1
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Mendes GD, Zaffalon GT, Silveira AS, Ramacciato JC, Motta RHL, Gagliano-Jucá T, Lopes AG, de Almeida Magalhães JC, De Nucci G. Assessment of pharmacokinetic interaction between piracetam and l-carnitine in healthy subjects. Biomed Chromatogr 2015; 30:536-42. [PMID: 26248695 DOI: 10.1002/bmc.3579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 08/03/2015] [Indexed: 11/07/2022]
Abstract
A rapid, sensitive and specific method for quantifying piracetam in human plasma using Piracetam d-8 as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by one-step precipitation of protein using an acetonitrile (100%). The extracts were analyzed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). The method had a chromatographic run time of 3.8 min and a linear calibration curve over the range 0.5-50 µg/mL (r > 0.99). This LC-MS-MS procedure was used to assess the bioavailability of two piracetam formulations: piracetam + l-carnitine (Piracar®; 270/330 mg tablet) and piracetam (Nootropil®; 800 mg tablet) in healthy volunteers of both sexes. The geometric means with corresponding 90% confidence interval (CI) for test/reference percentage ratios were 88.49% (90% CI = 81.19 - 96.46) for peak concentration/dose and 102.55% (90% CI = 100.62 - 104.51) for AUCinf /dose. The limit of quantitation of 0.5 µg/mL is well suited for pharmacokinetic studies in healthy volunteers. It was concluded that piracetam (Piracar®; 270/330 mg tablet) has a bioavailability equivalent to the piracetam (Nootropil®; 800 mg tablet) formulation with regard to both the rate and the extent of absorption.
Collapse
Affiliation(s)
- Gustavo D Mendes
- Department of Pharmacology, University Camilo Castelo Branco, SP, Brazil.,Galeno Research Unit, Latino Coelho St, 1301, Parque Taquaral, 13087-010, Campinas, SP, Brazil
| | - Gabriela Traldi Zaffalon
- Department of Pharmacology, University Camilo Castelo Branco, SP, Brazil.,Faculty of Odontology, Dental Research Center São Leopoldo Mandic, Campinas, SP, Brazil
| | - Antonio Sérgio Silveira
- Galeno Research Unit, Latino Coelho St, 1301, Parque Taquaral, 13087-010, Campinas, SP, Brazil
| | | | | | - Thiago Gagliano-Jucá
- Galeno Research Unit, Latino Coelho St, 1301, Parque Taquaral, 13087-010, Campinas, SP, Brazil
| | - Anibal Gil Lopes
- Department of Physiology, Faculty of Medicine, University Camilo Castelo Branco, SP, Brazil
| | | | - Gilberto De Nucci
- Department of Pharmacology, University Camilo Castelo Branco, SP, Brazil.,Department of Pharmacology, University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Ashraf K, Mujeeb M, Ahmad A, Ahmad S, Ahmad N, Amir M. Determination of Gingerols in Ginger by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.898154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Zhang YY, Liu Y, Mehboob S, Song JH, Boci T, Johnson ME, Ghosh AK, Jeong H. Metabolism-directed structure optimization of benzimidazole-based Francisella tularensis enoyl-reductase (FabI) inhibitors. Xenobiotica 2014; 44:404-16. [PMID: 24171690 PMCID: PMC4355941 DOI: 10.3109/00498254.2013.850553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. FabI is a potential antibiotic target against Francisella tularensis, which has been classified as a Category A biowarfare agent of high risk to public health. Our previous work demonstrated that N-benzyl benzimidazole compounds possess promising FabI inhibitory activity, but their druggability properties, including metabolic stability, are unknown. 2. The objective of this study was to characterize structure-metabolism relationships of a series of N-benzyl benzimidazole compounds to guide chemical optimization for better metabolic stability. To this end, metabolic stability data were obtained for 22 initial lead compounds using mouse hepatic microsomes. 3. Metabolic hotspots on the benzimidazole core structure as well as the benzyl ring were identified and verified by metabolite identification studies of four model compounds. Interestingly, the proposed structure-metabolism relationships did not apply to nine newly synthesized cyclopentane or oxacyclopentane derivatives of N-benzyl benzimidazole. 4. Subsequently, in silico quantitative structure-property relationship models were developed. Four molecular descriptors representing molecular polarity/polarisability, symmetry and size were identified to best explain variability in metabolic stability of different compounds. Multi-linear and non-linear regression models based on the selected molecular descriptors were developed and validated. 5. The structure-metabolism relationships for N-benzyl benzimidazole compounds should help optimization of N-benzyl benzimidazole compounds for better pharmacokinetic behavior.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yong Liu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jin-Hua Song
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Arun K. Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hyunyoung Jeong
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|