1
|
Ivanova E, Osipova M, Vasilieva T, Eremkin A, Markova S, Zazhivihina E, Smirnova S, Mitrasov Y, Nasakin O. The Recycling of Substandard Rocket Fuel N,N-Dimethylhydrazine via the Involvement of Its Hydrazones Derived from Glyoxal, Acrolein, Metacrolein, Crotonaldehyde, and Formaldehyde in Organic Synthesis. Int J Mol Sci 2023; 24:17196. [PMID: 38139025 PMCID: PMC10742919 DOI: 10.3390/ijms242417196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/05/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
"Heptil" (unsymmetrical dimethylhydrazine-UDMH) is extensively employed worldwide as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which complicates its transportation and disposal. Incineration is currently the only method used for its disposal, but this process generates oxidation by-products that are even more toxic than the original UDMH. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH from incineration towards its application in the synthesis of relatively non-toxic and readily available analogs of various pharmaceutical substances. We aim to bring the attention of the international chemical community to the distinctive properties of MDH, as well as other hydrazones (such as glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique transformations that have potential applications in molecular design, pharmaceutical research, and medicinal chemistry.
Collapse
Affiliation(s)
- Elizaveta Ivanova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Margarita Osipova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Tatyana Vasilieva
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Alexey Eremkin
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Svetlana Markova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Ekaterina Zazhivihina
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Svetlana Smirnova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Yurii Mitrasov
- Organic and Pharmaceutical Chemistry Department, Yakovlev Chuvash State Pedagogical University, K. Marx Street, 38, 428000 Cheboksary, Russia;
| | - Oleg Nasakin
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| |
Collapse
|
2
|
Kappenberg YG, Nogara PA, Stefanello FS, Delgado CP, Rocha JBT, Zanatta N, Martins MAP, Bonacorso HG. 1,2,3-Triazolo[4,5-b]aminoquinolines: Design, synthesis, structure, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, and molecular docking of novel modified tacrines. Bioorg Chem 2023; 139:106704. [PMID: 37453239 DOI: 10.1016/j.bioorg.2023.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
An efficient [4 + 2] cyclization protocol to synthesize a series of twelve examples of 1,2,3-triazolo[4,5-b]aminoquinolines (5) as novel structurally modified tacrines was obtained by reacting readily accessible precursors (i.e., 3-alky(aryl)-5-amino-1,2,3-triazole-4-carbonitriles (3)) and selected cycloalkanones (4) of five-, six-, and seven-membered rings. We evaluated the AChE and BChE inhibitory activity of the novel modified tacrines 5, and the compound derivatives from cyclohexanone (4b) showed the best AChE and BChE inhibitory activities. Specifically, 1,2,3-triazolo[4,5-b]aminoquinolines 5bb obtained from 3-methyl-carbonitrile (3b) showed the highest AChE (IC50 = 12.01 μM), while 5ib from 3-sulfonamido-carbonitrile (3i) was the most significant inhibitor for BChE (IC50 = 1.78 μM). In general, the inhibitory potency of compound 5 was weaker than the pure tacrine reference, and our findings may help to design and develop novel anticholinesterase drugs based on modified tacrines.
Collapse
Affiliation(s)
- Yuri G Kappenberg
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil; Instituto Federal Sul-Rio-Grandense (IFSul), 96418-400- Bagé, RS, Brazil
| | - Felipe S Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Cássia P Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
Alharthy RD, Rashid F, Ashraf A, Shafiq Z, Ford S, Al-Rashida M, Yaqub M, Iqbal J. Pyrazole derivatives of pyridine and naphthyridine as proapoptotic agents in cervical and breast cancer cells. Sci Rep 2023; 13:5370. [PMID: 37005457 PMCID: PMC10067956 DOI: 10.1038/s41598-023-32489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The increasing prevalence and resistance to chemotherapy is responsible for driving the search of novel molecules to combat this disease. In search of novel compounds with pro-apoptotic potential, pyrazolo-pyridine and pyrazolo-naphthyridine derivatives were investigated against cervical cancer (HeLa) and breast cancer (MCF-7) cells. The anti-proliferative activity was determined through the MTT assay. Potent compounds were then analyzed for their cytotoxic and apoptotic activity through a lactate dehydrogenase assay and fluorescence microscopy after propidium iodide and DAPI staining. Flow cytometry was used to determine cell cycle arrest in treated cells and pro-apoptotic effect was verified through measurement of mitochondrial membrane potential and activation of caspases. Compounds 5j and 5k were found to be most active against HeLa and MCF-7 cells, respectively. G0/G1 cell cycle arrest was observed in treated cancer cells. Morphological features of apoptosis were also confirmed, and an increased oxidative stress indicated the involvement of reactive oxygen species in apoptosis. The compound-DNA interaction studies demonstrated an intercalative mode of binding and the comet assay confirmed the DNA damaging effects. Finally, potent compounds demonstrated a decrease in mitochondrial membrane potential and increased levels of activated caspase-9 and -3/7 confirmed the induction of apoptosis in treated HeLa and MCF-7 cells. The present work concludes that the active compounds 5j and 5k may be used as lead candidates for the development of lead drug molecules against cervical and breast cancer.
Collapse
Affiliation(s)
- Rima D Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Abida Ashraf
- Department of Chemistry, Kutchery Campus, The Women University Multan, Multan, 60000, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Steven Ford
- Department of Pharmaceutical Sciences, Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
4
|
Yang S, Peng Y, Wu M, Chen X, Yang J, Wu D, Rong L. Green and Efficient Synthesis of Spiroheterocyclic Compounds from Reactions of Isatins, 3-Amino-1-phenyl-1 H-pyrazol-5(4 H)-one, and Monocyclic Ketones. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2162932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuang Yang
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an, PR China
| | - Yani Peng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Minyang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xingyue Chen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Jing Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Dan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| |
Collapse
|
5
|
Rajendran S, Sivalingam K, Karnam Jayarampillai RP, Wang WL, Salas CO. Friedlӓnder's synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem Biol Drug Des 2022; 100:1042-1085. [PMID: 35322543 DOI: 10.1111/cbdd.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/25/2023]
Abstract
In the current scenario of medicinal chemistry, quinoline plays a pivotal role in the design of new heterocyclic compounds with several pharmacological properties, so the search for new synthetic methodologies and their application in drug discovery has been widely studied. So far, many procedures have been performed for the preparation of quinoline scaffolds, among which Friedländer quinoline synthesis plays an important role in obtaining these heterocycles. The Friedländer reaction involves condensation between 2-aminobenzaldehydes and keto-compounds. The quinoline nucleus, once obtained through the Friedländer synthesis, has been extensively modified so that these derivatives can exhibit a large number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antituberculosis, and antileishmanial properties. In this work, the focus is on the applicability of the Friedländer reaction in the synthesis of various types of bioactive heterocyclic quinoline compounds, which to date has not been reported in the context of medicinal chemistry. The main part of this review selectively focuses on research from 2010 to date and will present highlights of the Friedländer quinoline synthesis procedures and findings to address biological and pharmacological activities.
Collapse
Affiliation(s)
- Satheeshkumar Rajendran
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kalaiselvi Sivalingam
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Wen-Long Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Design, synthesis, AChE/BChE inhibitory activity, and molecular docking of spiro[chromeno[4,3-b]thieno[3,2-e]pyridine]-7-amine tacrine hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ahmed AAM, Mekky AEM, Sanad SMH. New bis(pyrazolo[3,4-b]pyridines) and bis(thieno[2,3-b]pyridines) as potential acetylcholinesterase inhibitors: synthesis, in vitro and SwissADME prediction study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
5(4)-Aminopyrazoles as effective reagents in the synthesis of pyrazolo-annulated pyridines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Danel A, Gondek E, Kucharek M, Szlachcic P, Gut A. 1 H-Pyrazolo[3,4- b]quinolines: Synthesis and Properties over 100 Years of Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092775. [PMID: 35566124 PMCID: PMC9099536 DOI: 10.3390/molecules27092775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
This paper summarises a little over 100 years of research on the synthesis and the photophysical and biological properties of 1H-pyrazolo[3,4-b]quinolines that was published in the years 1911–2021. The main methods of synthesis are described, which include Friedländer condensation, synthesis from anthranilic acid derivatives, multicomponent synthesis and others. The use of this class of compounds as potential fluorescent sensors and biologically active compounds is shown. This review intends to summarize the abovementioned aspects of 1H-pyrazolo[3,4-b]quinoline chemistry. Some of the results that are presented in this publication come from the laboratories of the authors of this review.
Collapse
Affiliation(s)
- Andrzej Danel
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Podchorążych Str. 1, 30-084 Krakow, Poland;
- Correspondence:
| | - Ewa Gondek
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Podchorążych Str. 1, 30-084 Krakow, Poland;
| | - Mateusz Kucharek
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (M.K.); (P.S.)
| | - Paweł Szlachcic
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (M.K.); (P.S.)
| | - Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Gronostajowa Str. 2, 30-387 Krakow, Poland;
| |
Collapse
|
10
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
San Y, Sun J, Wang H, Jin ZH, Gao HJ. Synthesis of 1,8-Naphthyridines by the Ionic Liquid-Catalyzed Friedlander Reaction and Application in Corrosion Inhibition. ACS OMEGA 2021; 6:28063-28071. [PMID: 34723006 PMCID: PMC8552317 DOI: 10.1021/acsomega.1c04103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A several of basic ionic liquids (ILs) were synthesized as green solvents and catalysts for the preparation of 1,8-naphthyridyl derivatives via the Friedlander reaction. [Bmmim][Im] exhibited remarkable catalytic activity to achieve the synthetic targets, and the reaction conditions were optimized. The model product 2,3-diphenyl-1,8-naphthyridine (1,8-Nap), with carboxyethylthiosuccinic acid (CETSA) to form an IL corrosion inhibitor ([1,8-Nap][CETSA]), and its corrosion inhibition performance for Q235 steel in 1 M HCl were researched by weight loss measurements, and the results showed that the inhibition efficiency was 96.95% when the concentration of [1,8-Nap][CETSA] was 1 mM at 35 °C. The electrochemical test verified that [1,8-Nap][CETSA] acted as a mixed-type inhibitor but mainly exhibited cathodic behavior. The inhibitor adsorbed on the metal surface was further proved by surface topography analysis.
Collapse
Affiliation(s)
- Ying San
- Institute of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Jian Sun
- Institute of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Hong Wang
- Institute of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Zhao-Hui Jin
- Institute of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Hua-Jing Gao
- Institute of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, China
| |
Collapse
|
12
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Ramadan M, Aly AA, El-Haleem LEA, Alshammari MB, Bräse S. Substituted Pyrazoles and Their Heteroannulated Analogs-Recent Syntheses and Biological Activities. Molecules 2021; 26:4995. [PMID: 34443583 PMCID: PMC8401439 DOI: 10.3390/molecules26164995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrazoles are considered privileged scaffolds in medicinal chemistry. Previous reviews have discussed the importance of pyrazoles and their biological activities; however, few have dealt with the chemistry and the biology of heteroannulated derivatives. Therefore, we focused our attention on recent topics, up until 2020, for the synthesis of pyrazoles, their heteroannulated derivatives, and their applications as biologically active moieties. Moreover, we focused on traditional procedures used in the synthesis of pyrazoles.
Collapse
Affiliation(s)
- Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assuit 71524, Egypt;
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
| | | | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Carreiras MDC, Marco-Contelles J. Five-Membered-Ring-Fused Tacrines as Anti-Alzheimer’s Disease Agents. Synlett 2021. [DOI: 10.1055/s-0040-1719823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOur endeavors in the design, synthesis, and biological assessment of five-membered-ring-fused tacrines as potential therapeutic agents for Alzheimer’s disease are summarized. Particularly, we have identified racemic 4-(2-methoxyphenyl)-3-methyl-2,4,6,7,8,9-hexahydropyrazolo[4′,3′:5,6]pyrano[2,3-b]quinolin-5-amine, a pyranopyrazolotacrine, as having the best nontoxic profile at the highest concentrations used (300 μM); this allows cell viability, is less hepatotoxic than tacrine, and is a potent noncompetitive AChE inhibitor (IC50 = 1.52 ± 0.49 μM). It is able to completely inhibit the EeAChE-induced Aβ1–40 aggregation in a statistically significant manner without affecting the Aβ1–40 self-aggregation at 25 μM, and shows strong neuroprotective effects (EC50 = 0.82 ± 0.17 μM).1 Introduction2 Furo-, Thieno-, and Pyrrolotacrines3 Pyrazolo-, Oxazolo-, and Isoxazolotacrines4 Indolotacrines5 Pyrano- and Pyridopyrazolotacrines6 Conclusions and Outlook
Collapse
|
15
|
Ghasempour L, Asghari S, Tajbakhsh M, Mohseni M. Preparation of New Spiropyrazole, Pyrazole and Hydantoin Derivatives and Investigation of Their Antioxidant and Antibacterial Activities. Chem Biodivers 2021; 18:e2100197. [PMID: 34272925 DOI: 10.1002/cbdv.202100197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
In this study, the synthesis of new spiropyrazoles, pyrazole and hydantoin heterocycles is reported by three component reactions of parabanic acids, hydrazine derivatives, and phenacyl bromides in the presence of triphenylphosphine as a nucleophile and triethylamine as a base in good to high yields (69-91 %). Evaluation of the synthesized compounds revealed a good to excellent antioxidant activities (37.6-96.2 %) using DPPH inhibitory potency. Among these compounds, hydantoin derivatives displayed higher antioxidant activities (93.7-96.2 %) comparing with spiropyrazoles and pyrazoles. The obtained results showed that Cl and Br substituents on the phenyl ring increased antioxidant activities of the related heterocycles. The antibacterial activities of the synthesized compounds were examined against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Among the synthesized heterocycles, 2-[1,3-dimethyl-2,5-dioxo-4-(2-oxo-2-phenylethyl)imidazolidin-4-yl]hydrazine-1-carbothioamide exhibited the excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Leila Ghasempour
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
- Nano and Biotechnology Research Group, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mojtaba Mohseni
- Nano and Biotechnology Research Group, University of Mazandaran, Babolsar, 47416-95447, Iran
- Department of Microbiology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Iran
| |
Collapse
|
16
|
Babaee S, Chehardoli G, Akbarzadeh T, Zolfigol MA, Mahdavi M, Rastegari A, Homayouni Moghadam F, Najafi Z. Design, Synthesis, and Molecular Docking of Some Novel Tacrine Based Cyclopentapyranopyridine- and Tetrahydropyranoquinoline-Kojic Acid Derivatives as Anti-Acetylcholinesterase Agents. Chem Biodivers 2021; 18:e2000924. [PMID: 33861892 DOI: 10.1002/cbdv.202000924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A novel series of tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives were designed, synthesized, and evaluated as anti-cholinesterase agents. The chemical structures of all target compounds were characterized by 1 H-NMR, 13 C-NMR, and elemental analyses. The synthesized compounds mostly inhibited acetylcholinesterase enzyme (AChE) with IC50 values of 4.18-48.71 μM rather than butyrylcholinesterase enzyme (BChE) with IC50 values of >100 μM. Among them, cyclopentapyranopyridine-kojic acid derivatives showed slightly better AChE inhibitory activity compared to tetrahydropyranoquinoline-kojic acid. The compound 10-amino-2-(hydroxymethyl)-11-(4-isopropylphenyl)-7,8,9,11-tetrahydro-4H-cyclopenta[b]pyrano[2',3' : 5,6]pyrano[3,2-e]pyridin-4-one (6f) bearing 4-isopropylphenyl moiety and cyclopentane ring exhibited the highest anti-AChE activity with IC50 value of 4.18 μM. The kinetic study indicated that the compound 6f acts as a mixed inhibitor and the molecular docking studies also illustrated that the compound 6f binds to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE. The compound 6f showed moderate neuroprotective properties against H2 O2 -induced cytotoxicity in PC12 cells. The theoretical ADME study also predicted good drug-likeness for the compound 6f. Based on these results, the compound 6f seems to be a very promising AChE inhibitor for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Mahdavi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Farshad Homayouni Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| |
Collapse
|
17
|
Teixeira FC, Lucas C, Curto MJM, André V, Duarte MT, Teixeira APS. Synthesis of novel pyrazolo[3,4-b]quinolinebisphosphonic acids and an unexpected intramolecular cyclization and phosphonylation reaction. Org Biomol Chem 2021; 19:2533-2545. [PMID: 33666215 DOI: 10.1039/d1ob00025j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel pyrazolo[3,4-b]quinoline α-ketophosphonic and hydroxymethylenebisphosphonic acid compounds were synthesized using different methodologies, starting from 2-chloro-3-formylquinoline 1. New phosphonic acid compounds were obtained as N-1 derivatives with a side chain with 1 or 3 (n = 1 or 3) methylene groups. All phosphonic acid compounds and their corresponding ester and carboxylic acid precursors were fully characterized, and their structures elucidated by spectroscopic data, using NMR techniques and infrared and high-resolution mass spectroscopy. During the process to obtain the N-1 substituted derivative with two methylene groups (n = 2) in the side chain, an unexpected addition-cyclization cascade reaction was observed, involving the phosphonylation of an aromatic ring and the formation of a new six-member lactam ring to afford a tetracyclic ring system. This was an unexpected result since other pyrazolo[3,4-b]quinoline derivatives and all corresponding pyrazolo[3,4-b]pyridine derivatives already prepared, under similar experimental conditions, did not undergo this reaction. This domino reaction occurs with different phosphite reagents but only affords the six-member ring. The spectroscopic data allowed the identification of the new synthesized tetracyclic compounds and the X-ray diffraction data of compound 11 enabled the confirmation of the proposed structures.
Collapse
Affiliation(s)
- Fátima C Teixeira
- Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
18
|
Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011-2020). Molecules 2021; 26:molecules26051202. [PMID: 33668128 PMCID: PMC7956461 DOI: 10.3390/molecules26051202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
The remarkable prevalence of pyrazole scaffolds in a versatile array of bioactive molecules ranging from apixaban, an anticoagulant used to treat and prevent blood clots and stroke, to bixafen, a pyrazole-carboxamide fungicide used to control diseases of rapeseed and cereal plants, has encouraged both medicinal and organic chemists to explore new methods in developing pyrazole-containing compounds for different applications. Although numerous synthetic strategies have been developed in the last 10 years, there has not been a comprehensive overview of synthesis and the implication of recent advances for treating neurodegenerative disease. This review first presents the advances in pyrazole scaffold synthesis and their functionalization that have been published during the last decade (2011-2020). We then narrow the focus to the application of these strategies in the development of therapeutics for neurodegenerative diseases, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
19
|
Vydzhak RN, Panchishin SY, Brovarets VS. Application of Nickel Complexes with 1,3-Dicarbonyl Compounds for Synthesis of Fused 4-Aminopyridine-Based Systems. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Laachir A, Rhoufal F, Guesmi S, Ketatni EM, Jouffret L, Hlil EK, Sergent N, Obbade S, Bentiss F. Cobalt(II) coordination complex with 2,5-bis(pyridine-2-yl)-1,3,4-thiadiazole and thiocyanate as co-ligand: Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic, thermal and magnetic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Silva D, Mendes E, Summers EJ, Neca A, Jacinto AC, Reis T, Agostinho P, Bolea I, Jimeno ML, Mateus ML, Oliveira‐Campos AMF, Unzeta M, Marco‐Contelles J, Majekova M, Ramsay RR, Carreiras MC. Synthesis, biological evaluation, and molecular modeling of nitrile‐containing compounds: Exploring multiple activities as anti‐Alzheimer agents. Drug Dev Res 2020; 81:215-231. [DOI: 10.1002/ddr.21594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Eduarda Mendes
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Eleanor J. Summers
- Biomedical Sciences Research ComplexUniversity of St. Andrews St. Andrews UK
| | - Ana Neca
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Ana C. Jacinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Telma Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Paula Agostinho
- Faculty of Medicine and Center for Neuroscience and Cell BiologyUniversity of Coimbra Coimbra Portugal
| | - Irene Bolea
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de MedicinaUniversitat Autònoma de Barcelona (UAB) Bellaterra (Barcelona) Spain
| | - M. Luisa Jimeno
- Centro de Química Orgánica “Lora Tamayo” (CSIC) Madrid Spain
| | - M. Luisa Mateus
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | | | - Mercedes Unzeta
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de MedicinaUniversitat Autònoma de Barcelona (UAB) Bellaterra (Barcelona) Spain
| | - José Marco‐Contelles
- Laboratory of Medicinal ChemistryInstitute of Organic Chemistry (CSIC) Madrid Spain
| | - Magdalena Majekova
- Center of Experimental MedicineInstitute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences Bratislava Slovakia
| | - Rona R. Ramsay
- Biomedical Sciences Research ComplexUniversity of St. Andrews St. Andrews UK
| | - M. Carmo Carreiras
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| |
Collapse
|
22
|
Aggarwal R, Kumar S, Singh G. Multi-component reaction to access a library of polyfunctionally substituted 4,7-dihydropyrazolo[3,4- b]pyridines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1582064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Gulshan Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
23
|
Kumar SV, Muthusubramanian S, Perumal S. Recent Progress in the Synthesis of Pyrazolopyridines and Their Derivatives. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2018.1542517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sundaravel Vivek Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai – 625021, Tamil Nadu, India
| | - Shanmugam Muthusubramanian
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai – 625021, Tamil Nadu, India
| | - Subbu Perumal
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai – 625021, Tamil Nadu, India
| |
Collapse
|
24
|
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry; Visva-Bharati (a Central University); Santiniketan-731 235 West Bengal India
| |
Collapse
|
25
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 477] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
26
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
27
|
Ezzati M, Khalafy J, Marjani AP, Prager RH. An Efficient One-Pot, Four-Component Synthesis of Pyrazolo[3,4-b]pyridines Catalyzed by Tetrapropylammonium Bromide (TPAB) in Water. Aust J Chem 2018. [DOI: 10.1071/ch17642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel and one-pot pseudo-four-component reaction between a series of arylglyoxals, malononitrile, 3-methyl-1-phenyl-1H-pyrazol-5-amine, and acetone in the presence of tetrapropylammonium bromide (TPAB) has been developed to synthesize a series of new substituted pyrazolo[3,4-b]pyridines, using water as an environmentally friendly solvent, in high to excellent yields.
Collapse
|
28
|
New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer's disease. Eur J Med Chem 2017; 139:280-289. [DOI: 10.1016/j.ejmech.2017.07.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
29
|
Acosta P, Insuasty B, Abonia R, Gutierrez M, Quiroga J. Synthesis of novel 7-aryl and 7-spiropyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine derivatives and their study as AChE inhibitors. Mol Divers 2017; 21:943-955. [DOI: 10.1007/s11030-017-9774-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
30
|
SO3H-functionalized MCM-41 as an efficient catalyst for the combinatorial synthesis of 1H-pyrazolo-[3,4-b]pyridines and spiro-pyrazolo-[3,4-b]pyridines. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1099-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Magesh Selva Kumar A, Vijaya Pandiyan B, Mohana Roopan S, Rajendran S. Efficient synthesis, fluorescence and DFT studies of different substituted 2-chloroquinoline-4-amines and benzo[g][1,8]naphthyridine derivatives. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Pourabdi L, Khoobi M, Nadri H, Moradi A, Moghadam FH, Emami S, Mojtahedi MM, Haririan I, Forootanfar H, Ameri A, Foroumadi A, Shafiee A. Synthesis and structure-activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. Eur J Med Chem 2016; 123:298-308. [DOI: 10.1016/j.ejmech.2016.07.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/28/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
|
33
|
Wan Y, Huang SY, Liu GX, Chen LF, Yue SN, Zhang WL, Zou H, Zhang LZ, Cui H, Zhou SL, Wu H. A Catalyst-free Synthesis of Pyrazolopyridines Derived from Alicyclic Mono-ketones. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wan
- Key Laboratory of Biotechnology on Medical Plant of Jiangsu Province; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Shu-Ying Huang
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Gui-Xiang Liu
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Liang-Feng Chen
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Shu-Ning Yue
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Wen-Li Zhang
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Huan Zou
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Li-Zhuo Zhang
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Hao Cui
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Sheng-Liang Zhou
- Key Laboratory of Biotechnology on Medical Plant of Jiangsu Province; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Hui Wu
- School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
- Key Laboratory of Biotechnology on Medical Plant of Jiangsu Province; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| |
Collapse
|
34
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
35
|
Sumesh RV, Muthu M, Almansour AI, Suresh Kumar R, Arumugam N, Athimoolam S, Jeya Yasmi Prabha EA, Kumar RR. Multicomponent Dipolar Cycloaddition Strategy: Combinatorial Synthesis of Novel Spiro-Tethered Pyrazolo[3,4-b]quinoline Hybrid Heterocycles. ACS COMBINATORIAL SCIENCE 2016; 18:262-70. [PMID: 27027478 DOI: 10.1021/acscombsci.6b00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The stereoselective syntheses of a library of novel spiro-tethered pyrazolo[3,4-b]quinoline-pyrrolidine/pyrrolothiazole/indolizine-oxindole/acenaphthene hybrid heterocycles have been achieved through the 1,3-dipolar cycloaddition of azomethine ylides generated in situ from α-amino acids and 1,2-diketones to dipolarophiles derived from pyrazolo[3,4-b]quinoline derivatives.
Collapse
Affiliation(s)
- Remani Vasudevan Sumesh
- Department
of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu India
| | - Muthumani Muthu
- Department
of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu India
| | - Abdulrahman I. Almansour
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S. Athimoolam
- Department
of Physics, University College of Engineering, Anna University Constituent College, Nagercoil 629 004, Tamil
Nadu India
| | - E. Arockia Jeya Yasmi Prabha
- Department
of Physics, University College of Engineering, Anna University Constituent College, Nagercoil 629 004, Tamil
Nadu India
| | - Raju Ranjith Kumar
- Department
of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu India
| |
Collapse
|
36
|
Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer's disease. Future Med Chem 2016; 7:845-55. [PMID: 26061104 DOI: 10.4155/fmc.15.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Due to the complex nature of Alzheimer's disease, there is a renewed search for multipotent, nonhepatotoxic tacrines. RESULTS This paper describes the synthesis and in vitro biological evaluation of eight new racemic 3-methyl-4-aryl-2,4,6,7,8,9-hexahydropyrazolo[4',3':5,6]pyrano[2,3-b]quinolin-5-amines (pyranopyrazolotacrines, PPT) as nonhepatotoxic multipotent tacrine analogs. Among these compounds, PPT4 is the less hepatotoxic in the cell viability assay on HepG2 cells, showing a good neuroprotective effect in the decreased cortical neuron viability induced by oligomycin A/rotenone analysis. PPT4 is a selective and good, noncompetitive EeAChE inhibitor, able to completely inhibit the Aβ1-40 aggregation induced by acetylcholinesterase. CONCLUSION A new family of nonhepatotoxic showing selective acetylcholinesterase inhibition, permeable tacrine analogs have been discovered for the potential treatment of Alzheimer's disease.
Collapse
|
37
|
Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M. 1,8-Naphthyridine Derivatives: A Review of Multiple Biological Activities. Arch Pharm (Weinheim) 2015; 348:837-60. [DOI: 10.1002/ardp.201500237] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Alka Madaan
- Cell Biology Lab; Dabur Research Foundation; Sahibabad, Ghaziabad Uttar Pradesh India
| | - Ritu Verma
- Cell Biology Lab; Dabur Research Foundation; Sahibabad, Ghaziabad Uttar Pradesh India
| | - Vivek Kumar
- Chemical Research Lab; Dabur Research Foundation; Sahibabad, Ghaziabad Uttar Pradesh India
| | - Anu T. Singh
- Cell Biology Lab; Dabur Research Foundation; Sahibabad, Ghaziabad Uttar Pradesh India
| | - Swatantra K. Jain
- Department of Medical Biochemistry, HIMSR and Department of Biotechnology; Jamia Hamdard; New Delhi India
| | - Manu Jaggi
- Cell Biology Lab; Dabur Research Foundation; Sahibabad, Ghaziabad Uttar Pradesh India
| |
Collapse
|
38
|
Acosta P, Butassi E, Insuasty B, Ortiz A, Abonia R, Zacchino SA, Quiroga J. Microwave-Assisted Synthesis of Novel Pyrazolo[3,4-g][1,8]naphthyridin-5-amine with Potential Antifungal and Antitumor Activity. Molecules 2015; 20:8499-520. [PMID: 25985354 PMCID: PMC6273193 DOI: 10.3390/molecules20058499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022] Open
Abstract
The microwave assisted reaction between heterocyclic o-aminonitriles 1 and cyclic ketones 2 catalyzed by zinc chloride led to new series of pyrazolo[3,4-b][1,8]naphthyridin-5-amines 3 in good yields. This procedure provides several advantages such as being environmentally friendly, high yields, simple work-up procedure, broad scope of applicability and the protocol provides an alternative for the synthesis of pyrazolonaphthyridines. The whole series showed antifungal activities against Candida albicans and Cryptococcus neoformans standardized strains, being compounds with a 4-p-tolyl substituent of the naphthyridin scheleton (3a, 3d and 3g), the most active ones mainly against C. albicans, which appear to be related to their comparative hydrophobicity. Among them, 3d, containing a cyclohexyl fused ring, showed the best activity. The anti-Candida activity was corroborated by testing the three most active compounds against clinical isolates of albicans and non-albicans Candida strains. These compounds were also screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines. Compounds 3a and 3e showed remarkable antitumor activity against cancer cell lines, with the most important GI50 values ranging from 0.62 to 2.18 μM.
Collapse
Affiliation(s)
- Paola Acosta
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Estefanía Butassi
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP 2000 Rosario, Argentina.
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Alejandro Ortiz
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Susana A Zacchino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP 2000 Rosario, Argentina.
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| |
Collapse
|
39
|
Fu L, Feng X, Wang JJ, Xun Z, Hu JD, Zhang JJ, Zhao YW, Huang ZB, Shi DQ. Efficient synthesis and evaluation of antitumor activities of novel functionalized 1,8-naphthyridine derivatives. ACS COMBINATORIAL SCIENCE 2015; 17:24-31. [PMID: 25412896 DOI: 10.1021/co500120b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient synthesis of novel functionalized 1,8-naphthyridine and chromeno[2,3-b]quinoline derivatives via cascade reaction of 2-chloroquinoline-3-carbaldehyde and enaminones or cyclic 1,3-dicarbonyl compounds was developed. All of the 1,8-naphthyridine derivatives synthesized were evaluated for their antiproliferative properties in vitro against cancer cells and several compounds were found to have high activities.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xian Feng
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jian-Jun Wang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhan Xun
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jun-Die Hu
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Juan-Juan Zhang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yan-Wei Zhao
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhi-Bin Huang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
40
|
Khoobi M, Ghanoni F, Nadri H, Moradi A, Pirali Hamedani M, Homayouni Moghadam F, Emami S, Vosooghi M, Zadmard R, Foroumadi A, Shafiee A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur J Med Chem 2015; 89:296-303. [DOI: 10.1016/j.ejmech.2014.10.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/30/2022]
|
41
|
Isoxazolotacrines as non-toxic and selective butyrylcholinesterase inhibitors for Alzheimer's disease. Future Med Chem 2014; 6:1883-91. [DOI: 10.4155/fmc.14.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Owing to the complex nature of Alzheimer's disease, there is a renewed and growing search for multitarget non-toxic tacrines as simple, easily available drugs in order to stop the progress and development of the disease. Results: This paper describes our preliminary results on the synthesis, in vitro biochemical evaluation and molecular modeling of isoxazolotacrines as potential drugs for the treatment of Alzheimer's disease. Novel 3-phenyl-5,6,7,8-tetrahydroisoxazolo[5,4-b]quinolin-4-amine (OC41) is a promising, 31% less toxic than tacrine in HepG2 cells, and selective reversible human butyrylcholinesterase inhibitor (IC50 = 5.08 ± 1.12 µM), also showing good drug-like properties according to the absorption, Distribution, Metabolism, Excretion, Toxicity analysis. Conclusion: A new family of non-hepatotoxic permeable tacrine analogs, showing selective butyrylcholinesterase inhibition, have been discovered for the potential treatment of Alzheimer's disease.
Collapse
|
42
|
Zhang YC, Liu ZC, Yang R, Zhang JH, Yan SJ, Lin J. Regioselective construction of 1,3-diazaheterocycle fused [1,2-a][1,8]naphthyridine derivatives via cascade reaction of quinolines with heterocyclic ketene aminals: a joint experimental-computational approach. Org Biomol Chem 2014; 11:7276-88. [PMID: 24057033 DOI: 10.1039/c3ob41200h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A one-step, transition-metal-free protocol, involving facile post-treatment, for the regioselective synthesis of 1,3-diazaheterocycle fused [1,2-a][1,8]naphthyridine derivatives (3) from 2-chloroquinoline-3-carbaldehydes (ClQuAlds) (1) and heterocyclic ketene aminals (HKAs) (2) was developed via a joint experimental-computational approach. The computational prediction of the reactivity of two series of synthons was applied in the process of optimizing the reaction conditions, which relied on density functional theory (DFT) calculations together with concepts of frontier molecular orbital (FMO) theory and quantitative structure-reactivity relationship (QSRR) presumptions. The combined results enabled the proposal of a pre-synthetic prediction of global reactivity. The fully consistent results of the synthetic experiments with the in silico evaluation confirmed the rationality, effectiveness, and practicability of the new strategy. Notably, the joint method is not limited to the laboratory, but has applications ranging from routine to industry. This approach is likely to yield numerous insights to accelerate HKA-related synthetic chemistry that can be extended to numerous heterocycles. It thus opens up a novel entry towards rapidly investigating the reactivity of novel synthons with unique properties, a further step towards exploiting cascade reactions by avoiding the futile waste of time and resources.
Collapse
Affiliation(s)
- Yi-Chuan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | | | | | | | | | | |
Collapse
|
43
|
Li Y, Chang M, Liu R, Lin G, Gao W. A facile synthesis of (E)-3-styryl-1-phenyl cyclohepta[c]pyrazol-8(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-012-0785-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Li C, Mu XY, Li YL, Liu Y, Wang XS. Combinatorial synthesis of fused tetracyclic heterocycles containing [1,6]naphthyridine derivatives under catalyst free conditions. ACS COMBINATORIAL SCIENCE 2013; 15:267-72. [PMID: 23581605 DOI: 10.1021/co400020w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A three-component reaction between an aromatic aldehyde, an amine, and tert-butyl 2,4-dioxopiperidine-1-carboxylate in EtOH at refluxing temperature gave fused tetracyclic heterocycles in high yields. The amines include 1H-indazol-5-amine, 1H-indazol-6-amine, 1H-indol-5-amine, and 1H-benzo[d]imidazol-5-amine, giving 11-aryl-3H-indazolo[5,4-b][1,6] naphthyridine, 11-aryl-1H-indazolo[6,7-b][1,6]naphthyridine, 11-aryl-3H-indolo[5,4-b][1,6]naph-thyridine, and 11-aryl-3H-imidazo[4',5':3,4]benzo[1,2-b][1,6]naphthyridine derivatives, respectively.
Collapse
Affiliation(s)
- Chao Li
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Xing-Ye Mu
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Yu-Ling Li
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Yun Liu
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| |
Collapse
|
45
|
Silva D, Chioua M, Samadi A, Agostinho P, Garção P, Lajarín-Cuesta R, de los Ríos C, Iriepa I, Moraleda I, Gonzalez-Lafuente L, Mendes E, Pérez C, Rodríguez-Franco MI, Marco-Contelles J, Carmo Carreiras M. Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: effect against amyloid-β-induced neurotoxicity. ACS Chem Neurosci 2013; 4:547-65. [PMID: 23379636 DOI: 10.1021/cn300178k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2-7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14-18), and quinolinodonepezils (19-21) are described. Pyridonepezils 15-18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19-21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl)butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC(50) (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15-18 and quinolinodonepezils 20-21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5-cyano-2-methyl-4-phenylnicotinate (16) [IC(50) (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ(1-42). All compounds were effective in preventing the enhancement of AChE activity induced by Aβ(1-42). Compounds 2-7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ(1-42). Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca(2+) influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive multipotent molecules for the potential treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Silva
- Research Institute for Medicines and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de
la Cierva 3, 28006-Madrid, Spain
| | - Mourad Chioua
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de
la Cierva 3, 28006-Madrid, Spain
| | - Abdelouahid Samadi
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de
la Cierva 3, 28006-Madrid, Spain
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Pedro Garção
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rocío Lajarín-Cuesta
- Instituto Teófilo Hernando, Fundación
de Investigación Biomédica, Hospital Universitario de la Princesa, C/Diego de Léon, 62, 28006-Madrid,
Spain
| | - Cristobal de los Ríos
- Instituto Teófilo Hernando, Fundación
de Investigación Biomédica, Hospital Universitario de la Princesa, C/Diego de Léon, 62, 28006-Madrid,
Spain
| | - Isabel Iriepa
- Departamento de Química
Orgánica. Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares,
Madrid, Spain
| | - Ignacio Moraleda
- Departamento de Química
Orgánica. Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares,
Madrid, Spain
| | - Laura Gonzalez-Lafuente
- Instituto Teófilo Hernando, Fundación
de Investigación Biomédica, Hospital Universitario de la Princesa, C/Diego de Léon, 62, 28006-Madrid,
Spain
| | - Eduarda Mendes
- Research Institute for Medicines and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Concepción Pérez
- Instituto
de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan
de la Cierva 3, 28006-Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto
de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan
de la Cierva 3, 28006-Madrid, Spain
| | - José Marco-Contelles
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de
la Cierva 3, 28006-Madrid, Spain
| | - M. Carmo Carreiras
- Research Institute for Medicines and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
46
|
Romero A, Cacabelos R, Oset-Gasque MJ, Samadi A, Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:1916-22. [DOI: 10.1016/j.bmcl.2013.02.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 12/19/2022]
|
47
|
Vitorović-Todorović MD, Cvijetić IN, Juranić IO, Drakulić BJ. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models. J Mol Graph Model 2012; 38:194-210. [PMID: 23073222 DOI: 10.1016/j.jmgm.2012.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022]
Abstract
The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.
Collapse
|