant role in the mortality and morbidity of cystic fibrosis (CF) patients. The widespread bacterial resistance to conventional antimicrobials demands identifying new strategies to complement or replace current antibiotic therapies. In this study, we evaluated the antibacterial, antibiofilm, and antivirulence properties of cell-free supernatants (CFS) from several Lactobacillus probiotic strains against P. aeruginosa isolated from the sputum of CF patients. A strong and fast antibacterial activity of CFS from different strains of lactobacilli was observed at acidic pH towards P. aeruginosa, both in planktonic and biofilm mode of growth, in conditions mimicking CF lung. Interestingly, although when adjusted at pH 6.0, CFS lost most of their antibacterial potential, they retained some antivirulence activity towards P. aeruginosa, largely dependent on the dose, exposure time, and the Lactobacillus-P. aeruginosa strain combination. In vivo testing in the invertebrate Galleria mellonella model disclosed the lack of toxicity of acidic CFS and their ability to prevent P. aeruginosa infection. For the first time, the results revealed lactobacilli postbiotic activities in the context of the pulmonary environment, pointing to innovative postbiotics' uses in anti-infective therapy.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Veronica Lupetti
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Elisa Catelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Marta Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy.
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy.
| |
Collapse
|
6
|
Tedbury PR, Manfredi C, Degenhardt F, Conway J, Horwath MC, McCracken C, Sorscher AJ, Moreau S, Wright C, Edwards C, Brewer J, Guarner J, de Wit E, Williamson BN, Suthar MS, Ong YT, Roback JD, Alter DN, Holter JC, Karlsen TH, Sacchi N, Romero-Gómez M, Invernizzi P, Fernández J, Buti M, Albillos A, Julià A, Valenti L, Asselta R, Banales JM, Bujanda L, de Cid R, Sarafianos SG, Hong JS, Sorscher EJ, Ehrhardt A. Mechanisms by which the cystic fibrosis transmembrane conductance regulator may influence SARS-CoV-2 infection and COVID-19 disease severity. FASEB J 2023; 37:e23220. [PMID: 37801035 PMCID: PMC10760435 DOI: 10.1096/fj.202300077r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Candela Manfredi
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Joseph Conway
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Michael C. Horwath
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Courtney McCracken
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Adam J. Sorscher
- Dartmouth University School of Medicine, Hanover, New Hampshire, United States
| | - Sandy Moreau
- Elliot Hospital, Manchester, New Hampshire, United States
| | | | - Carolina Edwards
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Jo Brewer
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | | | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Mehul S. Suthar
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - John D. Roback
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David N. Alter
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jan C. Holter
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom H. Karlsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division for Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
- University of Sevilla, Sevilla, Spain
- Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Pietro Invernizzi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Javier Fernández
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Maria Buti
- Liver Unit. Hospital Universitario Valle Hebron and CIBEREHD del Instituto Carlos III. Barcelona, Spain
| | - Agustin Albillos
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, University of Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Julià
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Biological Resorce Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jesus M. Banales
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab. German Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Jeong S. Hong
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Eric J. Sorscher
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Annette Ehrhardt
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Harding SV, Barnes KB, Hawser S, Bentley CE, Vente A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics (Basel) 2023; 12:1096. [PMID: 37508192 PMCID: PMC10376497 DOI: 10.3390/antibiotics12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study determined the in vitro activity of finafloxacin against panels of bacterial strains, representative of those associated with infection in cystic fibrosis patients and predominately isolated from clinical cases of respiratory disease. Many of these isolates were resistant to various antimicrobials evaluated including the aminoglycosides, cephalosporins, carbapenems and fluoroquinolones. Broth microdilution assays were performed at neutral and acidic pH, to determine antimicrobial activity. Finafloxacin demonstrated superior activity at reduced pH for all of the bacterial species investigated, highlighting the requirement to determine the activity of antimicrobials in host-relevant conditions.
Collapse
Affiliation(s)
- Sarah V Harding
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | | | | |
Collapse
|
8
|
Craddock VD, Steere EL, Harman H, Britt NS. Activity of Delafloxacin and Comparator Fluoroquinolones against Multidrug-Resistant Pseudomonas aeruginosa in an In Vitro Cystic Fibrosis Sputum Model. Antibiotics (Basel) 2023; 12:1078. [PMID: 37370396 DOI: 10.3390/antibiotics12061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Delafloxacin (DLX) is a recently approved fluoroquinolone with broad activity against common cystic fibrosis (CF) pathogens, including multidrug-resistant Pseudomonas aeruginosa (MDR-Psa). Delafloxacin has been previously shown to have excellent lung and biofilm penetration and enhanced activity at lower pH environments, such as those that would be observed in the CF lung. We analyzed six Psa strains isolated from CF sputum and compared DLX to ciprofloxacin (CPX) and levofloxacin (LVX). Minimum inhibitory concentrations (MICs) were determined for DLX using standard culture media (pH 7.3) and artificial sputum media (ASM), a physiologic media recapitulating the CF lung microenvironment (pH 6.9). Delafloxacin activity was further compared to CPX and LVX in an in vitro CF sputum time-kill model at physiologically relevant drug concentrations (Cmax, Cmed, Cmin). Delafloxacin exhibited 2- to 4-fold MIC reductions in ASM, which corresponded with significant improvements in bacterial killing in the CF sputum time-kill model between DLX and LVX at Cmed (p = 0.033) and Cmin (p = 0.004). Compared to CPX, DLX demonstrated significantly greater killing at Cmin (p = 0.024). Overall, DLX demonstrated favorable in vitro activity compared to alternative fluoroquinolones against MDR-Psa. Delafloxacin may be considered as an option against MDR-Psa pulmonary infections in CF.
Collapse
Affiliation(s)
- Vaughn D Craddock
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, KS 66047, USA
| | - Evan L Steere
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Hannah Harman
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, KS 66047, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, KS 66047, USA
- Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
10
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
11
|
Becker K, Cao S, Nilsson A, Erlandsson M, Hotop SK, Kuka J, Hansen J, Haldimann K, Grinberga S, Berruga-Fernández T, Huseby DL, Shariatgorji R, Lindmark E, Platzack B, Böttger EC, Crich D, Friberg LE, Vingsbo Lundberg C, Hughes D, Brönstrup M, Andrén PE, Liepinsh E, Hobbie SN. Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. EBioMedicine 2021; 73:103652. [PMID: 34740109 PMCID: PMC8577399 DOI: 10.1016/j.ebiom.2021.103652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Background The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). Methods A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. Findings EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. Interpretation This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Maria Erlandsson
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Jon Hansen
- Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Talia Berruga-Fernández
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Evelina Lindmark
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Björn Platzack
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, GA 30602, USA
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden
| | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland.
| |
Collapse
|
12
|
Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Mol Cell Biochem 2021; 476:3729-3744. [PMID: 34091807 PMCID: PMC8382640 DOI: 10.1007/s11010-021-04181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/12/2021] [Indexed: 10/25/2022]
Abstract
Here the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5-26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3-5.1 mN m-1) and lyse (↑ 15.1-32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1-23) in the N → C direction, with - < µH > increasing overall from circa - 0.8 to - 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.
Collapse
|
13
|
Massip-Copiz MM, Valdivieso ÁG, Clauzure M, Mori C, Asensio CJA, Aguilar MÁ, Santa-Coloma TA. Epidermal growth factor receptor activity upregulates lactate dehydrogenase A expression, lactate dehydrogenase activity, and lactate secretion in cultured IB3-1 cystic fibrosis lung epithelial cells. Biochem Cell Biol 2021; 99:476-487. [PMID: 33481676 DOI: 10.1139/bcb-2020-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It has been postulated that reduced HCO3- transport through CFTR may lead to a decreased airway surface liquid pH. In contrast, others have reported no changes in the extracellular pH (pHe). We have recently reported that in carcinoma Caco-2/pRS26 cells (transfected with short hairpin RNA for CFTR) or CF lung epithelial IB3-1 cells, the mutation in CFTR decreased mitochondrial complex I activity and increased lactic acid production, owing to an autocrine IL-1β loop. The secreted lactate accounted for the reduced pHe, because oxamate fully restored the pHe. These effects were attributed to the IL-1β autocrine loop and the downstream signaling kinases c-Src and JNK. Here we show that the pHe of IB3-1 cells can be restored to normal values (∼7.4) by incubation with the epidermal growth factor receptor (EGFR, HER1, ErbB1) inhibitors AG1478 and PD168393. PD168393 fully restored the pHe values of IB3-1 cells, suggesting that the reduced pHe is mainly due to increased EGFR activity and lactate. Also, in IB3-1 cells, lactate dehydrogenase A mRNA, protein expression, and activity are downregulated when EGFR is inhibited. Thus, a constitutive EGFR activation seems to be responsible for the reduced pHe in IB3-1 cells.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - María Á Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
14
|
Andreucci E, Margheri F, Peppicelli S, Bianchini F, Ruzzolini J, Laurenzana A, Fibbi G, Bruni C, Bellando-Randone S, Guiducci S, Romano E, Manetti M, Matucci-Cerinic M, Calorini L. Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis. Rheumatology (Oxford) 2021; 60:4508-4519. [PMID: 33471123 DOI: 10.1093/rheumatology/keab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease characterized by peripheral vasculopathy and skin and internal organ fibrosis. Accumulating evidence underlines a close association between a metabolic reprogramming of activated fibroblasts and fibrosis. This prompted us to determine the metabolism of SSc dermal fibroblasts and the effect on the vasculopathy characterizing the disease. METHODS Seahorse XF96 Extracellular Flux Analyzer was exploited to evaluate SSc fibroblast metabolism. In vitro invasion and capillary morphogenesis assays were used to determine the angiogenic ability of endothelial cells (EC). Immunofluorescence, flow cytometer and real time PCR techniques provided evidence of the molecular mechanism behind the impaired vascularization that characterizes SSc patients. RESULTS SSc fibroblasts, compared with control, showed a boosted glycolytic metabolism with increased lactic acid release and subsequent extracellular acidification, that in turn was found to impair EC invasion and organization in capillary-like networks without altering cell viability. A molecular link between extracellular acidosis and endothelial dysfunction was identified as acidic EC up-regulated MMP-12 which cleaves and inactivates uPAR, impairing angiogenesis in SSc. Moreover, the acidic environment was found to induce the loss of endothelial markers and the acquisition of mesenchymal-like features in EC, thus promoting the endothelial-to-mesenchymal transition (EndoMT) process that contributes to both capillary rarefaction and tissue fibrosis in SSc. CONCLUSION This study disclosed a liaison among the metabolic reprogramming of SSc dermal fibroblasts, extracellular acidosis and endothelial dysfunction that may contribute to the impairment and loss of peripheral capillary networks in SSc disease.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, Florence, Italy
| |
Collapse
|
15
|
Sala V, Cnudde SJ, Murabito A, Massarotti A, Hirsch E, Ghigo A. Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. Eur J Med Chem 2021; 213:113191. [PMID: 33493828 DOI: 10.1016/j.ejmech.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common amongst rare genetic diseases, affecting more than 70.000 people worldwide. CF is characterized by a dysfunctional chloride channel, termed cystic fibrosis conductance regulator (CFTR), which leads to the production of a thick and viscous mucus layer that clogs the lungs of CF patients and traps pathogens, leading to chronic infections and inflammation and, ultimately, lung damage. In recent years, the use of peptides for the treatment of respiratory diseases, including CF, has gained growing interest. Therapeutic peptides for CF include antimicrobial peptides, inhibitors of proteases, and modulators of ion channels, among others. Peptides display unique features that make them appealing candidates for clinical translation, like specificity of action, high efficacy, and low toxicity. Nevertheless, the intrinsic properties of peptides, together with the need of delivering these compounds locally, e.g. by inhalation, raise a number of concerns in the development of peptide therapeutics for CF lung disease. In this review, we discuss the challenges related to the use of peptides for the treatment of CF lung disease through inhalation, which include retention within mucus, proteolysis, immunogenicity and aggregation. Strategies for overcoming major shortcomings of peptide therapeutics will be presented, together with recent developments in peptide design and optimization, including computational analysis and high-throughput screening.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sophie Julie Cnudde
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
16
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Abstract
Cystic fibrosis (CF) is a hereditary, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. CF is mainly characterized by pulmonary dysfunction as a result of deterioration in the mucociliary clearance and anion transport of airways. Mortality is mostly caused by bronchiectasis, bronchiole obstruction, and progressive respiratory dysfunction in the early years of life. Over the last decade, new therapeutic strategies rather than symptomatic treatment have been proposed, such as the small molecule approach, ion channel therapy, and pulmonary gene therapy. Due to considerable progress in the treatment options, CF has become an adult disease rather than a pediatric disease in recent years. Pulmonary gene therapy has gained special attention due to its mutation type independent aspect, therefore being applicable to all CF patients. On the other hand, the major obstacle for CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity. The advancement of 3D culture systems has made it possible to extrapolate the disease modeling and individual drug response in vitro by producing mini adult organs called "organoids" obtained from rectal cell biopsies. In this review, we summarize the advances in the novel therapeutic approaches, clinical interventions, and precision medicine concept for CF.
Collapse
|
18
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
19
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
20
|
Valdivieso ÁG, Clauzure M, Massip-Copiz MM, Cancio CE, Asensio CJA, Mori C, Santa-Coloma TA. Impairment of CFTR activity in cultured epithelial cells upregulates the expression and activity of LDH resulting in lactic acid hypersecretion. Cell Mol Life Sci 2019; 76:1579-1593. [PMID: 30599064 PMCID: PMC11105536 DOI: 10.1007/s00018-018-3001-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Mutations in the gene encoding the CFTR chloride channel produce cystic fibrosis (CF). CF patients are more susceptible to bacterial infections in lungs. The most accepted hypothesis sustains that a reduction in the airway surface liquid (ASL) volume favor infections. Alternatively, it was postulated that a reduced HCO3- transport through CFTR leads to a decreased ASL pH, favoring bacterial colonization. The issue is controversial, since recent data from cultured primary cells and CF children showed normal pH values in the ASL. We have reported previously a decreased mitochondrial Complex I (mCx-I) activity in cultured cells with impaired CFTR activity. Thus, we hypothesized that the reduced mCx-I activity could lead to increased lactic acid production (Warburg-like effect) and reduced extracellular pH (pHe). In agreement with this idea, we report here that cells with impaired CFTR function (intestinal Caco-2/pRS26, transfected with an shRNA-CFTR, and lung IB3-1 CF cells) have a decreased pHe. These cells showed increased lactate dehydrogenase (LDH) activity, LDH-A expression, and lactate secretion. Similar effects were reproduced in control cells stimulated with recombinant IL-1β. The c-Src and JNK inhibitors PP2 and SP600125 were able to increase the pHe, although the differences between control and CFTR-impaired cells were not fully compensated. Noteworthy, the LDH inhibitor oxamate completely restored the pHe of the intestinal Caco-2/pRS26 cells and have a significant effect in lung IB3-1 cells; therefore, an increased lactic acid secretion seems to be the key factor that determine a reduced pHe in these epithelial cells.
Collapse
Affiliation(s)
- Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Carla E Cancio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|