1
|
Maksó L, Szele B, Ispán D, Gömöry Á, Mahó S, Skoda-Földes R. Catalyst- and excess reagent recycling in aza-Michael additions. Org Biomol Chem 2024; 22:2465-2473. [PMID: 38436400 DOI: 10.1039/d3ob02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
16α-Azolyl-pregnenolone derivatives were prepared via 2-butyl-1,1,3,3-tetramethylguanidine (n-Bu-TMG) catalysed aza-Michael addition of 16-dehydropregnenolone (16-DHP) carried out in [bmim][BF4]. The application of the guanidine base and the imidazolium ionic liquid made it possible to recycle not only the catalyst/solvent mixture but also the excess of the N-heterocyclic reagent. By the introduction of CO2 at the end of the reaction, both the guanidine base and the unreacted (excess) reagent could be converted into ionic species that remained dissolved in the ionic liquid phase, while the steroid components were extracted with an apolar solvent. After the removal of CO2, the experiment could be repeated by the addition of the steroid substrate and only an equimolar amount of the N-heterocycle. The methodology was successfully applied to a number of N-heterocycles, such as imidazole, pyrazole, 1,2,3- and 1,2,4-triazoles, and benzimidazole. Indazole and indole could also be converted into the corresponding products, but a stronger base had to be used to obtain a recyclable system.
Collapse
Affiliation(s)
- Lilla Maksó
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Boglárka Szele
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Dávid Ispán
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Ágnes Gömöry
- Hungarian Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Sándor Mahó
- Chemical Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői út 19-21, Hungary
| | - Rita Skoda-Földes
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| |
Collapse
|
2
|
Sharma K, Kumar H. Formation of nitrogen-containing six-membered heterocycles on steroidal ring system: A review. Steroids 2023; 191:109171. [PMID: 36581085 DOI: 10.1016/j.steroids.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Steroidal heterocyclic compounds constitute interesting and promising scaffolds for drug discovery as they have displayed diverse chemical reactivity and several types of biological activities. This study is a concise report on the most recent advancements in the chemistry of the steroid skeleton, including reactions at the A, B, and D ring systems. The modern synthetic methods for the steroidal nitrogen-containing six-membered heterocyclic derivatives from 3-keto-, 6-keto-, 17-keto-, and 20-keto-steroids, as well as 2-Aldo-, 4-Aldo-, 6-Aldo-, and 16-Aldo-steroids, are discussed. However, some other methods for the synthesis of steroidal N-containing 6-membered heterocyclic derivatives are also included. These compounds have shown therapeutic potential as cytotoxic agents against various cell lines and have also shown antiproliferative, anti-inflammatory, and antioxidant activities. Therefore, they could be used as prospective candidates for the development of various medications. This paper not only describes synthetic details involved in creating N-containing 6-membered heterocyclic steroid derivatives, but also provides a brief overview of the medicinal applications of these compounds. This information will be highly useful for the medicinal chemists conducting research in this field.
Collapse
Affiliation(s)
- Kamlesh Sharma
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India.
| | - Himanshi Kumar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India
| |
Collapse
|
3
|
Kulmány ÁE, Frank É, Papp D, Szekeres A, Szebeni GJ, Zupkó I. Biological evaluation of antiproliferative and anti-invasive properties of an androstadiene derivative on human cervical cancer cell lines. J Steroid Biochem Mol Biol 2021; 214:105990. [PMID: 34478830 DOI: 10.1016/j.jsbmb.2021.105990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 01/15/2023]
Abstract
Gynaecological cancers are leading cause of death: breast cancer is the most frequently diagnosed type of malignancies, and cervical neoplasms rank fourth for both incidence and mortality among women worldwide. In one of our previous studies, favourable antiproliferative and antimetastatic properties of a newly synthesized androstane derivative, 17APAD have been demonstrated on breast cancer cell lines with different expression patterns of hormone receptors. The aim of the current study was to investigate the antitumoral potential of this molecule in cervical cancer cell lines, including SiHa cells positive for human papilloma virus (HPV) type 16 and HPV-negative C33A cells. 17APAD exerted pronounced growth-inhibition (with IC50 values ranging from 0.76 to 1.72 μM with considerable cancer selectivity), while cisplatin used as a reference agent yielded higher IC50 values (ranging from 3.69 to 12.43) and less selectivity, as evidenced by MTT assay. The proapoptotic effect and morphological changes induced by 17APAD were detected by Hoechst 33258-propidium iodide or Annexin V-Alexa488-propidium iodide fluorescent double staining methods, supplemented with a caspase-3 activity assay to identify the mechanism behind the programmed cell death induced by 17APAD. Additionally, significant and concentration-dependent elevation of the ratio of cells in the G2/M phase, on the expense of G0/G1 phase, was observed after 48 h of exposure to 17APAD. Besides its potent antiproliferative properties against both cervical cancer cell lines, 17APAD elicited a remarkable inhibition of cell migration and invasion as detected in wound-healing and Boyden chamber assays, respectively. The mechanisms of action underlying the effects of 17APAD on cell proliferation and motility were independent of androgenic activity, as demonstrated by the Yeast Androgen Screen method. Our results provide new evidence for the proapoptotic and anti-invasive properties of 17APAD, suggesting that it is worth of further research, as a promising prototype for designing novel anticancer agents.
Collapse
Affiliation(s)
- Ágnes E Kulmány
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Dóra Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor J Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Elattar KM, El‐Mekabaty A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
6
|
Gan C, Huang X, Zhan J, Liu X, Huang Y, Cui J. Study on the interactions between B-norcholesteryl benzimidazole compounds with ct-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117525. [PMID: 31703992 DOI: 10.1016/j.saa.2019.117525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The study of molecule-DNA interaction is very important for designing an improved therapeutic agent. In previous studies, we synthesized some B-norcholesteryl benzimidazole compounds, and the tests on cancer cells showed that these compounds had good in vitro anti-cancer activities. In order to further investigate mechanism of their actions, three different B-norcholesteryl benzimidazole compounds were selected and interaction of these compounds with the calf thymus DNA (ct-DNA) was monitored by using various methods including UV-Vis and fluorescence spectroscopic techniques, viscosity measurement, and circular dichroism (CD). The results proved a hypochromic effect accompanied with a slight red-shift due to the interaction of the molecules with ct-DNA. According to the UV-Vis and fluorescence spectra, the mentioned compounds were bound to DNA, preferentially through partial intercalation into the DNA helix. Moreover, the ethidium bromide (EB) and Hoechst 33258 competitive binding experiments were also used to confirm the interaction mode of the compounds with ct-DNA. In the Hoechst 33258 displacement experiment, no significant change in the fluorescence intensity was observed. Additional assays such as iodide quenching, viscosity, and CD spectroscopy further confirmed that intercalation should be the major binding mode of the selected compounds with DNA. The cytotoxicity of these three compounds was also evaluated by MTT method, and the results confirmed that binding ability of these compounds to DNA was consistent with their cytotoxicity behavior. The experimental results indicated a higher binding affinity for compound 3 compared to the other compounds. This research provided a better understanding on the molecular mechanism of the interaction between B-norcholesteryl benzimidazole compounds and tumor cells, and offered a beneficial perspective to the designation of novel B-norsteroidal anticancer compounds.
Collapse
Affiliation(s)
- Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China.
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Junyan Zhan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Xiaolan Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China; Guangxi Colleges and University Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibuwan University, Qinzhou, 535099, PR China.
| |
Collapse
|
7
|
Zhao JW, Wu ZH, Guo JW, Huang MJ, You YZ, Liu HM, Huang LH. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. Eur J Med Chem 2019; 181:111520. [DOI: 10.1016/j.ejmech.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
|
8
|
Ma XY, Zhang K, Liu Y, Xu J, Yang YY, Liu J, Hu X. A three-step synthesis of estra-4,9-diene-3,17-dione. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estra-4,9-diene-3,17-dione, an important pharmaceutical intermediate, was synthesized by a three-step sequence from δ-lactone 1 in 23.4% overall yield. Reaction of δ-lactone 1 and Grignard reagent 2 followed by treatment with Jones reagent resulted in precursor 4. The domino cyclization reaction of 4 with piperidinium acetate gave estra-4,9-diene-3,17-dione.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Kun Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Yan Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Jiao Xu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Ying-Ying Yang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Jie Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Xinjun Hu
- College of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| |
Collapse
|
9
|
Tantawy MA, Nafie MS, Elmegeed GA, Ali IA. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg Chem 2017; 73:128-146. [DOI: 10.1016/j.bioorg.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 01/20/2023]
|
10
|
Al-Ghorbani M, Thirusangu P, Gurupadaswamy HD, Vigneshwaran V, Mohammed YHE, Prabhakar BT, Khanum SA. Synthesis of novel morpholine conjugated benzophenone analogues and evaluation of antagonistic role against neoplastic development. Bioorg Chem 2017; 71:55-66. [PMID: 28139247 DOI: 10.1016/j.bioorg.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/10/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
Abstract
A series of novel 4-benzyl-morpholine-2-carboxylic acid N'-[2-(4-benzoyl-phenoxy)-acetyl]-hydrazide derivatives 8a-j has been synthesized from (4-hydroxy-aryl)-aryl methanones through a multi-step reaction sequence and then evaluated for anti-proliferative activity in vitro against various types of neoplastic cells of mouse and human such as DLA, EAC, MCF-7 and A549 cells. From the cytotoxic studies and structural activity relationship of compounds 8a-j, it is clear that methyl group on the B ring of benzophenone is essential for antiproliferative activity and bromo at ortho position (compound 8b) and methyl at para position (compound 8f) on A ring of benzophenone are significant for extensive anti-mitogenic activity. Investigation on clonogenesis and Fluorescence-activated cell sorting suggests that compounds 8b and 8f have the potency to exhibit the prolonged activity with cell cycle arrest on G2/M phase against cancer progression. Further, the compounds 8b and 8f inhibit murine ascites lymphoma through caspase activated DNase mediated apoptosis.
Collapse
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - Prabhu Thirusangu
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - H D Gurupadaswamy
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - V Vigneshwaran
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - Yasser H E Mohammed
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - B T Prabhakar
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India.
| |
Collapse
|
11
|
|
12
|
Jakimov DS, Kojić VV, Aleksić LD, Bogdanović GM, Ajduković JJ, Djurendić EA, Penov Gaši KM, Sakač MN, Jovanović-Šanta SS. Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorg Med Chem 2015; 23:7189-98. [DOI: 10.1016/j.bmc.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/25/2023]
|
13
|
Zhang Z, Hu Q, Wang Y, Chen J, Zhang W. Rh-Catalyzed Asymmetric Hydrogenation of Cyclic α-Dehydroamino Ketones. Org Lett 2015; 17:5380-3. [DOI: 10.1021/acs.orglett.5b02733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenfeng Zhang
- School of Pharmacy and ‡School of Chemistry
and Chemical Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, P. R. China
| | - Qiupeng Hu
- School of Pharmacy and ‡School of Chemistry
and Chemical Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, P. R. China
| | - Yingjie Wang
- School of Pharmacy and ‡School of Chemistry
and Chemical Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianzhong Chen
- School of Pharmacy and ‡School of Chemistry
and Chemical Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- School of Pharmacy and ‡School of Chemistry
and Chemical Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Cui J, Qi B, Gan C, Liu Z, Huang H, Lin Q, Zhao D, Huang Y. Synthesis and in vitro antiproliferative evaluation of some B-norcholesteryl Benzimidazole and Benzothiazole derivatives. Mar Drugs 2015; 13:2488-504. [PMID: 25913705 PMCID: PMC4413222 DOI: 10.3390/md13042488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Taking orostanal (a compound from a Japanese marine sponge, Stelletta hiwasaensis) as a lead compound, some novel B-norcholesteryl benzimidazole and benzothiazole derivatives were synthesized. The antiproliferative activity of the compounds against human cervical carcinoma (HeLa), human lung carcinoma (A549), human liver carcinoma cells (HEPG2) and normal kidney epithelial cells (HEK293T) was assayed. The results revealed that the benzimidazole group was a better substituent than benzothiazole group for increasing the antiproliferative activity of compounds. 2-(3β′-Acetoxy-5β′-hydroxy-6′-B-norcholesteryl)benzimidazole (9b) with the structure of 6-benzimidazole displays the best antiproliferative activity to the cancer cells in all compounds, but is almost inactive to normal kidney epithelial cells (HEK293T). The assay of compound 9b to cancer cell apoptosis by flow cytometry showed that the compound was able to effectively induce cancer cell apoptosis. The research provided a theoretical reference for the exploration of new anti-cancer agents and may be useful for the design of novel chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jianguo Cui
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qizhou University, Qizhou 535099, China.
| | - Binbin Qi
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| | - Chunfang Gan
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| | - Zhipin Liu
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| | - Hu Huang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qizhou University, Qizhou 535099, China.
| | - Qifu Lin
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qizhou University, Qizhou 535099, China.
| | - Dandan Zhao
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| | - Yanmin Huang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| |
Collapse
|
15
|
Cui J, Liu L, Zhao D, Gan C, Huang X, Xiao Q, Qi B, Yang L, Huang Y. Synthesis, characterization and antitumor activities of some steroidal derivatives with side chain of 17-hydrazone aromatic heterocycle. Steroids 2015; 95:32-8. [PMID: 25578734 DOI: 10.1016/j.steroids.2015.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 01/18/2023]
Abstract
Here a series of dehydroepiandrosterone-17-hydrazone and estrone-17-hydrazone derivatives possessing various aromatic heterocycle structures in 17-side chain of their steroidal nucleus were synthesized and their structures were evaluated. The antiproliferative activity of synthesized compounds against some cancer cells was investigated. The results have demonstrated that some dehydroepiandrosterone-17-hydrazone derivatives show distinct antiproliferative activity against some cancer cells through inducing cancer cell apoptosis, and compound 8 with a quinoline structure in 17-side chain displays excellent antiproliferative activity in vitro against SGC 7901 cancer cell (human gastric carcinoma) with an IC50 value of 1 μM. In addition, estrone-17-hydrazone derivatives having a key feature of indole group in the structure showed a special obvious cytotoxicity against HeLa cells, but almost inactive against other cells. The information obtained from the studies is valuable for the design of novel steroidal chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jianguo Cui
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Liang Liu
- Sichuan Welltzpharm Inc. Chengdu, 610041, China
| | - Dandan Zhao
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Chunfang Gan
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Xin Huang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Qi Xiao
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Binbin Qi
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Lei Yang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China
| | - Yanmin Huang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, China.
| |
Collapse
|
16
|
Unraveling the structure-activity relationship of tomatidine, a steroid alkaloid with unique antibiotic properties against persistent forms of Staphylococcus aureus. Eur J Med Chem 2015; 80:605-20. [PMID: 24877760 DOI: 10.1016/j.ejmech.2013.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus (S. aureus) is responsible for difficult-to-treat and relapsing infections and constitutes one of the most problematic pathogens due to its multiple resistances to clinically available antibiotics. Additionally, the ability of S. aureus to develop small-colony variants is associated with a reduced susceptibility to aminoglycoside antibiotics and in vivo persistence. We have recently demonstrated that tomatidine, a steroid alkaloid isolated from tomato plants, possesses anti-virulence activity against normal strains of S. aureus as well as the ability to potentiate the effect of aminoglycoside antibiotics. In addition, tomatidine has shown antibiotic activity against small-colony variants of S. aureus. We herein report the first study of the structure-activity relationship of tomatidine against S. aureus.
Collapse
|
17
|
Gupta A, Kumar BS, Negi AS. Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 2013; 137:242-70. [PMID: 23727548 DOI: 10.1016/j.jsbmb.2013.05.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 01/13/2023]
Abstract
Steroids are important biodynamic agents. Their affinities for various nuclear receptors have been an interesting feature to utilize them for drug development particularly for receptor mediated diseases. Steroid biochemistry and its crucial role in human physiology, has attained importance among the researchers. Recent years have seen an extensive focus on modification of steroids. The rational modifications of perhydrocyclopentanophenanthrene nucleus of steroids have yielded several important anticancer lead molecules. Exemestane, SR16157, fulvestrant and 2-methoxyestradiol are some of the successful leads emerged on steroidal pharmacophores. The present review is an update on some of the steroidal leads obtained during past 25 years. Various steroid based enzyme inhibitors, antiestrogens, cytotoxic conjugates and steroidal cytotoxic molecules of natural as well as synthetic origin have been highlighted. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Atul Gupta
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, Lucknow 226015, U.P., India
| | | | | |
Collapse
|
18
|
Yurttaş L, Demirayak Ş, Çiftçi GA, Yıldırım ŞU, Kaplancıklı ZA. Synthesis and Biological Evaluation of Some 1,2-Disubstituted Benzimidazole Derivatives as New Potential Anticancer Agents. Arch Pharm (Weinheim) 2013; 346:403-14. [DOI: 10.1002/ardp.201200452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 11/09/2022]
|
19
|
Savić MP, Djurendić EA, Petri ET, Ćelić A, Klisurić OR, Sakač MN, Jakimov DS, Kojić VV, Gaši KMP. Synthesis, structural analysis and antiproliferative activity of some novel D-homo lactone androstane derivatives. RSC Adv 2013. [DOI: 10.1039/c3ra41336e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Hitchin JR, Hamilton NM, Jordan AM, Lyons AJ, Ogilvie DJ. A novel scalable and stereospecific synthesis of 3α- and 3β-amino-5α-androstan-17-ones and 3α- and 3β-amino-5α-pregnan-20-ones. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|