1
|
Itoh Y. Vesicle transport of matrix metalloproteinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:361-380. [PMID: 38960480 DOI: 10.1016/bs.apcsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular organisms consist of cells and extracellular matrix (ECM). ECM creates a cellular microenvironment, and cells locally degrade the ECM according to their cellular activity. A major group of enzymes that modify ECM belongs to matrix metalloproteinases (MMPs) and play major roles in various pathophysiological events. ECM degradation by MMPs does not occur in all cellular surroundings but only where it is necessary, and cells achieve this by directionally secreting these proteolytic enzymes. Recent studies have indicated that such enzyme secretion is achieved by targeted vesicle transport along the microtubules, and several kinesin superfamily proteins (KIFs) have been identified as responsible motor proteins involved in the processes. This chapter discusses recent findings of the vesicle transport of MMPs and their roles.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Gamblin C, Chavrier P. [Formation, organization and function of invadosomes in cell motility and tumor invasion]. Med Sci (Paris) 2024; 40:515-524. [PMID: 38986096 DOI: 10.1051/medsci/2024080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Invadosome is an umbrella term used to describe a family of cellular structures including podosomes and invadopodia. They serve as contact zones between the cell plasma membrane and extracellular matrix, contributing to matrix remodeling by locally enriched proteolytic enzymes. Invadosomes, which are actin-dependent, are implicated in cellular processes promoting adhesion, migration, and invasion. Invadosomes, which exist in various cell types, play crucial roles in physiological phenomena such as vascularization and bone resorption. Invadosomes are also implicated in pathological processes such as matrix tissue remodeling during metastatic tumor cell invasion. This review summarizes basic information and recent advances about mechanisms underlying podosome and invadopodia formation, their organization and function.
Collapse
Affiliation(s)
- Cécile Gamblin
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France - Sorbonne Université, Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| |
Collapse
|
3
|
Barbayianni I, Kanellopoulou P, Fanidis D, Nastos D, Ntouskou ED, Galaris A, Harokopos V, Hatzis P, Tsitoura E, Homer R, Kaminski N, Antoniou KM, Crestani B, Tzouvelekis A, Aidinis V. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis. Nat Commun 2023; 14:5882. [PMID: 37735172 PMCID: PMC10514346 DOI: 10.1038/s41467-023-41614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The activation and accumulation of lung fibroblasts resulting in aberrant deposition of extracellular matrix components, is a pathogenic hallmark of Idiopathic Pulmonary Fibrosis, a lethal and incurable disease. In this report, increased expression of TKS5, a scaffold protein essential for the formation of podosomes, was detected in the lung tissue of Idiopathic Pulmonary Fibrosis patients and bleomycin-treated mice. Τhe profibrotic milieu is found to induce TKS5 expression and the formation of prominent podosome rosettes in lung fibroblasts, that are retained ex vivo, culminating in increased extracellular matrix invasion. Tks5+/- mice are found resistant to bleomycin-induced pulmonary fibrosis, largely attributed to diminished podosome formation in fibroblasts and decreased extracellular matrix invasion. As computationally predicted, inhibition of src kinase is shown to potently attenuate podosome formation in lung fibroblasts and extracellular matrix invasion, and bleomycin-induced pulmonary fibrosis, suggesting pharmacological targeting of podosomes as a very promising therapeutic option in pulmonary fibrosis.
Collapse
Affiliation(s)
- Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eleftheria-Dimitra Ntouskou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Apostolos Galaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katerina M Antoniou
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Bruno Crestani
- Department of Pulmonology, Bichat-Claude Bernard Hospital, Paris, France
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece.
| |
Collapse
|
4
|
Oprescu A, Michel D, Antkowiak A, Vega E, Viaud J, Courtneidge SA, Eckly A, de la Salle H, Chicanne G, Léon C, Payrastre B, Gaits-Iacovoni F. Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Sci Rep 2022; 12:6255. [PMID: 35428815 PMCID: PMC9012751 DOI: 10.1038/s41598-022-10215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.
Collapse
Affiliation(s)
- Antoine Oprescu
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Déborah Michel
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Adrien Antkowiak
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Elodie Vega
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Julien Viaud
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sara A Courtneidge
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Anita Eckly
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Henri de la Salle
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Gaëtan Chicanne
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Bernard Payrastre
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,CHU de Toulouse, laboratoire d'Hématologie, Toulouse, France
| | - Frédérique Gaits-Iacovoni
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France. .,Molecular, Cellular and Developmental Biology Department (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
5
|
Invadopodia Structure in 3D Environment Resolved by Near-Infrared Branding Protocol Combining Correlative Confocal and FIB-SEM Microscopy. Int J Mol Sci 2021; 22:ijms22157805. [PMID: 34360570 PMCID: PMC8346040 DOI: 10.3390/ijms22157805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Cancer cell invasion through tissue barriers is the intrinsic feature of metastasis, the most life-threatening aspect of cancer. Detailed observation and analysis of cancer cell behaviour in a 3D environment is essential for a full understanding of the mechanisms of cancer cell invasion. The inherent limits of optical microscopy resolution do not allow to for in-depth observation of intracellular structures, such as invadopodia of invading cancer cells. The required resolution can be achieved using electron microscopy techniques such as FIB-SEM. However, visualising cells in a 3D matrix using FIB-SEM is challenging due to difficulties with localisation of a specific cell deep within the resin block. We have developed a new protocol based on the near-infrared branding (NIRB) procedure that extends the pattern from the surface grid deep inside the resin. This 3D burned pattern allows for precise trimming followed by targeted 3D FIB-SEM. Here we present detailed 3D CLEM results combining confocal and FIB-SEM imaging of cancer cell invadopodia that extend deep into the collagen meshwork.
Collapse
|
6
|
Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes: technologies for the analysis of invadosomes. FEBS J 2021; 289:5850-5863. [PMID: 34196119 DOI: 10.1111/febs.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
Abstract
Invadosomes are protrusive and mechanosensitive actin devices critical for cell migration, invasion, and extracellular matrix remodeling. The dynamic, proteolytic, and protrusive natures of invadosomes have made these structures fascinating and attracted many scientists to develop new technologies for their analysis. With these exciting methodologies, many biochemical and biophysical properties of invadosomes have been well characterized and appreciated, and those discoveries elegantly explained the biological and pathological effects of invadosomes in human health and diseases. In this review, we focus on these commonly used or newly developed methods for invadosome analysis and effort to reason some discrepancies among those assays. Finally, we explore the opposite regulatory mechanisms among invadosomes and focal adhesions, another actin-rich adhesive structures, and speculate a potential rule for their switch.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Abstract
One of the strategies used by cells to degrade and remodel the extracellular matrix (ECM) is based on invadosomes, actin-based force-producing cell–ECM contacts that function in adhesion and migration and are characterized by their capacity to mediate pericellular proteolysis of ECM components. Invadosomes found in normal cells are called podosomes, whereas invadosomes of invading cancer cells are named invadopodia. Despite their broad involvement in cell migration and in protease-dependent ECM remodeling and their detection in living organisms and in fresh tumor tissue specimens, the specific composition and dynamic behavior of podosomes and invadopodia and their functional relevance in vivo remain poorly understood. Here, we discuss recent findings that underline commonalities and peculiarities of podosome and invadopodia in terms of organization and function and propose an updated definition of these cellular protrusions, which are increasingly relevant in patho-physiological tissue remodeling.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
8
|
Iizuka S, Quintavalle M, Navarro JC, Gribbin KP, Ardecky RJ, Abelman MM, Ma CT, Sergienko E, Zeng FY, Pass I, Thomas GV, McWeeney SK, Hassig CA, Pinkerton AB, Courtneidge SA. Serine-Threonine Kinase TAO3-Mediated Trafficking of Endosomes Containing the Invadopodia Scaffold TKS5α Promotes Cancer Invasion and Tumor Growth. Cancer Res 2021; 81:1472-1485. [PMID: 33414172 DOI: 10.1158/0008-5472.can-20-2383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Invadopodia are actin-based proteolytic membrane protrusions required for invasive behavior and tumor growth. In this study, we used our high-content screening assay to identify kinases whose activity affects invadopodia formation. Among the top hits selected for further analysis was TAO3, an STE20-like kinase of the GCK subfamily. TAO3 was overexpressed in many human cancers and regulated invadopodia formation in melanoma, breast, and bladder cancers. Furthermore, TAO3 catalytic activity facilitated melanoma growth in three-dimensional matrices and in vivo. A novel, potent catalytic inhibitor of TAO3 was developed that inhibited invadopodia formation and function as well as tumor cell extravasation and growth. Treatment with this inhibitor demonstrated that TAO3 activity is required for endosomal trafficking of TKS5α, an obligate invadopodia scaffold protein. A phosphoproteomics screen for TAO3 substrates revealed the dynein subunit protein LIC2 as a relevant substrate. Knockdown of LIC2 or expression of a phosphomimetic form promoted invadopodia formation. Thus, TAO3 is a new therapeutic target with a distinct mechanism of action. SIGNIFICANCE: An unbiased screening approach identifies TAO3 as a regulator of invadopodia formation and function, supporting clinical development of this class of target.
Collapse
Affiliation(s)
- Shinji Iizuka
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | | | - Jose C Navarro
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Kyle P Gribbin
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Robert J Ardecky
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Matthew M Abelman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon.,Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Christian A Hassig
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Sara A Courtneidge
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. .,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
9
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|