1
|
Mansouri R, Bouzina A, Sekiou O, Aouf Z, Zerrouki R, Ibrahim-Ouali M, Aouf NE. Novel pseudonucleosides and sulfamoyl-oxazolidinone β- D-glucosamine derivative as anti-COVID-19: design, synthesis, and in silico study. J Biomol Struct Dyn 2023; 41:10999-11016. [PMID: 37098814 DOI: 10.1080/07391102.2023.2203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/10/2022] [Indexed: 04/27/2023]
Abstract
New pseudonucleosides containing cyclic sulfamide moiety and sulfamoyl β-D-glucosamine derivative are described. These pseudonucleosides are synthesized in good yields starting from chlorosulfonyl isocyanate and β-D-glucosamine hydrochloride in five steps; (protection, acetylation, removal of the Boc group, sulfamoylation, and cyclization). Further, novel glycosylated sulfamoyloxazolidin-2-one is prepared in three steps; carbamoylation, sulfamoylation, and intramolecular cyclization. The structures of the synthesized compounds were confirmed by usual spectroscopic and spectrometric methods NMR, IR, MS, and EA. Interesting molecular docking of the prepared pseudonucleosides and (Beclabuvir, Remdesivir) drugs with SARS-CoV-2/Mpro (PDB:5R80) was conducted using the same parameters for a fair comparison. A low binding affinity of the synthesized compounds compared to the Beclabuvir and other analysis showed that pseudonucleosides have the ability to inhibit SARS-CoV-2. After the motivating results of molecular docking study, the complex between the SARS-CoV-2 Mpro and compound 7 was subjected to 100 ns molecular dynamics (MD) simulation using Desmond module of Schrodinger suite, during which the receptor-ligand complex showed substantial stability after 10 ns of MD simulation. Also, we studied the prediction of absorption, distribution, properties of metabolism, excretion, and toxicity (ADMET) of the synthesized compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachida Mansouri
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
- Environment, modeling, and climate change department, Environmental Research Center (CRE), Box 12, 23000 Annaba, Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Omar Sekiou
- Environment, modeling, and climate change department, Environmental Research Center (CRE), Box 12, 23000 Annaba, Algeria
| | - Zineb Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Rachida Zerrouki
- Laboratoire PEIRENE, EA7500 Université de Limoges, 123 avenue Albert Thomas, 87000, Limoges cedex, France
| | | | - Nour Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
2
|
Virus Association with Gastric Inflammation and Cancer: An Updated Overview. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
3
|
Aouf Z, Bouacida S, Benzaid C, Amira A, K'tir H, Mathé‐Allainmat M, Lebreton J, Aouf N. Cyclic
N
‐2‐Chloroethyl‐sulfamide Compounds with a Phosphonate Moiety: Synthesis, Characterization, X‐Ray Crystallographic Study and Antimicrobial Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zineb Aouf
- Chemistry Department Laboratory of Applied Organic Chemistry Bioorganic Chemistry Group Badji Mokhtar-Annaba University, Box 12 23000 Annaba Algeria
| | - Sofiane Bouacida
- Department of Materials Science Larbi Ben Mhidi University Oum El Bouaghi 04000 Algeria
- Chemistry Department Research Unit for Chemistry of the Environment and Molecular Structural University of Constantine 1 Constantine 25000 Algeria
| | - Chahrazed Benzaid
- Biochemistry Department Biofilms and Biocontamination of Materials Research group Badji-Mokhtar-Annaba University, Box 12 23000 Annaba Algeria
| | - Aïcha Amira
- Chemistry Department Laboratory of Applied Organic Chemistry Bioorganic Chemistry Group Badji Mokhtar-Annaba University, Box 12 23000 Annaba Algeria
| | - Hacène K'tir
- Chemistry Department Laboratory of Applied Organic Chemistry Bioorganic Chemistry Group Badji Mokhtar-Annaba University, Box 12 23000 Annaba Algeria
| | - Monique Mathé‐Allainmat
- University of Nantes Faculty of Sciences, CEISAM laboratory, UMR CNRS 6230 2, rue de la Houssinière – BP 92208-44322 NANTES Cedex 3 France
| | - Jacques Lebreton
- University of Nantes Faculty of Sciences, CEISAM laboratory, UMR CNRS 6230 2, rue de la Houssinière – BP 92208-44322 NANTES Cedex 3 France
| | - Nour‐Eddine Aouf
- Chemistry Department Laboratory of Applied Organic Chemistry Bioorganic Chemistry Group Badji Mokhtar-Annaba University, Box 12 23000 Annaba Algeria
| |
Collapse
|
4
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
5
|
Jun JJ, Xie X. Implementation of Diverse Synthetic and Strategic Approaches to Biologically Active Sulfamides. ChemistrySelect 2021. [DOI: 10.1002/slct.202004765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaden J. Jun
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center School of Pharmacy 335 Sutherland Drive 206 Salk Pavilion University of Pittsburgh Pittsburgh PA15261 USA
- NIH National Center of Excellence for Computational Drug Abuse Research
- Drug Discovery Institute
| | - Xiang‐Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center School of Pharmacy 335 Sutherland Drive 206 Salk Pavilion University of Pittsburgh Pittsburgh PA15261 USA
- NIH National Center of Excellence for Computational Drug Abuse Research
- Drug Discovery Institute
- Departments of Computational Biology and Structural Biology Director of CCGS and NIDA CDAR Centers School of Medicine University of Pittsburgh Pittsburgh Pennsylvania 15261 United States
| |
Collapse
|
6
|
Hessainia S, Boukhari A, Cheraiet Z. An efficient one‐pot synthesis of
N
‐(substituted phenyl)‐1,2,5‐thiadiazolidine‐2‐carboxamide 1,1‐dioxide derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sihem Hessainia
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba University Annaba P.O. Box 12, 23000 Algeria
| | - Abbes Boukhari
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba University Annaba P.O. Box 12, 23000 Algeria
| | | |
Collapse
|
7
|
Gao Y, Zhang X, Laishram RD, Chen J, Li K, Zhang K, Zeng G, Fan B. Cobalt‐Catalyzed Transfer Hydrogenation of α‐Ketoesters and
N
‐Cyclicsulfonylimides Using H
2
O as Hydrogen Source. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Gao
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Xuexin Zhang
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Ronibala Devi Laishram
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Jingchao Chen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Kangkui Li
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Keyang Zhang
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Guangzhi Zeng
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| | - Baomin Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University Kunming 650500 People's Republic of China
| |
Collapse
|
8
|
|
9
|
Ghosh S, Malik YS, Kobayashi N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr Drug Metab 2018; 19:170-191. [PMID: 28901254 PMCID: PMC5971199 DOI: 10.2174/1389200218666170912161449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
Background: Noroviruses and rotaviruses are important viral etiologies of severe gastroenteritis. Noroviruses are the primary cause of nonbacterial diarrheal outbreaks in humans, whilst rotaviruses are a major cause of childhood diarrhea. Although both enteric pathogens substantially impact human health and economies, there are no approved drugs against noroviruses and rotaviruses so far. On the other hand, whilst the currently licensed rotavirus vaccines have been successfully implemented in over 100 countries, the most advanced norovirus vaccine has recently completed phase-I and II trials. Methods: We performed a structured search of bibliographic databases for peer-reviewed research litera-ture on advances in the fields of norovirus and rotavirus therapeutics and immunoprophylaxis. Results: Technological advances coupled with a proper understanding of viral morphology and replication over the past decade has facilitated pioneering research on therapeutics and immunoprophylaxis against noroviruses and rotaviruses, with promising outcomes in human clinical trials of some of the drugs and vaccines. This review focuses on the various developments in the fields of norovirus and rotavirus thera-peutics and immunoprophylaxis, such as potential antiviral drug molecules, passive immunotherapies (oral human immunoglobulins, egg yolk and bovine colostral antibodies, llama-derived nanobodies, and anti-bodies expressed in probiotics, plants, rice grains and insect larvae), immune system modulators, probiot-ics, phytochemicals and other biological substances such as bovine milk proteins, therapeutic nanoparti-cles, hydrogels and viscogens, conventional viral vaccines (live and inactivated whole virus vaccines), and genetically engineered viral vaccines (reassortant viral particles, virus-like particles (VLPs) and other sub-unit recombinant vaccines including multi-valent viral vaccines, edible plant vaccines, and encapsulated viral particles). Conclusions: This review provides important insights into the various approaches to therapeutics and im-munoprophylaxis against noroviruses and rotaviruses..
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.,Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, Damalanka VC, Lushington GH, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. Eur J Med Chem 2016; 119:300-18. [PMID: 27235842 PMCID: PMC4916972 DOI: 10.1016/j.ejmech.2016.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 01/14/2023]
Abstract
Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies. Novel triazole-based macrocyclic inhibitors of norovirus 3CL protease were synthesized. The interplay of conformation and activity was probed using NMR and X-ray crystallography. Bound inhibitors assume a β-strand conformation according to X-ray crystal structure. Loss of critical hydrogen bonding interactions was revealed by X-ray crystallography.
Collapse
Affiliation(s)
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Vishnu C Damalanka
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Kevin R Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
11
|
Garlets ZJ, Parenti KR, Wolfe JP. Asymmetric Palladium-Catalyzed Alkene Carboamination Reactions for the Synthesis of Cyclic Sulfamides. Chemistry 2016; 22:5919-22. [PMID: 26968748 PMCID: PMC4932835 DOI: 10.1002/chem.201600887] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/16/2023]
Abstract
The synthesis of cyclic sulfamides by enantioselective Pd-catalyzed alkene carboamination reactions between N-allylsulfamides and aryl or alkenyl bromides is described. High levels of asymmetric induction (up to 95:5 e.r.) are achieved using a catalyst composed of [Pd2 (dba)3 ] and (S)-Siphos-PE. Deuterium-labelling studies indicate the reactions proceed through syn-aminopalladation of the alkene and suggest that the control of syn- versus anti-aminopalladation pathways is important for asymmetric induction.
Collapse
Affiliation(s)
- Zachary J Garlets
- Department of Chemistry, University of Michigan, 930. N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Kaia R Parenti
- Department of Chemistry, University of Michigan, 930. N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - John P Wolfe
- Department of Chemistry, University of Michigan, 930. N. University Ave., Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
12
|
Galasiti Kankanamalage AC, Weerawarna PM, Kim Y, Chang KO, Groutas WC. Anti-norovirus therapeutics: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:297-308. [PMID: 26881878 PMCID: PMC4948123 DOI: 10.1517/13543776.2016.1153065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human noroviruses are the primary causative agents of acute gastroenteritis and are a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. An improved understanding of norovirus biology, as well as the pathogenic mechanisms underlying the disease, has provided the impetus for a range of intense exploratory drug discovery efforts targeting viral and host factors. AREAS COVERED An overview of norovirus inhibitors disclosed in the patent literature (2010-present) and Clinicaltrials.gov is presented. The review is further enriched and supplemented by recent literature reports. EXPERT OPINION Seminal discoveries made in recent years, including a better understanding of the pathobiology and life cycle of norovirus, the identification and targeting of multiple viral and host factors, the advent of a replicon system and a small animal model for the preclinical evaluation of lead compounds, and the availability of high resolution X-ray crystal structures that can be utilized in structure-based drug design and lead optimization campaigns, collectively suggest that a small molecule therapeutic and prophylactic for norovirus infection is likely to emerge in the not too distant future.
Collapse
Affiliation(s)
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
13
|
Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015; 58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Noroviruses are members of the family Caliciviridae. Norovirus infections are a global health burden that impacts >20 million individuals annually in the U.S. alone. Noroviruses are associated with high morbidity among vulnerable populations, particularly immunocompromised patients. This perspective highlights recent developments related to the discovery and development of norovirus-specific small-molecule therapeutics as well as recent advances in our understanding of norovirus biology and pathogenesis. Most of the work in this area is at the early discovery stage and has been primarily focused on inhibitors of norovirus 3C-like protease and RNA dependent RNA polymerase. However, recent discoveries emanating from basic studies in norovirus research have resulted in the identification of new host-related drug targets that can be exploited. A repurposed compound has been advanced to human clinical studies.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , 1845 North Fairmount Avenue, Wichita, Kansas 67260, United States
| |
Collapse
|
14
|
Kankanamalage ACG, Kim Y, Weerawarna PM, Uy RAZ, Damalanka VC, Mandadapu SR, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies. J Med Chem 2015; 58:3144-55. [PMID: 25761614 PMCID: PMC4484267 DOI: 10.1021/jm5019934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.
Collapse
Affiliation(s)
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | | | | | | | | | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - William C. Groutas
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| |
Collapse
|
15
|
Abstract
![]()
The synthesis of
1,2-diamines has been achieved through a single-step,
tandem sequence involving Rh-catalyzed aziridination followed by NaI-promoted
rearrangement to an isomeric cyclic sulfamide. Facile ring opening
of these products in hot water and pyridine affords differentially
protected vicinal diamines. Demonstration of the utility of this method
for the syntheses of (±)-enduracididine and (±)-allo-enduracididine
is highlighted.
Collapse
Affiliation(s)
- David E Olson
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | | | | | | |
Collapse
|
16
|
Fornwald RM, Fritz JA, Wolfe JP. Influence of catalyst structure and reaction conditions on anti- versus syn-aminopalladation pathways in Pd-catalyzed alkene carboamination reactions of N-allylsulfamides. Chemistry 2014; 20:8782-90. [PMID: 24938206 DOI: 10.1002/chem.201402258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 11/11/2022]
Abstract
The Pd-catalyzed coupling of N-allylsulfamides with aryl and alkenyl triflates to afford cyclic sulfamide products is described. In contrast to other known Pd-catalyzed alkene carboamination reactions, these transformations may be selectively induced to occur by way of either anti- or syn-aminopalladation mechanistic pathways by modifying the catalyst structure and reaction conditions.
Collapse
Affiliation(s)
- Ryan M Fornwald
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055 (USA)
| | | | | |
Collapse
|
17
|
Kaufman SS, Green KY, Korba BE. Treatment of norovirus infections: moving antivirals from the bench to the bedside. Antiviral Res 2014; 105:80-91. [PMID: 24583027 PMCID: PMC4793406 DOI: 10.1016/j.antiviral.2014.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022]
Abstract
Noroviruses (NV) are the most common cause of acute gastrointestinal illness in the United States and worldwide. The development of specific antiviral countermeasures has lagged behind that of other viral pathogens, primarily because norovirus disease has been perceived as brief and self-limiting and robust assays suitable for drug discovery have been lacking. The increasing recognition that NV illness can be life-threatening, especially in immunocompromised patients who often require prolonged hospitalization and intensive supportive care, has stimulated new research to develop an effective antiviral therapy. Here, we propose a path forward for evaluating drug therapy in norovirus-infected immunocompromised individuals, a population at high risk for serious and prolonged illness. The clinical and laboratory features of norovirus illness in immunocompromised patients are reviewed, and potential markers of drug efficacy are defined. We discuss the potential design of clinical trials in these patients and how an antiviral therapy that proves effective in immunocompromised patients might also be used in the setting of acute outbreaks, especially in confined settings such as nursing homes, to block the spread of infection and reduce the severity of illness. We conclude by reviewing the current status of approved and experimental compounds that might be evaluated in a hospital setting.
Collapse
Affiliation(s)
- Stuart S Kaufman
- MedStar Georgetown Transplant Institute and Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, United States
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Brent E Korba
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, United States.
| |
Collapse
|
18
|
Takahashi D, Kim Y, Lovell S, Prakash O, Groutas WC, Chang KO. Structural and inhibitor studies of norovirus 3C-like proteases. Virus Res 2013; 178:437-44. [PMID: 24055466 PMCID: PMC3840063 DOI: 10.1016/j.virusres.2013.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 01/23/2023]
Abstract
Noroviruses have a single-stranded, positive sense 7-8kb RNA genome, which encodes a polyprotein precursor processed by a virus-encoded 3C-like cysteine protease (3CLpro) to generate mature non-structural proteins. Because processing of the polyprotein is essential for virus replication, norovirus 3CLpro has been targeted for the discovery of anti-norovirus small molecule therapeutics. Thus, we performed functional, structural and inhibition studies of norovirus 3CLpro with fluorescence resonance energy transfer (FRET) assay, X-ray crystallography, and NMR spectroscopy with a synthetic protease inhibitor. Three 3CLpro from Norwalk virus (NV, genogroup I), MD145 (genogroup II) and murine norovirus-1 (MNV-1, genogroup V) were optimized for a FRET assay, and compared for the inhibitory activities of a synthetic protease inhibitor (GC376). The apo 3D structures of NV 3CLpro determined with X-ray crystallography and NMR spectroscopy were further analyzed. In addition, the binding mode of NV 3CLpro-GC376 was compared with X-ray crystallography and NMR spectroscopy. The results of this report provide insight into the interaction of NV 3CLpro with substrate/inhibitor for better understanding of the enzyme and antiviral drug development.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047
| | - Om Prakash
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
19
|
Potent inhibition of norovirus by dipeptidyl α-hydroxyphosphonate transition state mimics. Bioorg Med Chem Lett 2013; 23:5941-4. [PMID: 24054123 DOI: 10.1016/j.bmcl.2013.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Abstract
The design, synthesis, and evaluation of a series of dipeptidyl α-hydroxyphosphonates is reported. The synthesized compounds displayed high anti-norovirus activity in a cell-based replicon system, as well as high enzyme selectivity.
Collapse
|
20
|
Mandadapu SR, Weerawarna PM, Prior AM, Uy RAZ, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013; 23:3709-12. [PMID: 23727045 PMCID: PMC3750990 DOI: 10.1016/j.bmcl.2013.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively.
Collapse
Affiliation(s)
| | | | - Allan M. Prior
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
21
|
Cornwall RG, Zhao B, Shi Y. Catalytic asymmetric synthesis of cyclic sulfamides from conjugated dienes. Org Lett 2013; 15:796-9. [PMID: 23362985 PMCID: PMC3587789 DOI: 10.1021/ol303469a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper describes the catalytic asymmetric diamination of alkyl dienes using N,N'-di-tert-butylthiadiaziridine 1,1-dioxide in the presence of Pd(0) and a chiral phosphoramidite ligand to give cyclic sulfamides in high yield and high ee. The diamination is also amenable to gram scale.
Collapse
Affiliation(s)
- Richard G. Cornwall
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523 (USA)
| | - Baoguo Zhao
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523 (USA)
| | - Yian Shi
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523 (USA)
| |
Collapse
|
22
|
Mandadapu SR, Gunnam MR, Tiew KC, Uy RAZ, Prior AM, Alliston KR, Hua DH, Kim Y, Chang KO, Groutas WC. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors. Bioorg Med Chem Lett 2012; 23:62-5. [PMID: 23218713 DOI: 10.1016/j.bmcl.2012.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023]
Abstract
Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.
Collapse
|
23
|
Mandadapu SR, Weerawarna PM, Gunnam MR, Alliston KR, Lushington GH, Kim Y, Chang KO, Groutas WC. Potent inhibition of norovirus 3CL protease by peptidyl α-ketoamides and α-ketoheterocycles. Bioorg Med Chem Lett 2012; 22:4820-6. [PMID: 22698498 DOI: 10.1016/j.bmcl.2012.05.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
Abstract
A series of structurally-diverse α-ketoamides and α-ketoheterocycles was synthesized and subsequently investigated for inhibitory activity against norovirus 3CL protease in vitro, as well as anti-norovirus activity in a cell-based replicon system. The synthesized compounds were found to inhibit norovirus 3CL protease in vitro and to also exhibit potent anti-norovirus activity in a cell-based replicon system.
Collapse
|
24
|
Dou D, Tiew KC, Mandadapu SR, Gunnam MR, Alliston KR, Kim Y, Chang KO, Groutas WC. Potent norovirus inhibitors based on the acyclic sulfamide scaffold. Bioorg Med Chem 2012; 20:2111-8. [PMID: 22356738 DOI: 10.1016/j.bmc.2012.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
Abstract
The development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility. These compounds are suitable for further optimization of pharmacological and ADMET properties.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dou D, He G, Mandadapu SR, Aravapalli S, Kim Y, Chang KO, Groutas WC. Inhibition of noroviruses by piperazine derivatives. Bioorg Med Chem Lett 2011; 22:377-9. [PMID: 22119464 DOI: 10.1016/j.bmcl.2011.10.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
There is currently an unmet need for the development of small-molecule therapeutics for norovirus infection. The piperazine scaffold, a privileged structure embodied in many pharmacological agents, was used to synthesize an array of structurally-diverse derivatives which were screened for anti-norovius activity in a cell-based replicon system. The studies described herein demonstrate for the first time that functionalized piperazine derivatives possess anti-norovirus activity. Furthermore, these studies have led to the identification of two promising compounds (6a and 9l) that can be used as a launching pad for the optimization of potency, cytotoxicity, and drug-like characteristics.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | | | |
Collapse
|