1
|
Steinert K, Berg N, Kalinin DV, Jagels A, Würthwein EU, Humpf HU, Kalinina S. Semisynthetic Approach toward Biologically Active Derivatives of Phenylspirodrimanes from S. chartarum. ACS OMEGA 2022; 7:45215-45230. [PMID: 36530258 PMCID: PMC9753195 DOI: 10.1021/acsomega.2c05681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The phenylspirodrimanes (PSDs) from Stachybotrys chartarum represent a structurally diverse group of meroterpenoids, which, on the one hand, exhibit a structural exclusivity since their occurrence is not known for any other species and, on the other hand, offer access to chemically and biologically active compounds. In this study, phenylspirodrimanes 1-3 were isolated from S. chartarum and their water-mediated Cannizzaro-type transformation was investigated using quantum chemical DFT calculations substantiated by LC-MS and NMR experiments. Considering the inhibitory activity of PSDs against proteolytic enzymes and their modulatory effect on plasminogen, PSDs 1-3 were used as a starting material for the synthesis of their corresponding biologically active lactams. To access the library of the PSD derivatives and screen them against physiologically relevant serine proteases, a microscale semisynthetic approach was developed. This allowed us to generate the library of 35 lactams, some of which showed the inhibitory activity against physiologically relevant serine proteases such as thrombin, FXIIa, FXa, and trypsin. Among them, the agmatine-derived lactam 16 showed the highest inhibitory activity against plasma coagulation factors and demonstrated the anticoagulant activity in two plasma coagulation tests. The semisynthetic lactams were significantly less toxic compared to their parental natural PSDs.
Collapse
Affiliation(s)
- Katharina Steinert
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Nina Berg
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Dmitrii V. Kalinin
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Annika Jagels
- The
Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida 32080, United States
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches
Institut and Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Svetlana Kalinina
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
2
|
Hammerschmidt SJ, Huber S, Braun NJ, Lander M, Steinmetzer T, Kersten C. Thermodynamic characterization of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its acyclic analogs. Arch Pharm (Weinheim) 2022; 356:e2200518. [PMID: 36480352 DOI: 10.1002/ardp.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Qian X, Qi Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022; 14:v14061226. [PMID: 35746697 PMCID: PMC9229039 DOI: 10.3390/v14061226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Mosquito-borne flavivirus infections affect approximately 400 million people worldwide each year and are global threats to public health. The common diseases caused by such flaviviruses include West Nile, yellow fever, dengue, Zika infection and Japanese encephalitis, which may result in severe symptoms and disorders of multiple organs or even fatal outcomes. Till now, no specific antiviral agents are commercially available for the treatment of the diseases. Numerous strategies have been adopted to develop novel and promising inhibitors against mosquito-borne flaviviruses, including drugs targeting the critical viral components or essential host factors during infection. Research advances in antiflaviviral therapy might optimize and widen the treatment options for flavivirus infection. This review summarizes the current developmental progresses and involved molecular mechanisms of antiviral agents against mosquito-borne flaviviruses.
Collapse
|
4
|
Huber S, Braun NJ, Schmacke LC, Quek JP, Murra R, Bender D, Hildt E, Luo D, Heine A, Steinmetzer T. Structure-Based Optimization and Characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. J Med Chem 2022; 65:6555-6572. [PMID: 35475620 DOI: 10.1021/acs.jmedchem.1c01860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.
Collapse
Affiliation(s)
- Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921
| | - Robin Murra
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Eberhard Hildt
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
5
|
Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021; 12:1262-1272. [PMID: 34458734 PMCID: PMC8372202 DOI: 10.1039/d1md00080b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
West Nile virus infections can cause severe neurological symptoms. During the last 25 years, cases have been reported in Asia, North America, Africa, Europe and Australia (Kunjin). No West Nile virus vaccines or specific antiviral therapies are available to date. Various viral proteins and host-cell factors have been evaluated as potential drug targets. The viral protease NS2B-NS3 is among the most promising viral targets. It releases viral proteins from a non-functional polyprotein precursor, making it a critical factor of viral replication. Despite strong efforts, no protease inhibitors have reached clinical trials yet. Substrate-derived peptidomimetics have facilitated structural elucidations of the active protease state, while alternative compounds with increased drug-likeness have recently expanded drug discovery efforts beyond the active site.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
6
|
Braun NJ, Quek JP, Huber S, Kouretova J, Rogge D, Lang‐Henkel H, Cheong EZK, Chew BLA, Heine A, Luo D, Steinmetzer T. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem 2020; 15:1439-1452. [PMID: 32501637 PMCID: PMC7497253 DOI: 10.1002/cmdc.202000237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/06/2022]
Abstract
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.
Collapse
Affiliation(s)
- Niklas J. Braun
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jun P. Quek
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
| | - Simon Huber
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jenny Kouretova
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dorothee Rogge
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Heike Lang‐Henkel
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Ezekiel Z. K. Cheong
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Bing L. A. Chew
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- Institute of Health TechnologiesInterdisciplinary Graduate ProgrammeNanyang Technological University61 Nanyang Dr.Singapore637335Singapore
| | - Andreas Heine
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dahai Luo
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Torsten Steinmetzer
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| |
Collapse
|
7
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
8
|
J. Murphy P, J. R. Ashworth Z, Bartholomew B, M. Evans D, Forde-Thomas J, F. Hoffmann K, Murdoch R, J. Nash R, Sharp H, Whiteland H. The Synthesis and Glycosidase Inhibitory Activity of Analogues of Tiruchanduramine. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Peptide derivatives as inhibitors of NS2B-NS3 protease from Dengue, West Nile, and Zika flaviviruses. Bioorg Med Chem 2019; 27:3963-3978. [DOI: 10.1016/j.bmc.2019.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
10
|
Rajput A, Kumar M. Anti-flavi: A Web Platform to Predict Inhibitors of Flaviviruses Using QSAR and Peptidomimetic Approaches. Front Microbiol 2018; 9:3121. [PMID: 30619195 PMCID: PMC6305493 DOI: 10.3389/fmicb.2018.03121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Flaviviruses are arboviruses, which comprises more than 70 viruses, covering broad geographic ranges, and responsible for significant mortality and morbidity globally. Due to the lack of efficient inhibitors targeting flaviviruses, the designing of novel and efficient anti-flavi agents is an important problem. Therefore, in the current study, we have developed a dedicated prediction algorithm anti-flavi, to identify inhibition ability of chemicals and peptides against flaviviruses through quantitative structure–activity relationship based method. We extracted the non-redundant 2168 chemicals and 117 peptides from ChEMBL and AVPpred databases, respectively, with reported IC50 values. The regression based model developed on training/testing datasets of 1952 chemicals and 105 peptides displayed the Pearson’s correlation coefficient (PCC) of 0.87, 0.84, and 0.87, 0.83 using support vector machine and random forest techniques correspondingly. We also explored the peptidomimetics approach, in which the most contributing descriptors of peptides were used to identify chemicals having anti-flavi potential. Conversely, the selected descriptors of chemicals performed well to predict anti-flavi peptides. Moreover, the developed model proved to be highly robust while checked through various approaches like independent validation and decoy datasets. We hope that our web server would prove a useful tool to predict and design the efficient anti-flavi agents. The anti-flavi webserver is freely available at URL http://bioinfo.imtech.res.in/manojk/antiflavi.
Collapse
Affiliation(s)
- Akanksha Rajput
- Virology Discovery Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Discovery Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
11
|
Martinez AA, Espinosa BA, Adamek RN, Thomas BA, Chau J, Gonzalez E, Keppetipola N, Salzameda NT. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem 2018; 157:1202-1213. [PMID: 30193218 DOI: 10.1016/j.ejmech.2018.08.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
The West Nile virus (WNV) has spread throughout the world causing neuroinvasive diseases with no treatments available. The viral NS2B-NS3 protease is essential for WNV survival and replication in host cells and is a promising drug target. Through an enzymatic screen of the National Institute of Health clinical compound library, we report the discovery of zafirlukast, an FDA approved treatment for asthma, as an inhibitor for the WNV NS2B-NS3 protease. Zafirlukast was determined to inhibit the protease through a mixed mode mechanism with an IC50 value of 32 μM. A structure activity relationship study of zafirlukast revealed the cyclopentyl carbamate and N-aryl sulfonamide as structural elements crucial for NS2B-NS3 protease inhibition. Replacing the cyclopentyl with a phenyl improved inhibition, resulting in an IC50 of 22 μM. Experimental and computational docking analysis support the inhibition model of zafirlukast and analogs binding at an allosteric site on the NS3 protein, thereby disrupting the NS2B cofactor from binding, resulting in protease inhibition.
Collapse
Affiliation(s)
- Anastasia A Martinez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Bianca A Espinosa
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Rebecca N Adamek
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Brent A Thomas
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Jennifer Chau
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Edwardo Gonzalez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Niroshika Keppetipola
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Nicholas T Salzameda
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA.
| |
Collapse
|
12
|
Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. J Enzyme Inhib Med Chem 2017; 32:712-721. [PMID: 28385094 PMCID: PMC6445162 DOI: 10.1080/14756366.2017.1306521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.
Collapse
Affiliation(s)
- Jenny Kouretova
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| | - M Zouhir Hammamy
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Anton Epp
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Kornelia Hardes
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Stephanie Kallis
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Linlin Zhang
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Rolf Hilgenfeld
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Ralf Bartenschlager
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,f German Center for Infection Research (DZIF) , Heidelberg University , Heidelberg , Germany
| | - Torsten Steinmetzer
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| |
Collapse
|
13
|
Bhakat S, Karubiu W, Jayaprakash V, Soliman ME. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses. Eur J Med Chem 2014; 87:677-702. [DOI: 10.1016/j.ejmech.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/07/2023]
|
14
|
Elseginy SA, Massarotti A, Nawwar GAM, Amin KM, Brancale A. Small Molecule Inhibitors of West Nile Virus. ACTA ACUST UNITED AC 2014; 23:179-87. [DOI: 10.3851/imp2581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
West Nile virus (WNV) is a human pathogen which is rapidly expanding worldwide. It is a member of the Flavivirus genus and it is transmitted by mosquitos between its avian hosts and occasionally in mammalian hosts. In humans the infection is often asymptomatic, however, the most severe cases result in encephalitis or meningitis. Approximately 10% of cases of neuroinvasive disease are fatal. To date there is no effective human vaccine or effective antiviral therapy available to treat WNV infections. For this reason, research in this field is rapidly growing. In this article we will review the latest efforts in the design and development of novel WNV inhibitors from a medicinal chemistry point of view, highlighting challenges and opportunities for the researchers working in this field.
Collapse
Affiliation(s)
- Samia A Elseginy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale ‘A Avogadro’, Novara, Italy
| | - Galal AM Nawwar
- Department of Chemical Industries, National Research Centre, Giza, Egypt
| | - Kamilia M Amin
- Department of Therapeutic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Ang MJY, Li Z, Lim HA, Ng FM, Then SW, Wee JLK, Joy J, Hill J, Chia CSB. A P2 and P3 substrate specificity comparison between the Murray Valley encephalitis and West Nile virus NS2B/NS3 protease using C-terminal agmatine dipeptides. Peptides 2014; 52:49-52. [PMID: 24333681 DOI: 10.1016/j.peptides.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The Murray Valley encephalitis virus (MVEV) and the West Nile virus (WNV) are mosquito-borne single-stranded RNA Flaviviruses responsible for many cases of viral encephalitis and deaths worldwide. The former is endemic in north Australia and Papua New Guinea while the latter has spread to different parts of the world and was responsible for a recent North American outbreak in 2012, resulting in 243 fatalities. There is currently no approved vaccines or drugs against MVEV and WNV viral infections. A plausible drug target is the viral non-structural NS2B/NS3 protease due to its role in viral replication. This trypsin-like serine protease recognizes and cleaves viral polyproteins at the C-terminal end of an arginine residue, opening an avenue for the development of peptide-based antivirals. This communication compares the P2 and P3 residue preferences of the MVEV and WNV NS2B/NS3 proteases using a series of C-terminal agmatine dipeptides. Our results revealed that both viral enzymes were highly specific toward lysines at the P2 and P3 positions, suggesting that a peptidomimetic viral protease inhibitor developed against one virus should also be active against the other.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Zhitao Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Huichang Annie Lim
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Fui Mee Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Siew Wen Then
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - John Liang Kuan Wee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Joma Joy
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - C S Brian Chia
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore.
| |
Collapse
|
16
|
Jayakumar S, Muthusamy S, Prakash M, Kesavan V. Enantioselective Synthesis of Spirooxindole α-exo-Methylene-γ-butyrolactones from 3-OBoc-Oxindoles. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Recent Advances in Targeting Dengue and West Nile Virus Proteases Using Small Molecule Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Lim SP, Shi PY. West Nile virus drug discovery. Viruses 2013; 5:2977-3006. [PMID: 24300672 PMCID: PMC3967157 DOI: 10.3390/v5122977] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023] Open
Abstract
The outbreak of West Nile virus (WNV) in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos 05-01, Singapore 138670, Singapore.
| | | |
Collapse
|
19
|
Substrate-based peptidomimetic inhibitors of the Murray Valley encephalitis virus NS2B/NS3 serine protease: A P1–P4 SAR study. Eur J Med Chem 2013; 68:72-80. [DOI: 10.1016/j.ejmech.2013.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 12/30/2022]
|
20
|
Garces AP, Watowich SJ. Intrinsic Flexibility of West Nile Virus Protease in Solution Characterized Using Small-Angle X-ray Scattering. Biochemistry 2013; 52:6856-65. [DOI: 10.1021/bi400782w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea P. Garces
- Department of Biochemistry
and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Stanley J. Watowich
- Department of Biochemistry
and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
21
|
Adamek RN, Maniquis RV, Khakoo S, Bridges MD, Salzameda NT. A FRET-based assay for the discovery of West Nile Virus NS2B-NS3 protease inhibitors. Bioorg Med Chem Lett 2013; 23:4848-50. [DOI: 10.1016/j.bmcl.2013.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
22
|
Lim HA, Ang MJY, Joy J, Poulsen A, Wu W, Ching SC, Hill J, Chia CSB. Novel agmatine dipeptide inhibitors against the West Nile virus NS2B/NS3 protease: A P3 and N-cap optimization study. Eur J Med Chem 2013; 62:199-205. [DOI: 10.1016/j.ejmech.2012.12.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/25/2012] [Indexed: 02/03/2023]
|
23
|
Kim YM, Gayen S, Kang C, Joy J, Huang Q, Chen AS, Wee JLK, Ang MJY, Lim HA, Hung AW, Li R, Noble CG, Lee LT, Yip A, Wang QY, Chia CSB, Hill J, Shi PY, Keller TH. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J Biol Chem 2013; 288:12891-900. [PMID: 23511634 DOI: 10.1074/jbc.m112.442723] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
Collapse
Affiliation(s)
- Young Mee Kim
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hammamy MZ, Haase C, Hammami M, Hilgenfeld R, Steinmetzer T. Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease. ChemMedChem 2013; 8:231-41. [PMID: 23307694 DOI: 10.1002/cmdc.201200497] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/07/2012] [Indexed: 11/08/2022]
Abstract
A series of new substrate analogue inhibitors of the WNV NS2B-NS3 protease containing decarboxylated arginine mimetics at the P1 position was developed. Among the various analogues, trans-(4-guanidino)cyclohexylmethylamide (GCMA) was identified as the most suitable P1 residue. In combination with dichloro-substituted phenylacetyl groups at the P4 position, three inhibitors with inhibition constants of <0.2 μM were obtained. These GCMA inhibitors have a better selectivity profile than the previously described agmatine analogues, and possess negligible affinity for the trypsin-like serine proteases thrombin, factor Xa, and matriptase. A crystal structure in complex with the WNV protease was determined for one of the most potent inhibitors, 3,4-dichlorophenylacetyl-Lys-Lys-GCMA (K(i)=0.13 μM). The inhibitor adopts a horseshoe-like conformation, most likely due to a hydrophobic contact between the P4 phenyl ring and the P1 cyclohexyl group, which is further stabilized by an intramolecular hydrogen bond between the P1 guanidino group and the P4 carbonyl oxygen atom. These inhibitors are stable, readily accessible, and have a noncovalent binding mode. Therefore, they may serve as suitable lead structures for further development.
Collapse
Affiliation(s)
- M Zouhir Hammamy
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Kang C, Gayen S, Wang W, Severin R, Chen AS, Lim HA, Chia CSB, Schüller A, Doan DNP, Poulsen A, Hill J, Vasudevan SG, Keller TH. Exploring the binding of peptidic West Nile virus NS2B-NS3 protease inhibitors by NMR. Antiviral Res 2012; 97:137-44. [PMID: 23211132 DOI: 10.1016/j.antiviral.2012.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/26/2022]
Abstract
West Nile virus (WNV) NS2B-NS3 protease is an important drug target since it is an essential protein for the replication of the virus. In order to determine the minimum pharmacophore for protease inhibition, a series of dipeptide aldehydes were synthesized. The 50% inhibitory concentration (IC(50)) measurements revealed that a simple acetyl-KR-aldehyde was only threefold less active than 4-phenyl-phenylacetyl-KKR-aldehyde (1) (Stoermer et al., 2008) that was used as the reference compound. The ligand efficiency of 0.40 kcal/mol/HA (HA=heavy atom) for acetyl-KR-aldehyde is much improved compared to the reference compound 1 (0.23 kcal/mol/HA). The binding of the inhibitors was examined using (1)H-(15)N-HSQC experiments and differential chemical shifts were used to map the ligand binding sites. The biophysical studies show that the conformational mobility of WNV protease has a major impact on the design of novel inhibitors, since the protein conformation changes profoundly depending on the structure of the bound ligand.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Therapeutics Center, Nanos, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ang MJY, Lim HA, Chia CSB. Solid-phase synthesis of a library of C-terminal agmatine dipeptides using a backbone amide linker (BAL) strategy. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|