1
|
Benekou MV, Tzitiridou P, Papagrigoriou T, Galani V, Sioka C, Kyritsis AP, Lazari D, Alexiou GA. Antineoplastic Activity of Methyl rosmarinate in Glioblastoma Cells. Curr Issues Mol Biol 2025; 47:180. [PMID: 40136434 PMCID: PMC11941081 DOI: 10.3390/cimb47030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Glioblastoma (GMB) is a remarkably aggressive brain malignancy characterized by high mortality rates, despite continuous advances in therapeutic approaches. Compounds derived from plants are being studied for their potent medicinal properties in the quest for more efficient therapies. This study investigated the anti-glioma properties of Methyl rosmarinate, a hydroxycinnamic acid isolated from Thymus thracicus Velen, which has previously demonstrated anti-cancer activity in various cell lines. Human glioblastoma cell lines U87 and T98 were treated with Methyl rosmarinate to assess its effect on cell viability, cell cycle distribution and migratory capacity using Trypan blue assay, flow cytometry and scratch wound healing assay, respectively. The combinatorial effects of Methyl rosmarinate and temozolomide were also analyzed with CompoSyn software. According to the outcomes, Methyl rosmarinate significantly reduced cell viability, induced cell death by interfering in cell cycle checkpoints, and inhibited migration in both GMB cell lines. Notably, in U87 cells, the compound showed a synergistic impact with temozolomide, whereas in T98 cells, there was an antagonistic relationship. These results suggest that Methyl rosmarinate has potential anti-glioma properties; however, more in vivo research is needed.
Collapse
Affiliation(s)
- Maria Vasiliki Benekou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (M.V.B.); (P.T.); (C.S.); (A.P.K.)
| | - Panagiota Tzitiridou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (M.V.B.); (P.T.); (C.S.); (A.P.K.)
| | - Theodora Papagrigoriou
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.P.); (D.L.)
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (M.V.B.); (P.T.); (C.S.); (A.P.K.)
| | - Athanassios P. Kyritsis
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (M.V.B.); (P.T.); (C.S.); (A.P.K.)
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.P.); (D.L.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (M.V.B.); (P.T.); (C.S.); (A.P.K.)
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
2
|
Chen B, Cai S, Cui L, Yu T, Qiao K, Su Y, Xu M, Tang H, Liu S, Yang M, Liu Z. Novel peptide inhibitor of matrix Metalloproteinases-1 from pufferfish skin collagen hydrolysates and its potential Photoprotective activity via the MAPK/AP-1 signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113088. [PMID: 39732112 DOI: 10.1016/j.jphotobiol.2024.113088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Takifugu bimaculatus, a pufferfish species farmed in Fujian Province, is known for its non-toxic flesh and collagen-rich skin. We identified a novel collagen-derived matrix metalloproteinase 1 (MMP-1) inhibitory peptide, from T. bimaculatus skin with potent anti-photoaging properties. Using multistage membrane and gel filtration chromatography, we purified low-molecular-weight collagen peptides from T. bimaculatus skin (TBSCH-L). Nano-HPLC-MS/MS and virtual molecular docking screening were employed to identify peptides targeting MMP-1. Four anti-photoaging peptide sequences, GDRGFPGE, GPAGPRGA, FPGGPGAK, and RGFPGGDGAA, were identified by assessing the viability of UVB-induced L929 cells. GPAGPRGA (GP8) exhibited the highest MMP-1 inhibitory activity and cellular photoprotection. Surface plasmon resonance confirmed high-affinity binding between MMP-1 and GP8. GP8 significantly reduced intracellular reactive oxygen species (ROS) levels and enhanced superoxide dismutase activity at concentrations of 100-200 μM in UVB-exposed L929 cells. At 200 μM, GP8 significantly decreased malondialdehyde content. GP8 also accelerated migration of L929 cells, demonstrating its wound-healing potential, markedly reduced intracellular β-galactosidase levels, and downregulated phosphorylation levels of extracellular signal-regulated kinases, c-Jun N-terminal kinases, p38 proteins, and c-Jun protein expression within the MAPK/AP-1 signaling pathway, thereby lowering MMP expression in L929 cells. Exposure of zebrafish to 25-100 μM GP8 effectively mitigated UVB-induced damage, restoring up to 31.2 % of caudal fin integrity, while significantly reducing ROS levels, lipid peroxidation, and cellular apoptosis. GP8, a novel marine-derived anti-photoaging peptide, holds promise for applications in cosmetic and functional food sectors.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Min Xu
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Haiyan Tang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China.
| |
Collapse
|
3
|
Hadi N, Drioiche A, Bouchra EM, Baammi S, Abdelaziz Shahat A, Tagnaout I, Radi M, Remok F, Bouzoubaa A, Zair T. Phytochemical Analysis and Evaluation of Antioxidant and Antimicrobial Properties of Essential Oils and Seed Extracts of Anethum graveolens from Southern Morocco: In Vitro and In Silico Approach for a Natural Alternative to Synthetic Preservatives. Pharmaceuticals (Basel) 2024; 17:862. [PMID: 39065713 PMCID: PMC11280095 DOI: 10.3390/ph17070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Anethum graveolens is an aromatic plant traditionally used as an antispasmodic and carminative. The objective of this study is to analyze the chemical composition of the essential oils and extracts obtained from seeds gathered in Errachidia, southern Morocco. Additionally, the antioxidant and antimicrobial properties of these oils and extracts will be evaluated. GC-MS analysis of the EO isolated by hydrodistillation revealed that its main compounds were E-anethole (38.13%), estragole (29.32%), fenchone (17.21%), and α-pinene (7.37%). The phenolic components were extracted using the methods of decoction and Soxhlet. The assay of the phenolic compounds showed that A. graveolens seeds contained considerable amounts of polyphenols, flavonoids, and condensed tannins, with variable levels depending on the extract analyzed. HPLC/UV-ESI-MS analyses performed on the decoction revealed a structural diversity of the molecules present in this extract, the most important of which were umbelliferone (12.35%), 3-hydroxyflavone (11.23%), rosmanol (8.95%), biotin (8.36%), emmotin H (4.91%), and coumarin (4.21%). The antioxidant activity, as determined by three techniques (DPPH•, FRAP, and CAT), demonstrated that the essential oils (EOs) and extracts had a potent capacity to counteract detrimental free radicals, control the generation of reactive oxygen species, and mitigate oxidative damages. The antimicrobial activity of the Eos and extracts was carried out in a liquid medium against five strains (E. cloacae, K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and four candidiasis (C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis) and Aspergillus niger. The results showed the effectiveness of the EOs compared to the aqueous, ethanolic, and decoction extracts against most of the microorganisms tested. In addition, the ethanolic extract showed antifungal activity that was distinguished from that of the other extracts. The antimicrobial efficacy of the essential oils under study can primarily be attributed to the synergistic interactions among its three principal constituents (E-anethole, estragole, and fenchone). Furthermore, molecular docking and molecular dynamics simulation results reveal significant interactions and stability between the selected bioactive compounds and different target proteins involved in antimicrobial and antioxidant activities. Compounds like 3-hydroxyflavone, emmotin H, trans-caftaric acid, methyl rosmarinate, 1-caffeoyl-beta-D-glucose, and kaempferol exhibited better binding energies with the explored proteins, indicating their potential as antimicrobial and antioxidant agents. Finally, our findings emphasize the significance of A. graveolens seeds as a promising reservoir of advantageous health compounds that can serve as organic substitutes for the presently employed synthetic preservatives.
Collapse
Affiliation(s)
- Nadia Hadi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - El Moumen Bouchra
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Soukayna Baammi
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco;
| | | | - Imane Tagnaout
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Mohamed Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Fidaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Amal Bouzoubaa
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (N.H.); (E.M.B.); (I.T.); (M.R.); (F.R.); (A.B.)
| |
Collapse
|
4
|
Ma L, Liu C, Zhao Y, Liu M, Liu Y, Zhang H, Yang S, An J, Tian Y, Cao Y, Qu G, Song S, Cao Q. Anti-pulmonary fibrosis activity analysis of methyl rosmarinate obtained from Salvia castanea Diels f. tomentosa Stib. using a scalable process. Front Pharmacol 2024; 15:1374669. [PMID: 38895626 PMCID: PMC11183283 DOI: 10.3389/fphar.2024.1374669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pulmonary fibrosis is a progressive, irreversible, chronic interstitial lung disease associated with high morbidity and mortality rates. Current clinical drugs, while effective, do not reverse or cure pulmonary fibrosis and have major side effects, there are urgent needs to develop new anti-pulmonary fibrosis medicine, and corresponding industrially scalable process as well. Salvia castanea Diels f. tomentosa Stib., a unique herb in Nyingchi, Xizang, China, is a variant of S. castanea. and its main active ingredient is rosmarinic acid (RA), which can be used to prepare methyl rosmarinate (MR) with greater drug potential. This study presented an industrially scalable process for the preparation of MR, which includes steps such as polyamide resin chromatography, crystallization and esterification, using S. castanea Diels f. tomentosa Stib. as the starting material and the structure of the product was verified by NMR technology. The anti-pulmonary fibrosis effects of MR were further investigated in vivo and in vitro. Results showed that this process can easily obtain high-purity RA and MR, and MR attenuated bleomycin-induced pulmonary fibrosis in mice. In vitro, MR could effectively inhibit TGF-β1-induced proliferation and migration of mouse fibroblasts L929 cells, promote cell apoptosis, and decrease extracellular matrix accumulation thereby suppressing progressive pulmonary fibrosis. The anti-fibrosis effect of MR was stronger than that of the prodrug RA. Further study confirmed that MR could retard pulmonary fibrosis by down-regulating the phosphorylation of the TGF-β1/Smad and MAPK signaling pathways. These results suggest that MR has potential therapeutic implications for pulmonary fibrosis, and the establishment of this scalable preparation technology ensures the development of MR as a new anti-pulmonary fibrosis medicine.
Collapse
Affiliation(s)
- Li Ma
- Binzhou Medical University, Shandong, China
| | | | | | - Mengke Liu
- Binzhou Medical University, Shandong, China
| | - Yunyi Liu
- Binzhou Medical University, Shandong, China
| | | | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Shandong, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | | | | | - Guiwu Qu
- Binzhou Medical University, Shandong, China
| | - Shuling Song
- Binzhou Medical University, Shandong, China
- Shandong Engineering Research Center for Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong, China
| | - Qizhi Cao
- Binzhou Medical University, Shandong, China
| |
Collapse
|
5
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Gul I, Hassan A, Haq E, Ahmad SM, Shah RA, Ganai NA, Chikan NA, Abdul-Careem MF, Shabir N. An Investigation of the Antiviral Potential of Phytocompounds against Avian Infectious Bronchitis Virus through Template-Based Molecular Docking and Molecular Dynamics Simulation Analysis. Viruses 2023; 15:v15040847. [PMID: 37112828 PMCID: PMC10144825 DOI: 10.3390/v15040847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Vaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA–polymerase of the virus. The study identified Methyl Rosmarinate, Cianidanol, Royleanone, and 6,7-Dehydroroyleanone as dual-target inhibitors against any two of the key proteins. At the same time, 7-alpha-Acetoxyroyleanone from Rosmarinus officinalis was found to be a multi-target protein inhibitor against all three proteins. The potential multi-target inhibitor was subjected to molecular dynamics simulations to assess the stability of the protein–ligand complexes along with the corresponding reference ligands. The findings specified stable interactions of 7-alpha-Acetoxyroyleanone with the protein targets. The results based on the in silico study indicate that the phytocompounds can potentially inhibit the essential proteins of the Infectious Bronchitis virus; however, in vitro and in vivo studies are required for validation. Nevertheless, this study is a significant step in exploring the use of botanicals in feed to control Infectious Bronchitis infections in poultry.
Collapse
Affiliation(s)
- Irfan Gul
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Nazir Ahmad Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Naveed Anjum Chikan
- Division of Computational Biology, Daskdan Innovations, Pvt. Ltd., Kashmir 190006, India
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence: (M.F.A.-C.); (N.S.)
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Correspondence: (M.F.A.-C.); (N.S.)
| |
Collapse
|
8
|
Waiba S, Maji K, Maiti M, Maji B. Sustainable Synthesis of α-Hydroxycarboxylic Acids by Manganese Catalyzed Acceptorless Dehydrogenative Coupling of Ethylene Glycol and Primary Alcohols. Angew Chem Int Ed Engl 2023; 62:e202218329. [PMID: 36629750 DOI: 10.1002/anie.202218329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
Herein, we report a straightforward synthesis of valuable α-hydroxycarboxylic acid molecules via an acceptorless dehydrogenative coupling of ethylene glycol and primary alcohols. A bench-stable manganese complex catalyzed the reaction, which is scalable, with the product being isolated with high yields and selectivities under mild conditions. The protocol is environmentally benign, producing water and hydrogen gas as the only byproducts. Methanol can also be used as a C1 source for producing the platform molecule lactic acid, with a high turnover of >104 . The methodology was also used to functionalize alcohols derived from natural products and fatty acids. Furthermore, it was applied for synthesizing α-amino acid, α-thiocarboxylic acid, and several drugs and bioactive molecules, including endogenous metabolites, Danshensu, Enalapril, Lisinopril, and Rosmarinic acid. Preliminary mechanistic studies were performed to shed light on the mechanism involved in the reaction.
Collapse
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address: Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Mamata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
9
|
Cetin Aluc C, Gok B, Kecel-Gunduz S, Budama-Kilinc Y. Glycyrrhizic acid Poly(D,L-lactide-co-glycolide) nanoparticles: anti-aging cosmeceutical formulation for topical applications. PeerJ 2022. [DOI: 10.7717/peerj.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhizic acid (GA) is one of the components of licorice roots (Glycyrrhiza glabra L.). GA is a triterpenoid saponin can be used as a medicinal plant with its antiallergic, antiviral, anti-inflammatory, anti-ulcer, hepatoprotective, anticancer, anti-oxidation activities and several other therapeutic properties. The aim of this study is to develop an anti-aging formulation for topical application containing GA. In this context, GA-loaded Poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared using the double emulsion method, and were characterized by various spectroscopic methods. The efficacy of GA-PLGA NPs was evaluated with in vitro and in silico methods. The encapsulation efficiency and loading capacity were calculated. The in vitro release study was conducted, and the GA release profile was determined. The genotoxic activity of GA and GA-PLGA NPs was evaluated by the Ames test using TA98 and TA100 mutant strains of Salmonella typhimurium. The cytotoxic potential of GA-PLGA NPs was evaluated on the HaCaT cell line using the MTT assay. According to the genotoxicity and cytotoxicity results, it was found that the GA-PLGA NP formulation did not exhibit genotoxic and cytotoxic effects. Moreover, the efficacy of GA in preventing UVB-induced photo-aging in HaCaT cells and the clarification of the molecular mechanism of GA binding to MMPs were revealed by molecular docking analysis. In addition, through molecular dynamics (MD) analysis, the binding interaction of GA with MMPs in a dynamic system, and protein-ligand stability were predicted as a result of 50 ns MD simulation studies considering various analysis parameters. Finally, it was evaluated that GA-PLGA nanoformulation might be used as an alternative anti-aging skin care product candidate via topical application.
Collapse
Affiliation(s)
- Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
- Abdi Ibrahim Pharmaceuticals, Abdi Ibrahim Production Facilities, Istanbul, Türkiye
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
| | | | | |
Collapse
|
10
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Xie Y, Liu J, Shi Y, Bin Wang, Wang X, Wang W, Sun M, Xu X, He S. Synthesis and evaluation of new sesamol-based phenolic acid derivatives with hypolipidemic, antioxidant, and hepatoprotective effects. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Matsumoto S, Marumoto H, Akazome M, Otani Y, Kaiho T. Chemoselective Reduction of α, β-Unsaturated Carbonyl and Carboxylic Compounds by Hydrogen Iodide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoji Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Soft Molecular Activation Research Center (SMARC), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hayato Marumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Motohiro Akazome
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuhiko Otani
- GODO SHIGEN CO., LTD., 1365 Nanaido, Chosei-mura, Chosei-gun, Chiba 299-4333, Japan
| | - Tatsuo Kaiho
- GODO SHIGEN CO., LTD., 1365 Nanaido, Chosei-mura, Chosei-gun, Chiba 299-4333, Japan
- Chiba Iodine Resource Innovation Center (CIRIC), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Shunmuga Priya V, Pradiba D, Aarthy M, Singh SK, Achary A, Vasanthi M. In-silico strategies for identification of potent inhibitor for MMP-1 to prevent metastasis of breast cancer. J Biomol Struct Dyn 2020; 39:7274-7293. [PMID: 32873178 DOI: 10.1080/07391102.2020.1810776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix Metalloproteinase-1 (MMP-1) has been often upregulated in advanced breast cancers, known to participate in ECM degradation, migration, invasion, thus leading to metastasis. Due to these effects, the condition is often reported to inversely correlate with survival in advanced breast cancers. In the present study, in-silico method was adopted based on selective non zinc binding inhibitors of MMP-1. ADME properties were predicted for PASS filtered compounds and docking calculations were performed using Glide XP and IFD protocols of Schrodinger program. We identified six ligands as potent inhibitors and validated by observing structures and the interactions of MMP-1. The identified hits were validated using molecular dynamics simulation studies. Electronic structure analysis was performed for two top hit compounds myricetin and quercetin using density function theory (DFT) at B3LYP/6-31**G level to understand their molecular reactivity. Finally, one compound myricetin has emerged as the structurally stable compound with -7.801 kcal/mol and reasonable pose inside the binding site. Molecular dynamics results indicated that myricetin forms a stable interaction with the key amino acid residues such as Glu209, Glu219, Tyr240 and Pro238. In addition, it did not form any binding with the catalytic zinc at its active site. The interaction pattern of myricetin at its substrate binding site exhibited to be potent MMP-1 inhibitor. DFT study also showed that it has more potent inhibitory effect and solubility. These factors altogether show that myricetin could be considered as the best among the compounds evaluated in inhibiting MMP-1 thereby preventing metastasis of breast cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Velu Shunmuga Priya
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Dhinakararajan Pradiba
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Murali Aarthy
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anant Achary
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Mani Vasanthi
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| |
Collapse
|
15
|
Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov Today 2020; 25:38-57. [DOI: 10.1016/j.drudis.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
16
|
Chen J, Liang P, Xiao Z, Chen MF, Gong F, Li C, Zhou C, Hong P, Jung WK, Qian ZJ. Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells. Food Nutr Res 2019; 63:3508. [PMID: 31762729 PMCID: PMC6852330 DOI: 10.29219/fnr.v63.3508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 01/29/2023] Open
Abstract
Introduction A previous study has shown that Ala-Thr-Pro-Gly-Asp-Glu-Gly (ATPGDEG) peptide identified from boiled abalone by-products has high antioxidant activities and antihypertensive effect. Objective In this study, we further investigated its antiphotoaging activities by ultraviolet B (UVB)-induced HaCaT cells. Result UVB irradiation significantly increased the content of intercellular reactive oxygen species (ROS) and the production of matrix metalloproteinases (MMPs) in HaCaT cells and decreased its content of collagen. First, the generation of intercellular ROS was reduced by abalone peptide in UVB-induced HaCaT cells. And activities of MMP-1 and MMP-9 were reduced by abalone peptide in a dose-dependent manner. Furthermore, western blot analysis demonstrated that abalone peptide downregulated the expression of p38, c-Jun N-terminal kinases, and extracellular signal-regulated kinases via mitogen-activated protein kinases (MAPKs) and NF-κB signaling to protect type I pro collagen and DNA damage. Molecular docking simulation confirms that abalone peptide inhibited activities of MMP-1 and MMP-9 by docking their active site, among them N-terminal Ala, C-terminal Gly, and Pro at the third position of N-terminal made a great contribution. Conclusion and recommendation Abalone peptide could protect type I procollagen synthesis in UVB-irradiated HaCaT cells, and it is a potential peptide for the treatment of skin photoaging in the future.
Collapse
Affiliation(s)
- Jiali Chen
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Peng Liang
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Zhenbang Xiao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Mei-Fang Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Fang Gong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Chengyong Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China.,Shenzhen Institute, Guangdong Ocean University, Shenzhen, P. R. China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Zhong-Ji Qian
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,Shenzhen Institute, Guangdong Ocean University, Shenzhen, P. R. China
| |
Collapse
|
17
|
Xiao Z, Liang P, Chen J, Chen MF, Gong F, Li C, Zhou C, Hong P, Yang P, Qian ZJ. A Peptide YGDEY from Tilapia Gelatin Hydrolysates Inhibits UVB-mediated Skin Photoaging by Regulating MMP-1 and MMP-9 Expression in HaCaT Cells. Photochem Photobiol 2019; 95:1424-1432. [PMID: 31230361 DOI: 10.1111/php.13135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
In this study, we investigated the protective effects of a peptide (YGDEY, Tyr-Gly-Asp-Glu-Tyr) isolated from tilapia skin gelatin hydrolysates (TGHs), against UVB-induced photoaging in human keratinocytes (HaCaT) cells. Results showed that YGDEY significantly decreased levels of intracellular reactive oxygen species (ROS), increased antioxidant factors (Superoxide Dismutase, SOD and Glutathione, GSH) expression and maintained balance between GSH and GSSG in HaCaT cells. Comet assay shows that YGDEY can protect DNA from oxidative damage. Furthermore, it significantly inhibited MMP-1 (collagenase) and MMP-9 (gelatinase) expression and increased Type I procollagen production. In addition, the molecular docking study showed that YGDEY may form active sites with MMP-1 and MMP-9. Moreover, Western blot analysis was utilized to measure the protein levels of UVB-induced mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Therefore, these results suggested that YGDEY has a therapeutic effectiveness in prevention of UVB-induced cellular damage, and it is a candidate worthy of being developed as a potential natural antioxidant and food additive.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Peng Liang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiali Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mei-Fang Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Fang Gong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chengyong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ping Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhong-Ji Qian
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
18
|
Xie YD, Shao LH, Wang QT, Bai Y, Li N, Yang G, Li YP, Bian XL. Design, synthesis and evaluation of phenylfuroxan nitric oxide-donor phenols as potential anti-diabetic agents. Bioorg Chem 2019; 89:103000. [PMID: 31132604 DOI: 10.1016/j.bioorg.2019.103000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/08/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022]
Abstract
Both nitric oxide (NO) dysfunction and oxidative stress have been regarded as the important factors in the development and progression of diabetes and its complications. Multifunctional compounds with hypoglycemic, NO supplementation and anti-oxidation will be the promising agents for treatment of diabetes. In this study, six phenylfuroxan nitric oxide (NO) donor phenols were synthesized, which were designed via a combination approach with phenylfuroxan NO-donor and natural phenols. These novel synthetic compounds were screened in vitro for α-glucosidase inhibition, NO releasing, anti-oxidation, anti-glycation and anti-platelet aggregation activity as well as vasodilatation effects. The results exhibited that compound T5 displayed more excellent activity than other compounds. Moreover, T5 demonstrated significant hypoglycemic activity in diabetic mice and oral glucose tolerance test (OGTT) mice. T5 also showed NO releasing and anti-oxidation in diabetic mice. Based on these results, compound T5 deserves further study as potential new multifunctional anti-diabetic agent with antioxidant, NO releasing, anti-platelet aggregation and vasodilatation properties.
Collapse
Affiliation(s)
- Yun-Dong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, People's Republic of China
| | - Li-Hua Shao
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Qiu-Tang Wang
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Yue Bai
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Na Li
- Community Health Service Center of Daxing New District, No. 233 Ziqiang West Road, Lianhu District, Xi'an 710000, Shaanxi Province, People's Republic of China
| | - Guangde Yang
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Yi-Ping Li
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Xiao-Li Bian
- College of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
19
|
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity. Nutrients 2018; 10:nu10040420. [PMID: 29597313 PMCID: PMC5946205 DOI: 10.3390/nu10040420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Qiuming Liu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
20
|
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chaiyana W, Jiranusornkul S. Investigation of the Skin Anti-photoaging Potential of Swertia chirayita Secoiridoids Through the AP-1/Matrix Metalloproteinase Pathway by Molecular Modeling. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9695-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Liping S, Qiuming L, Jian F, Xiao L, Yongliang Z. Purification and Characterization of Peptides Inhibiting MMP-1 Activity with C Terminate of Gly-Leu from Simulated Gastrointestinal Digestion Hydrolysates of Tilapia (Oreochromis niloticus) Skin Gelatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:593-601. [PMID: 29272917 DOI: 10.1021/acs.jafc.7b04196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tilapia skin gelatin hydrolysates (TSGHs) were prepared by simulated gastrointestinal digestion and separated by gel filtration and semi-preparative reversed-phase high-performance liquid chromatography. The anti-photoaging effects were evaluated using an ultraviolet radiation B (UVB)-induced mouse embryonic fibroblast (MEF) photoaging model in vitro. Three fractions from TSGHs with high inhibitory intercellular matrix metalloproteinase-1 (MMP-1) activities and reactive oxygen species (ROS) production were obtained. Three key peptides, GYTGL, LGATGL, and VLGL, were identified, and their C terminate was Gly-Leu. Three peptides were synthesized and exhibited a significant inhibition of intercellular MMP-1 activity and ROS production. Furthermore, three peptides inhibiting MMP-1 activities were evaluated through their docking of S1' and S3' active pockets of MMP-1. Hydrogen bonds and C terminate Gly-Leu played important roles. Finally, the protective effects of three peptides on intercellular collagen in UVB-induced MEFs were compared. Our results indicated that tilapia gelatin peptides exhibited potential activities to prevent and regulate photoaging.
Collapse
Affiliation(s)
- Sun Liping
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Liu Qiuming
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Fan Jian
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Li Xiao
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuang Yongliang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
22
|
Xie Y, Yang Y, Li S, Xu Y, Lu W, Chen Z, Yang G, Li Y, Cao Y, Bian X. Phenylsulfonylfuroxan NO-donor phenols: Synthesis and multifunctional activities evaluation. Bioorg Med Chem 2017; 25:4407-4413. [DOI: 10.1016/j.bmc.2017.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022]
|
23
|
Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues. Int J Mol Sci 2017; 18:ijms18051074. [PMID: 28513572 PMCID: PMC5454983 DOI: 10.3390/ijms18051074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/03/2023] Open
Abstract
Isoquercitrin, (IQ, quercetin-3-O-β-d-glucopyranoside) is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of IQ derivatives at the C-6″. IQ benzoate, phenylacetate, phenylpropanoate and cinnamate were prepared from respective vinyl esters using Novozym 435 (Lipase B from Candida antarctica immobilized on acrylic resin). The enzymatic procedure gave no products with “hydroxyaromatic” acids, their vinyl esters nor with their benzyl-protected forms. A chemical protection/deprotection method using Steglich reaction yielded IQ 4-hydroxybenzoate, vanillate and gallate. In case of p-coumaric, caffeic, and ferulic acid, the deprotection lead to the saturation of the double bonds at the phenylpropanoic moiety and yielded 4-hydroxy-, 3,4-dihydroxy- and 3-methoxy-4-hydroxy-phenylpropanoates. Reducing capacity of the cinnamate, gallate and 4-hydroxyphenylpropanoate towards Folin-Ciocalteau reagent was significantly lower than that of IQ, while other derivatives displayed slightly better or comparable capacity. Compared to isoquercitrin, most derivatives were less active in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, but they showed significantly better 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, ABTS) scavenging activity and were substantially more active in the inhibition of tert-butylhydroperoxide induced lipid peroxidation of rat liver microsomes. The most active compounds were the hydroxyphenylpropanoates.
Collapse
|
24
|
Tauro M, Laghezza A, Loiodice F, Piemontese L, Caradonna A, Capelli D, Montanari R, Pochetti G, Di Pizio A, Agamennone M, Campestre C, Tortorella P. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J Enzyme Inhib Med Chem 2016; 31:25-37. [PMID: 27556138 DOI: 10.1080/14756366.2016.1217853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.
Collapse
Affiliation(s)
- Marilena Tauro
- a Department of Tumor Biology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Antonio Laghezza
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Fulvio Loiodice
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Luca Piemontese
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Alessia Caradonna
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Davide Capelli
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Roberta Montanari
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Giorgio Pochetti
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Antonella Di Pizio
- d Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel , and
| | | | - Cristina Campestre
- e Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti , Chieti , Italy
| | - Paolo Tortorella
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| |
Collapse
|
25
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|