1
|
Gómez-Pérez AM, Muñoz-Garach A, Lasserrot-Cuadrado A, Moreno-Indias I, Tinahones FJ. Microbiota Transplantation in Individuals with Type 2 Diabetes and a High Degree of Insulin Resistance. Nutrients 2024; 16:3491. [PMID: 39458486 PMCID: PMC11510444 DOI: 10.3390/nu16203491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to determine the results of fecal microbiota transplantation (FMT) from healthy lean subjects in patients with type 2 diabetes (T2D); Methods: We designed a phase II, randomized, single-blind, parallel-arm clinical trial. Twenty-one subjects (12 men [57.1%] and 9 women [42.9%]), who had previously signed an informed consent were randomized to FMT from lean donors, a probiotic (Lactobacillus delbrueckii spp. bulgaricus LB-14), or placebo. Mean age at baseline was 62.5 ± 5.8 years and mean body mass index (BMI) at baseline was approximately 32.4 ± 2.4 kg/m2. Anthropometric measures, biochemical variables, oral glucose tolerance test (OGTT), and a stool microbiota analysis were performed (baseline, 4 and 12 weeks). The trial was conducted following the Declaration of Helsinki, Good Clinical Practice Guides (CPMP/ICH/135/95) and the current Spanish legislation regarding clinical trials (RD 223/2004).; Results: FMT changes occurred at the expense of the species found in the donor. No differences in weight, body mass index, HbA1c, or the results of the OGTT for glucose and insulin were found between groups after the intervention, although a decrease in uric acid was observed in the probiotic group (-0.5 mg/dL; p = 0.037) and a mild increase in HbA1c in the FMT group (+0.25%; p = 0.041); Conclusions: In our sample, neither FMT from healthy and lean donors nor a probiotic were effective in improving insulin sensitivity and HbA1c in patients with T2D.
Collapse
Affiliation(s)
- Ana María Gómez-Pérez
- Department of Endocrinology and Nutrition, The Biomedical Research Institute of Malaga, and Platform in Nanomedicine (IBIMA-BIONAND Platform), Virgen de la Victoria University Hospital, University of Malaga, 29016 Malaga, Spain; (A.M.G.-P.); (F.J.T.)
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Araceli Muñoz-Garach
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Granada Biosanitary Research Institute of Granada (ibs.Granada), Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Agustín Lasserrot-Cuadrado
- Andalusian Research, Development, and Innovation Plan. CTS 367, University of Granada, 18071 Granada, Spain;
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, The Biomedical Research Institute of Malaga, and Platform in Nanomedicine (IBIMA-BIONAND Platform), Virgen de la Victoria University Hospital, University of Malaga, 29016 Malaga, Spain; (A.M.G.-P.); (F.J.T.)
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, The Biomedical Research Institute of Malaga, and Platform in Nanomedicine (IBIMA-BIONAND Platform), Virgen de la Victoria University Hospital, University of Malaga, 29016 Malaga, Spain; (A.M.G.-P.); (F.J.T.)
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain;
- Faculty of Medicine, University of Málaga, 29071 Malaga, Spain
| |
Collapse
|
2
|
Abenavoli L, Gambardella ML, Scarlata GGM, Lenci I, Baiocchi L, Luzza F. The Many Faces of Metabolic Dysfunction-Associated Fatty Liver Disease Treatment: From the Mediterranean Diet to Fecal Microbiota Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:563. [PMID: 38674209 PMCID: PMC11051743 DOI: 10.3390/medicina60040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
The gastrointestinal tract is inhabited by the gut microbiota. The main phyla are Firmicutes and Bacteroidetes. In non-alcoholic fatty liver disease, now renamed metabolic dysfunction-associated fatty liver disease (MAFLD), an alteration in Firmicutes and Bacteroidetes abundance promotes its pathogenesis and evolution into non-alcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. For this reason, early treatment is necessary to counteract its progression. The aim of the present narrative review is to evaluate the different therapeutic approaches to MAFLD. The most important treatment for MAFLD is lifestyle changes. In this regard, the Mediterranean diet could be considered the gold standard in the prevention and treatment of MAFLD. In contrast, a Western diet should be discouraged. Probiotics and fecal microbiota transplantation seem to be valid, safe, and effective alternatives for MAFLD treatment. However, more studies with a longer follow-up and with a larger cohort of patients are needed to underline the more effective approaches to contrasting MAFLD.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.L.G.); (G.G.M.S.); (F.L.)
| | - Maria Luisa Gambardella
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.L.G.); (G.G.M.S.); (F.L.)
| | - Giuseppe Guido Maria Scarlata
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.L.G.); (G.G.M.S.); (F.L.)
| | - Ilaria Lenci
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Via Montpellier, 00133 Rome, Italy; (I.L.); (L.B.)
| | - Leonardo Baiocchi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Via Montpellier, 00133 Rome, Italy; (I.L.); (L.B.)
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.L.G.); (G.G.M.S.); (F.L.)
| |
Collapse
|
3
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
4
|
Kamer O, Rinott E, Tsaban G, Kaplan A, Yaskolka Meir A, Zelicha H, Knights D, Tuohy K, Fava F, Uwe Scholz M, Ziv O, Rubin E, Blüher M, Stumvoll M, Ceglarek U, Clément K, Koren O, Hu FB, Stampfer MJ, Wang DD, Youngster I, Shai I. Successful weight regain attenuation by autologous fecal microbiota transplantation is associated with non-core gut microbiota changes during weight loss; randomized controlled trial. Gut Microbes 2023; 15:2264457. [PMID: 37796016 PMCID: PMC10557561 DOI: 10.1080/19490976.2023.2264457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.
Collapse
Affiliation(s)
- Omer Kamer
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Ehud Rinott
- Department of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Dan Knights
- BioTechnology Institute, University of Minnesota, St Paul, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Matthias Uwe Scholz
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Elad Rubin
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Karine Clément
- Inserm, Nutrition and obesities: systemic approaches, nutriOmicsn Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance-Publique Hopitaux de Paris, Sorbonne University, Paris, France
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Frank B. Hu
- Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Medicine, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | - Meir J. Stampfer
- Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Medicine, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | - Dong D. Wang
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Ilan Youngster
- Pediatric Division and Center for Microbiome Research, Shamir Medical Center, Be’er Ya’akov, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
- Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
5
|
Abstract
Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide. Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy. Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation. Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies. In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Penn State Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
6
|
Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev 2023; 149:105143. [PMID: 36990372 DOI: 10.1016/j.neubiorev.2023.105143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a main public health concern, with increasing prevalence and growingly premature onset in children, in spite of emerging and successful therapeutic options. T2DM promotes brain aging, and younger age at onset is associated with a higher risk of subsequent dementia. Preventive strategies should address predisposing conditions, like obesity and metabolic syndrome, and be started from very early and even prenatal life. Gut microbiota is an emerging target in obesity, diabetes and neurocognitive diseases, which could be safely modulated since pregnancy and infancy. Many correlative studies have supported its involvement in disease pathophysiology. Faecal material transplantation (FMT) studies have been conducted in clinical and preclinical settings to deliver cause-effect proof and mechanistic insights. This review provides a comprehensive overview of studies in which FMT was used to cure or cause obesity, metabolic syndrome, T2DM, cognitive decline and Alzheimer's disease, including the evidence available in early life. Findings were analysed to dissect consolidated from controversial results, highlighting gaps and possible future directions.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
7
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Liver-Gut-Interaction: Role of Microbiome Transplantation in the Future Treatment of Metabolic Disease. J Pers Med 2023; 13:jpm13020220. [PMID: 36836454 PMCID: PMC9958640 DOI: 10.3390/jpm13020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The association between shifts in gut microbiome composition and metabolic disorders is a well-recognized phenomenon. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Fecal microbiome transplantation (FMT) is a method to alter a person's microbiome composition. Although this method allowed for the establishment of proof of concept for using microbiome modulation to treat metabolic disorders, the method is not yet ready for broad application. It is a resource-intensive method that also carries some procedural risks and whose effects are not always reproducible. This review summarizes the current knowledge on FMT to treat metabolic diseases and gives an outlook on open research questions. Further research is undoubtedly required to find applications that are less resource-intensive, such as oral encapsulated formulations, and have strong and predictable results. Furthermore, a clear commitment from all stakeholders is necessary to move forward in the direction of developing live microbial agents, next-generation probiotics, and targeted dietary interventions.
Collapse
|
9
|
Sarmiento-Andrade Y, Suárez R, Quintero B, Garrochamba K, Chapela SP. Gut microbiota and obesity: New insights. Front Nutr 2022; 9:1018212. [PMID: 36313072 PMCID: PMC9614660 DOI: 10.3389/fnut.2022.1018212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a pathology whose incidence is increasing throughout the world. There are many pathologies associated with obesity. In recent years, the influence of the microbiota on both health and pathological states has been known. There is growing information related to changes in the microbiome and obesity, as well as its associated pathologies. Changes associated with age, exercise, and weight changes have been described. In addition, metabolic changes associated with the microbiota, bariatric surgery, and fecal matter transplantation are described. In this review, we summarize the biology and physiology of microbiota in obese patients, its role in the pathophysiology of several disorders associated, and the emerging therapeutic applications of prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | - Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Beatriz Quintero
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Kleber Garrochamba
- Department of Health Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sebastián Pablo Chapela
- Departamento de Bioquímica Humana, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Nutritional Support Team, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
11
|
Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients 2022; 14:nu14091953. [PMID: 35565919 PMCID: PMC9099876 DOI: 10.3390/nu14091953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The observation that the gut microbiota is different in healthy weight as compared with the obese state has sparked interest in the possible modulation of the microbiota in response to weight change. This systematic review investigates the effect of food-based weight loss diets on microbiota outcomes (α-diversity, β-diversity, relative bacterial abundance, and faecal short-chain fatty acids, SCFAs) in individuals without medical comorbidities who have successfully lost weight. Nineteen studies were included using the keywords ‘obesity’, ‘weight loss’, ‘microbiota’, and related terms. Across all 28 diet intervention arms, there were minimal changes in α- and β-diversity and faecal SCFA concentrations following weight loss. Changes in relative bacterial abundance at the phylum and genus level were inconsistent across studies. Further research with larger sample sizes, detailed dietary reporting, and consistent microbiota analysis techniques are needed to further our understanding of the effect of diet-induced weight loss on the gut microbiota.
Collapse
|
12
|
Turjeman S, Koren O. Using the microbiome in clinical practice. Microb Biotechnol 2022; 15:129-134. [PMID: 34767683 PMCID: PMC8719822 DOI: 10.1111/1751-7915.13971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
13
|
Toplak H, Troester N, Stadlbauer V. New insights in obesity development and possible value of microbiota transplantation. Eur J Intern Med 2021; 92:1-2. [PMID: 34246504 DOI: 10.1016/j.ejim.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Hermann Toplak
- Department of Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Austria.
| | - Natascha Troester
- Department of Medicine, Division of Pulmonology, Medical University Graz, Austria
| | - Vanessa Stadlbauer
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, Austria
| |
Collapse
|