1
|
Wu H, Lin J, Ling N, Zhang Y, He Y, Qiu L, Tan W. Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS NANO 2024; 18:119-135. [PMID: 38117770 DOI: 10.1021/acsnano.3c09861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
T cell-mediated immunity plays a pivotal role in cancer immunotherapy. The anticancer actions of T cells are coordinated by a sequence of biological processes, including the capture and presentation of antigens by antigen-presenting cells (APCs), the activation of T cells by APCs, and the subsequent killing of cancer cells by activated T cells. However, cancer cells have various means to evade immune responses. Meanwhile, these vulnerabilities provide potential targets for cancer treatments. Functional nucleic acids (FNAs) make up a class of synthetic nucleic acids with specific biological functions. With their diverse functionality, good biocompatibility, and high programmability, FNAs have attracted widespread interest in cancer immunotherapy. This Review focuses on recent research progress in employing FNAs as molecular tools for T cell-mediated cancer immunotherapy, including corresponding challenges and prospects.
Collapse
Affiliation(s)
- Hui Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Virgilio A, Benigno D, Aliberti C, Vellecco V, Bucci M, Esposito V, Galeone A. Improving the Biological Properties of Thrombin-Binding Aptamer by Incorporation of 8-Bromo-2'-Deoxyguanosine and 2'-Substituted RNA Analogues. Int J Mol Sci 2023; 24:15529. [PMID: 37958511 PMCID: PMC10647374 DOI: 10.3390/ijms242115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers. By adopting its peculiar chair-like G4 structure, TBA can efficiently bind to thrombin, thus producing an anticoagulant effect. The major limit to its therapeutic application is represented by its poor thermal and biological resistance. Therefore, numerous research studies have been focused on the design of TBA analogues with chemical modifications to improve its pharmacokinetic and pharmacodynamic properties. To maintain the functional recognition to protein surface on which TBA anticoagulant activity depends, it is essential to preserve the canonical antiparallel topology of the TBA quadruplex core. In this paper, we have designed three TBA variants with modified G-tetrads to evaluate the effects of nucleobase and sugar moiety chemical modifications on biological properties of TBA, preserving its chair-like G-quadruplex structure. All derivatives contain 8-bromo-2'-deoxyguanosine (GBr) in syn positions, while in the anti-positions, locked nucleic acid guanosine (GLNA) in the analogue TBABL, 2'-O-methylguanosine (GOMe) in TBABM, and 2'-F-riboguanosine (GF) in TBABF is present. CD (Circular Dichroism), CD melting, 1H-NMR (Nuclear Magnetic Resonance), and non-denaturing PAGE (Polyacrylamide Gel Electrophoresis), nuclease stability, prothrombin time (PT) and fibrinogen-clotting assays have been performed to investigate the structural and biological properties of these TBA analogues. The most interesting results have been obtained with TBABF, which revealed extraordinary thermal stability (Tm approximately 40 °C higher than that of TBA), anticoagulant activity almost doubled compared to the original aptamer, and, above all, a never-observed resistance to nucleases, as 50% of its G4 species was still present in 50% FBS at 24 h. These data indicate TBABF as one of the best TBA analogue ever designed and investigated, to the best of our knowledge, overcoming the main limitations to therapeutic applications of this aptamer.
Collapse
Affiliation(s)
| | | | | | | | | | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (A.V.); (D.B.); (V.V.); (M.B.); (A.G.)
| | | |
Collapse
|
3
|
Lee SJ, Cho J, Lee BH, Hwang D, Park JW. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023; 11:356. [PMID: 36830893 PMCID: PMC9953197 DOI: 10.3390/biomedicines11020356] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
An aptamer is a single-stranded DNA or RNA that binds to a specific target with high binding affinity. Aptamers are developed through the process of systematic evolution of ligands by exponential enrichment (SELEX), which is repeated to increase the binding power and specificity. However, the SELEX process is time-consuming, and the characterization of aptamer candidates selected through it requires additional effort. Here, we describe in silico methods in order to suggest the most efficient way to develop aptamers and minimize the laborious effort required to screen and optimise aptamers. We investigated several methods for the estimation of aptamer-target molecule binding through conformational structure prediction, molecular docking, and molecular dynamic simulation. In addition, examples of machine learning and deep learning technologies used to predict the binding of targets and ligands in the development of new drugs are introduced. This review will be helpful in the development and application of in silico aptamer screening and characterization.
Collapse
Affiliation(s)
- Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Junmin Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Byung-Hoon Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Donghwan Hwang
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
4
|
Busschaert N, Maity D, Samanta PK, English NJ, Hamilton AD. Improving structural stability and anticoagulant activity of a thrombin binding aptamer by aromatic modifications. Chembiochem 2022; 23:e202100670. [PMID: 34985829 DOI: 10.1002/cbic.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGTTGGTGTGGTTGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔT m ≈ +18 °C) and displayed enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Tulane University, Department of Chemistry, 6400 Freret St, 70118, New Orleans, UNITED STATES
| | | | - Pralok K Samanta
- University College Dublin, School of Chemical and Bioprocess engineering, IRELAND
| | - Niall J English
- University College Dublin, School of chemical and Bioprocess engineering, IRELAND
| | | |
Collapse
|
5
|
Epple S, El-Sagheer AH, Brown T. Artificial nucleic acid backbones and their applications in therapeutics, synthetic biology and biotechnology. Emerg Top Life Sci 2021; 5:691-697. [PMID: 34297063 PMCID: PMC8726046 DOI: 10.1042/etls20210169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
The modification of DNA or RNA backbones is an emerging technology for therapeutic oligonucleotides, synthetic biology and biotechnology. Despite a plethora of reported artificial backbones, their vast potential is not fully utilised. Limited synthetic accessibility remains a major bottleneck for the wider application of backbone-modified oligonucleotides. Thus, a variety of readily accessible artificial backbones and robust methods for their introduction into oligonucleotides are urgently needed to utilise their full potential in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Sven Epple
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Afaf H. El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
6
|
Epple S, Modi A, Baker YR, Wȩgrzyn E, Traoré D, Wanat P, Tyburn AES, Shivalingam A, Taemaitree L, El-Sagheer AH, Brown T. A New 1,5-Disubstituted Triazole DNA Backbone Mimic with Enhanced Polymerase Compatibility. J Am Chem Soc 2021; 143:16293-16301. [PMID: 34546729 PMCID: PMC8499026 DOI: 10.1021/jacs.1c08057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Triazole linkages
(TLs) are mimics of the phosphodiester bond in
oligonucleotides with applications in synthetic biology and biotechnology.
Here we report the RuAAC-catalyzed synthesis of a novel 1,5-disubstituted
triazole (TL2) dinucleoside phosphoramidite as well as
its incorporation into oligonucleotides and compare its DNA polymerase
replication competency with other TL analogues. We demonstrate that
TL2 has superior replication kinetics to these analogues
and is accurately replicated by polymerases. Derived structure–biocompatibility
relationships show that linker length and the orientation of a hydrogen
bond acceptor are critical and provide further guidance for the rational
design of artificial biocompatible nucleic acid backbones.
Collapse
Affiliation(s)
- Sven Epple
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Aman Modi
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Ysobel R Baker
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Ewa Wȩgrzyn
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Diallo Traoré
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Przemyslaw Wanat
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Agnes E S Tyburn
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | - Arun Shivalingam
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| | | | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, U.K
| |
Collapse
|
7
|
Structural and Binding Effects of Chemical Modifications on Thrombin Binding Aptamer (TBA). Molecules 2021; 26:molecules26154620. [PMID: 34361773 PMCID: PMC8348300 DOI: 10.3390/molecules26154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5' end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA-thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.
Collapse
|
8
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
9
|
Nimbarte VD, Wirmer‐Bartoschek J, Gande SL, Alshamleh I, Seibert M, Nasiri HR, Schnütgen F, Serve H, Schwalbe H. Synthesis and in Vitro Evaluation of Novel 5-Nitroindole Derivatives as c-Myc G-Quadruplex Binders with Anticancer Activity. ChemMedChem 2021; 16:1667-1679. [PMID: 33508167 PMCID: PMC8252724 DOI: 10.1002/cmdc.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Lead-optimization strategies for compounds targeting c-Myc G-quadruplex (G4) DNA are being pursued to develop anticancer drugs. Here, we investigate the structure-activity- relationship (SAR) of a newly synthesized series of molecules based on the pyrrolidine-substituted 5-nitro indole scaffold to target G4 DNA. Our synthesized series allows modulation of flexible elements with a structurally preserved scaffold. Biological and biophysical analyses illustrate that substituted 5-nitroindole scaffolds bind to the c-Myc promoter G-quadruplex. These compounds downregulate c-Myc expression and induce cell-cycle arrest in the sub-G1/G1 phase in cancer cells. They further increase the concentration of intracellular reactive oxygen species. NMR spectra show that three of the newly synthesized compounds interact with the terminal G-quartets (5'- and 3'-ends) in a 2 : 1 stoichiometry.
Collapse
Affiliation(s)
- Vijaykumar D. Nimbarte
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Marcel Seibert
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hamid Reza Nasiri
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Frank Schnütgen
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hubert Serve
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| |
Collapse
|
10
|
Roxo C, Kotkowiak W, Pasternak A. G4 Matters-The Influence of G-Quadruplex Structural Elements on the Antiproliferative Properties of G-Rich Oligonucleotides. Int J Mol Sci 2021; 22:4941. [PMID: 34066551 PMCID: PMC8125755 DOI: 10.3390/ijms22094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical structures formed by guanine-rich sequences of DNA or RNA that have attracted increased attention as anticancer agents. This systematic study aimed to investigate the anticancer potential of five G4-forming, sequence-related DNA molecules in terms of their thermodynamic and structural properties, biostability and cellular uptake. The antiproliferative studies revealed that less thermodynamically stable G4s with three G-tetrads in the core and longer loops are more predisposed to effectively inhibit cancer cell growth. By contrast, highly structured G4s with an extended core containing four G-tetrads and longer loops are characterized by more efficient cellular uptake and improved biostability. Various analyses have indicated that the G4 structural elements are intrinsic to the biological activity of these molecules. Importantly, the structural requirements are different for efficient cancer cell line inhibition and favorable G4 cellular uptake. Thus, the ultimate antiproliferative potential of G4s is a net result of the specific balance among the structural features that are favorable for efficient uptake and those that increase the inhibitory activity of the studied molecules. Understanding the G4 structural features and their role in the biological activity of G-rich molecules might facilitate the development of novel, more potent G4-based therapeutics with unprecedented anticancer properties.
Collapse
Affiliation(s)
| | - Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| |
Collapse
|
11
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
12
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
13
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
14
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
15
|
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020; 26:9589-9597. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Elena Eremeeva
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Romualdo Troisi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Hui Yang
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Anna Esposito
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Piet Herdewijn
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniele D'Alonzo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Annalisa Guaragna
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
16
|
Shen T, Zhang Y, Zhou S, Lin S, Zhang XB, Zhu G. Nucleic Acid Immunotherapeutics for Cancer. ACS APPLIED BIO MATERIALS 2020; 3:2838-2849. [PMID: 33681722 DOI: 10.1021/acsabm.0c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past decade has witnessed the blossom of two fields: nucleic acid therapeutics and cancer immunotherapy. Unlike traditional small molecule medicines or protein biologics, nucleic acid therapeutics have characteristic features such as storing genetic information, immunomodulation, and easy conformational recovery. Immunotherapy uses the patients' own immune system to treat cancer. A variety of strategies have been developed for cancer immunotherapy including immune checkpoint blockade, adoptive cell transfer therapy, therapeutic vaccines, and oncolytic virotherapy. Interestingly, nucleic acid therapeutics have emerged as a pivotal class of regimen for cancer immunotherapy. Examples of such nucleic acid immunotherapeutics include immunostimulatory DNA/RNA, mRNA/plasmids that can be translated into immunotherapeutic proteins/peptides, and genome-editing nucleic acids. Like many other therapeutic nucleic acids, nucleic acid immunotherapeutics often require chemical modifications to protect them from enzymatic degradation and need drug delivery systems for optimal delivery to target tissues and cells and subcellular locations. In this review, we attempted to summarize recent advancement in the interfacial field of nucleic acid immunotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Tingting Shen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yu Zhang
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States; Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shurong Zhou
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shuibin Lin
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
17
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
18
|
Wagh AA, Fernandes M. 2′‐5′‐Isomerically Linked Thrombin‐Binding Aptamer (isoTBA) Forms a Stable Unimolecular Parallel G‐Quadruplex in the Presence of Sr
2+
Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Atish A. Wagh
- Organic Chemistry DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Moneesha Fernandes
- Organic Chemistry DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
19
|
Seelam Prabhakar P, A Manderville R, D Wetmore S. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations. Molecules 2019; 24:molecules24162908. [PMID: 31405145 PMCID: PMC6720718 DOI: 10.3390/molecules24162908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are functional nucleic acids that bind to a range of targets (small molecules, proteins or cells) with a high affinity and specificity. Chemically-modified aptamers are of interest because the incorporation of novel nucleobase components can enhance aptamer binding to target proteins, while fluorescent base analogues permit the design of functional aptasensors that signal target binding. However, since optimally modified nucleoside designs have yet to be identified, information about how to fine tune aptamer stability and target binding affinity is required. The present work uses molecular dynamics (MD) simulations to investigate modifications to the prototypical thrombin-binding aptamer (TBA), which is a 15-mer DNA sequence that folds into a G-quadruplex structure connected by two TT loops and one TGT loop. Specifically, we modeled a previously synthesized thymine (T) analog, namely 5-furyl-2′-deoxyuridine (5FurU), into each of the six aptamer locations occupied by a thymine base in the TT or TGT loops of unbound and thrombin bound TBA. This modification and aptamer combination were chosen as a proof-of-principle because previous experimental studies have shown that TBA displays emissive sensitivity to target binding based on the local environment polarity at different 5FurU modification sites. Our simulations reveal that the chemically-modified base imparts noticeable structural changes to the aptamer without affecting the global conformation. Depending on the modification site, 5FurU performance is altered due to changes in the local environment, including the modification site structural dynamics, degree of solvent exposure, stacking with neighboring bases, and interactions with thrombin. Most importantly, these changes directly correlate with the experimentally-observed differences in the stability, binding affinity and emissive response of the modified aptamers. Therefore, the computational protocols implemented in the present work can be used in subsequent studies in a predictive way to aid the fine tuning of aptamer target recognition for use as biosensors (aptasensors) and/or therapeutics.
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada.
| |
Collapse
|
20
|
Turaev AV, Tsvetkov VB, Tankevich MV, Smirnov IP, Aralov AV, Pozmogova GE, Varizhuk AM. Benzothiazole-based cyanines as fluorescent "light-up" probes for duplex and quadruplex DNA. Biochimie 2019; 162:216-228. [PMID: 31022429 DOI: 10.1016/j.biochi.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
Analogs of benzothiazole orange (BO) with one, two or three methylbenzothiazolylmethylidene substituents in the 1-methylpyridinium ring were obtained from the respective picolinium, lutidinium or collidinium salts. Fluorescence parameters of the known and new dyes in complexes with various DNA structures, including G-quadruplexes (G4s) and i-motifs (IMs), were analyzed. All dyes efficiently distinguished G4s and ss-DNA. The bi- and tri-substituted derivatives had basically similar distributions of relative fluorescence intensities. The mono-substituted derivatives exhibited enhanced sensitivity to parallel G4s. All dyes were particularly sensitive to a G4 structure with an additional duplex module (the thrombin-binding aptamer TBA31), presumably due to a distinctive binding mode (interaction with the junction between the two modules). In particular, BO showed a strong (160-fold) enhancement in fluorescence quantum yield in complex with TBA31 compared to the free dye. The fluorescence quantum yields of the 2,4-bisubstituted derivative in complex with well-characterized G4s from oncogene promoters were in the range of 0.04-0.28, i.e. comparable to those of ThT. The mono/bi-substituted derivatives should be considered as possible light-up probes for G4 formation.
Collapse
Affiliation(s)
- Anton V Turaev
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700, Russia
| | - Vladimir B Tsvetkov
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Department of Molecular Virology, FSBI Research Institute of Influenza, Ministry of Health of Russian Federation, Prof. Popov Str. 15/17, Saint-Petersburg, 197376, Russia; Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str. 19/1, Moscow, 119146, Russia
| | - Maria V Tankevich
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Igor P Smirnov
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia.
| | - Galina E Pozmogova
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow, 119071, Russia.
| | - Anna M Varizhuk
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| |
Collapse
|
21
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
22
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
23
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Kumar P, Truong L, Baker YR, El-Sagheer AH, Brown T. Synthesis, Affinity for Complementary RNA and DNA, and Enzymatic Stability of Triazole-Linked Locked Nucleic Acids (t-LNAs). ACS OMEGA 2018; 3:6976-6987. [PMID: 29978149 PMCID: PMC6028152 DOI: 10.1021/acsomega.8b01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Dinucleoside phosphoramidites containing a triazole internucleotide linkage flanked by locked nucleic acid (LNA) were synthesized and incorporated into oligonucleotides (ONs). ONs bearing both LNA and triazole at multiple sites were obtained and their biophysical properties including enzymatic stability and binding affinity for RNA and DNA targets were studied. t-LNAs with four incorporations of a dinucleoside monomer having LNA on either side of the triazole linkage bind to their RNA target with significantly higher affinity and greater specificity than unmodified oligonucleotides, and are remarkably stable to nuclease degradation. A similar but reduced effect on enzymatic stability and binding affinity was noted for LNA only on the 3'-side of the triazole linkage. Thus, by combining unnatural triazole linkages and LNA in one unit (t-LNA), we produced a promising class of ONs with reduced anionic charge and potential for antisense applications.
Collapse
Affiliation(s)
- Pawan Kumar
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Lynda Truong
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ysobel Ruth Baker
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Afaf Helmy El-Sagheer
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Chemistry
Branch, Department of Science and Mathematics, Faculty of Petroleum
and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
25
|
Dolot R, Lam CH, Sierant M, Zhao Q, Liu FW, Nawrot B, Egli M, Yang X. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res 2018; 46:4819-4830. [PMID: 29684204 PMCID: PMC5961234 DOI: 10.1093/nar/gky268] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 01/11/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Collapse
Affiliation(s)
- Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Curtis H Lam
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
26
|
Kumar P, El-Sagheer AH, Truong L, Brown T. Locked nucleic acid (LNA) enhances binding affinity of triazole-linked DNA towards RNA. Chem Commun (Camb) 2018; 53:8910-8913. [PMID: 28748236 PMCID: PMC5708354 DOI: 10.1039/c7cc05159j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LNA improves the RNA-binding affinity and enzymatic stability of triazole-linked DNA.
Oligonucleotides containing internal triazole–3′-LNA linkages bind to complementary RNA with similar affinity and specificity to unmodified oligonucleotides, and significantly better than oligonucleotides containing triazole alone. In contrast LNA on the 5′-side of the triazole does not stabilise duplexes. Triazole–LNA confers great resistance towards enzymatic degradation relative to LNA alone.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Lynda Truong
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
27
|
Kotkowiak W, Lisowiec-Wachnicka J, Grynda J, Kierzek R, Wengel J, Pasternak A. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 10:304-316. [PMID: 29499943 PMCID: PMC5862132 DOI: 10.1016/j.omtn.2017.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA), as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Jolanta Lisowiec-Wachnicka
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jakub Grynda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
28
|
Virgilio A, Amato T, Petraccone L, Filosa R, Varra M, Mayol L, Esposito V, Galeone A. Improved thrombin binding aptamer analogues containing inversion of polarity sites: structural effects of extra-residues at the ends. Org Biomol Chem 2018; 14:7707-14. [PMID: 27461474 DOI: 10.1039/c6ob00931j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this paper, we report the investigations, based on NMR, molecular modelling, CD measurements and electrophoresis, of thrombin binding aptamer (TBA) analogues containing an extra-residue at the 3'-end or at both the ends of the original TBA sequence, linked through 3'-3' or 5'-5' phosphodiester bonds. The data indicate that most of the modified aptamers investigated adopt chair-like G-quadruplex structures very similar to that of the TBA and that stacking interactions occur between the 3'-3' or 5'-5' extra residues and the deoxyguanosines of the upper G-tetrad. A comparison of the thermodynamic data of TBA-A and TBA-T containing a 3'-3' extra residue and their canonical versions clearly indicates that the 3'-3' phosphodiester bond is fundamental in endowing the modified aptamers with remarkably higher thermal stabilities than the original TBA.
Collapse
Affiliation(s)
- A Virgilio
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| | - T Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| | - L Petraccone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, I-80126 Naples, Italy
| | - R Filosa
- Department of Experimental Medicine, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - M Varra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| | - L Mayol
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| | - V Esposito
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| | - A Galeone
- Department of Pharmacy, University of Naples Federico II, via D. Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
29
|
Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int J Mol Sci 2017; 18:ijms18081683. [PMID: 28767098 PMCID: PMC5578073 DOI: 10.3390/ijms18081683] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Collapse
|
30
|
Liu HY, Chen AC, Yin QK, Li Z, Huang SM, Du G, He JH, Zan LP, Wang SK, Xu YH, Tan JH, Ou TM, Li D, Gu LQ, Huang ZS. New Disubstituted Quindoline Derivatives Inhibiting Burkitt's Lymphoma Cell Proliferation by Impeding c-MYC Transcription. J Med Chem 2017; 60:5438-5454. [PMID: 28603988 DOI: 10.1021/acs.jmedchem.7b00099] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The c-MYC oncogene is overactivated during Burkitt's lymphoma pathogenesis. Targeting c-MYC to inhibit its transcriptional activity has emerged as an effective anticancer strategy. We synthesized four series of disubstituted quindoline derivatives by introducing the second cationic amino side chain and 5-N-methyl group based on a previous study of SYUIQ-5 (1) as c-MYC promoter G-quadruplex ligands. The in vitro evaluations showed that all new compounds exhibited higher stabilities and binding affinities, and most of them had better selectivity (over duplex DNA) for the c-MYC G-quadruplex compared to 1. Moreover, the new ligands prevented NM23-H2, a transcription factor, from effectively binding to the c-MYC G-quadruplex. Further studies showed that the selected ligand, 7a4, down-regulated c-MYC transcription by targeting promoter G-quadruplex and disrupting the NM23-H2/c-MYC interaction in RAJI cells. 7a4 could inhibit Burkitt's lymphoma cell proliferation through cell cycle arrest and apoptosis and suppress tumor growth in a human Burkitt's lymphoma xenograft.
Collapse
Affiliation(s)
- Hui-Yun Liu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ai-Chun Chen
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Qi-Kun Yin
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zeng Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Su-Mei Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Gang Du
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jin-Hui He
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Li-Peng Zan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Shi-Ke Wang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Yao-Hao Xu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jia-Heng Tan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Tian-Miao Ou
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ding Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| |
Collapse
|
31
|
Vlasenok M, Varizhuk A, Kaluzhny D, Smirnov I, Pozmogova G. Data on secondary structures and ligand interactions of G-rich oligonucleotides that defy the classical formula for G4 motifs. Data Brief 2017; 11:258-265. [PMID: 28243622 PMCID: PMC5320062 DOI: 10.1016/j.dib.2017.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
The data provided in this article are related to the research article "The expanding repertoire of G4 DNA structures" [1]. Secondary structures of G-rich oligonucleotides (ONs) that represent “imperfect” G-quadruplex (G4) motifs, i.e., contain truncated or interrupted G-runs, were analyzed by optical methods. Presented data on ON structures include circular dichroism (CD) spectra, thermal difference spectra (TDS) and UV -melting curves of the ONs; and rotational relaxation times (RRT) of ethidium bromide (EtBr) complexes with the ONs. TDS, CD spectra and UV-melting curves can be used to characterize the topologies and thermal stabilities of the ON structures. RRTs are roughly proportional to the hydrodynamic volumes of the complexes and thus can be used to distinguish between inter- and intramolecular ON structures. Presented data on ON interactions with small molecules include fluorescence emission spectra of the G4 sensor thioflavin T (ThT) in complexes with the ONs, and CD-melting curves of the ONs in the presence of G4-stabilizing ligands N-methylmesoporphyrin IX (NMM) and pyridostatin (PDS). These data should be useful for comparative analyses of classical G4s and “defective”G4s, such as quadruplexes with vacancies or bulges.
Collapse
Affiliation(s)
- Maria Vlasenok
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Anna Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Dmitry Kaluzhny
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Igor Smirnov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
| | - Galina Pozmogova
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
- Correspondence to: Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya street 1A, 119435 Moscow, Russia.Research and Clinical Center for Physical Chemical MedicineMalaya Pirogovskaya street 1AMoscow119435Russia
| |
Collapse
|
32
|
Varizhuk A, Ischenko D, Tsvetkov V, Novikov R, Kulemin N, Kaluzhny D, Vlasenok M, Naumov V, Smirnov I, Pozmogova G. The expanding repertoire of G4 DNA structures. Biochimie 2017; 135:54-62. [PMID: 28109719 DOI: 10.1016/j.biochi.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 11/17/2022]
Abstract
The definition of DNA and RNA G-quadruplexes (G4s) has recently been broadened to include structures with certain defects: bulges, G-vacancies or mismatches. Despite the striking progress in computational methods for assessing G4 folding propensity, predicting G4s with defects remains problematic, reflecting the enhanced sequential diversity of these motifs. "Imperfect" G4 motifs, i.e., those containing interrupted or truncated G-runs, are typically omitted from genomic analyses. We report here studies of G4s with defects and compare these structures with classical ("perfect") quadruplexes. Thermal stabilities and ligand interactions are also discussed. We exploited a simple in-house computational tool for mining putative G4s with defects in the human genome. The obtained profiles of the genomic distribution of imperfect G4 motifs were analyzed. Collectively, our findings suggest that, similar to classical G4s, imperfect G4s could be considered as potential regulatory elements, pathology biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anna Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Dmitry Ischenko
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Vladimir Tsvetkov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Department of Molecular Virology, FSBI Research Institute of Influenza, Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Roman Novikov
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia; N.D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay Kulemin
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Dmitry Kaluzhny
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Maria Vlasenok
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Vladimir Naumov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
| | - Igor Smirnov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
| | - Galina Pozmogova
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia.
| |
Collapse
|
33
|
Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 2017; 71:30-54. [PMID: 28126288 DOI: 10.1016/j.bioorg.2017.01.010] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/15/2017] [Indexed: 02/01/2023]
Abstract
1,2,3-Triazoles are important five-membered heterocyclic scaffold due to their extensive biological activities. This framework can be readily obtained in good to excellent yields on the multigram scale through click chemistry via reaction of aryl/alkyl halides, alkynes and NaN3 under ambient conditions. It has been an emerging area of interest for many researchers throughout the globe owing to its immense pharmacological scope. The present work aims to summarize the current approaches adopted for the synthesis of the 1,2,3-triazole and medicinal significance of these architectures as a lead structure for the discovery of drug molecules such as COX-1/COX-2 inhibitors (celecoxib, pyrazofurin), HIV protease inhibitors, CB1 cannabinoid receptor antagonist and much more which are in the pipeline of clinical trials. The emphasis has been given on the major advancements in the medicinal prospectus of this pharmacophore for the period during 2008-2016.
Collapse
Affiliation(s)
- Divya Dheer
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM, Jammu Campus, Jammu 180001, India; Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Virender Singh
- Department of Chemistry, National Institute of Technology (NIT), Jalandhar 144011, Punjab, India
| | - Ravi Shankar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM, Jammu Campus, Jammu 180001, India; Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| |
Collapse
|
34
|
Prokofjeva M, Tsvetkov V, Basmanov D, Varizhuk A, Lagarkova M, Smirnov I, Prusakov K, Klinov D, Prassolov V, Pozmogova G, Mikhailov SN. Anti-HIV Activities of Intramolecular G4 and Non-G4 Oligonucleotides. Nucleic Acid Ther 2016; 27:56-66. [PMID: 27763826 DOI: 10.1089/nat.2016.0624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New natural and chemically modified DNA aptamers that inhibit HIV-1 activity at submicromolar concentrations (presumably via preventing viral entry into target cells) are reported. The new DNA aptamers were developed based on known intramolecular G-quadruplexes (G4s) that were functionally unrelated to HIV inhibition [the thrombin-binding aptamer and the fragment of the human oncogene promoter (Bcl2)]. The majority of previously described DNA inhibitors of HIV infection adopt intermolecular structures, and thus their folding variability represents an obvious disadvantage. Intramolecular architectures refold correctly after denaturation and are generally easier to handle. However, whether the G4 topology or other factors account for the anti-HIV activity of our aptamers is unknown. The impact of chemical modification (thiophosphoryl internucleotide linkages) on aptamer activity is discussed. The exact secondary structures of the active compounds and further elucidation of their mechanisms of action hopefully will be the subjects of future studies.
Collapse
Affiliation(s)
- Maria Prokofjeva
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia
| | - Vladimir Tsvetkov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,3 Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences , Moscow, Russia
| | - Dmitry Basmanov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Anna Varizhuk
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia .,2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Maria Lagarkova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Igor Smirnov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Kirill Prusakov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Dmitry Klinov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,4 Moscow Institute of Physics and Technology (State University) , Moscow Region, Russia
| | | | - Galina Pozmogova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | | |
Collapse
|
35
|
Torabi R, Bagherzadeh K, Ghourchian H, Amanlou M. An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach. Org Biomol Chem 2016; 14:8141-53. [DOI: 10.1039/c6ob01094f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monitoring and evaluating structural and functional alternations in RBP4 induced by its specific aptamer binding to design new aptamers for diagnostic and therapeutic purposes with reduced insulin resistance.
Collapse
Affiliation(s)
- Raheleh Torabi
- Laboratory of Microanalysis
- Institute of Biochemistry & Biophysics
- University of Tehran
- Tehran
- Iran
| | - Kowsar Bagherzadeh
- Razi Drug Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Medicinal Chemistry
| | - Hedayatollah Ghourchian
- Laboratory of Microanalysis
- Institute of Biochemistry & Biophysics
- University of Tehran
- Tehran
- Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry
- Faculty of Pharmacy and Drug Design and Development Research Center
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
36
|
Virgilio A, Petraccone L, Vellecco V, Bucci M, Varra M, Irace C, Santamaria R, Pepe A, Mayol L, Esposito V, Galeone A. Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity. Nucleic Acids Res 2015; 43:10602-11. [PMID: 26582916 PMCID: PMC4678827 DOI: 10.1093/nar/gkv1224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2′-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the ‘chair-like’ conformation typical of the TBA. However, only ODNs TBA-F4 and TBA-F13 have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luigi Petraccone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II,via Cintia, I-80126 Napoli, Italy
| | - Valentina Vellecco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Mariarosaria Bucci
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Michela Varra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carlo Irace
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rita Santamaria
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Antonietta Pepe
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
37
|
Abstract
In this study we describe new modified analogs of the thrombin binding aptamer (TBA) containing 5-nitroindole residues. It has been shown that all modified TBAs form an anti-parallel G-quadruplex structure and retain the ability to inhibit thrombin. The most advanced TBA variant (TBA-N8) has a substantially increased clotting time and two-fold lower IC50 value compared to the unmodified prototype. Molecular modelling studies suggest that the improved anticoagulant properties of TBA-N8 result from changes in the binding mode of the analog. A modified central loop in TBA-N8 is presumed to participate in the binding of the target protein. Studies of FAM labelled TBA and TBA-N8 showed an improved binding affinity of the modified aptamer and provided evidence of a direct interaction between the modified central loop and thrombin. Our findings have implications for the design of new aptamers with improved binding affinities.
Collapse
|
38
|
Tsvetkov V, Pozmogova G, Varizhuk A. The systematic approach to describing conformational rearrangements in G-quadruplexes. J Biomol Struct Dyn 2015; 34:705-15. [PMID: 26017012 PMCID: PMC4867883 DOI: 10.1080/07391102.2015.1055303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conformational changes in DNA G-quadruplex (GQ)-forming regions affect genome function and, thus, compose an interesting research topic. Computer modelling may yield insight into quadruplex folding and rearrangement, particularly molecular dynamics simulations. Here, we show that specific parameters, which are distinct from those commonly used in DNA conformational analyses, must be introduced for adequate interpretation and, most importantly, convenient visual representation of the quadruplex modelling results. We report a set of parameters that comprehensively and systematically describe GQ geometry in dynamics. The parameters include those related to quartet planarity, quadruplex twist, and quartet stacking; they are used to quantitatively characterise various types of quadruplexes and rearrangements, such as quartet distortion/disruption or deviation/bulging of a single nucleotide from the quartet plane. Our approach to describing conformational changes in quadruplexes using the new parameters is exemplified by telomeric quadruplex rearrangement, and the benefits of applying this approach to analyse other structures are discussed.
Collapse
Affiliation(s)
- Vladimir Tsvetkov
- a Department of Molecular Biology and Genetics , SRI of Physical-Chemical Medicine , Moscow , 119435 , Russia.,b Department of Polyelectrolytes and Surface-active Polymers , Topchiev Institute of Petrochemical Synthesis , Moscow , 119991 , Russia
| | - Galina Pozmogova
- a Department of Molecular Biology and Genetics , SRI of Physical-Chemical Medicine , Moscow , 119435 , Russia
| | - Anna Varizhuk
- a Department of Molecular Biology and Genetics , SRI of Physical-Chemical Medicine , Moscow , 119435 , Russia.,c Department of Structure-Functional Analysis of Biopolymers , Engelhardt Institute of Molecular Biology , Vavilov str. 32, Moscow , 119991 , Russia
| |
Collapse
|
39
|
Abstract
Aptamers, as a novel class of molecular probes for diagnosis, imaging and targeting therapy, have attracted increasing attention in recent years. Aptamers are generated from libraries of single-stranded nucleic acids against different molecules via the "systematic evolution of ligands by exponential enrichment" (SELEX) method. SELEX is a repetitive process of a sequential selection procedure in which a DNA or RNA library pool is incubated separately with target and control molecules to select specific oligonucleotide aptamers with high affinities and specificities. Cell-SELEX is a modified version of the SELEX process in which whole living cells are used as targets for the aptamers. Dendritic cell (DC) targeting, as a new therapeutic approach, can improve the efficiency of immunotherapy in the treatment of allergies and cancers. DCs use various receptors to continuously induce adaptive immunity via capture and presentation of antigens to naïve T cells. DCs are considered as the best targets in modulating immune responses against cancer, autoimmunity, allergy and transplantation. Aptamers, as a new agent, can be applied in DC targeting. The purpose of this review is to present some general concepts of aptamer production and DC targeting by aptamer molecules.
Collapse
Affiliation(s)
- A Ganji
- a Student Research Committee , Mashhad University of Medical Sciences , Mashhad , Iran .,b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - A Varasteh
- c Allergy Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran
| | - M Sankian
- b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| |
Collapse
|
40
|
Li ML, Ren YJ, Dong MH, Ren WX. Design, synthesis and structural exploration of novel fluorinated dabigatran derivatives as direct thrombin inhibitors. Eur J Med Chem 2015; 96:122-38. [PMID: 25874337 DOI: 10.1016/j.ejmech.2015.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 11/24/2022]
Abstract
Twenty-one fluorinated dabigatran derivatives were designed based on the bioisosteric principle. All derivatives were synthesised and evaluated for their thrombin inhibitory activity in vitro. Among these compounds, 14h, 14m, 14s and 14t were potent and the activity was in the range of reference drug, dabigatran. Three structural changes were introduced in these 21 compounds to elucidate the structure-activity relationship of the drugs. In addition, prodrugs of compounds 14h and 14s were developed to investigate their anticoagulant activities in vivo. In these experiments, compound 16 showed a fairly strong inhibitory effect on thrombin-induced platelet aggregation, and demonstrated potent activity for inhibiting arteriovenous thrombosis with an inhibition rate of (73 ± 6) %, which was comparable to that of dabigatran etexilate (76 ± 2) %. Moreover, molecular docking studies were performed to understand the binding interactions of active compounds 14h, 14s and 14t with thrombin protein (PDB ID:1KTS). Contour maps obtained from the 3D-QSAR model are meaningful in designing more active molecules to act as direct inhibitors of thrombin.
Collapse
Affiliation(s)
- Mei-Lin Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu-Jie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Ming-Hui Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei-Xin Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
41
|
Esposito V, Scuotto M, Capuozzo A, Santamaria R, Varra M, Mayol L, Virgilio A, Galeone A. A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org Biomol Chem 2014; 12:8840-3. [PMID: 25296283 DOI: 10.1039/c4ob01475h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradation of nucleic acids in biological environments is the major drawback of the therapeutic use of aptamers. Among the approaches used to circumvent this negative aspect, the introduction of 3'-3' inversion of polarity sites at the sequence 3'-end has successfully been proposed. However, the introduction of inversion of polarity at the ends of the sequence has never been exploited for G-quadruplex forming aptamers. In this communication we describe CD, UV, electrophoretic and biochemical investigations concerning thrombin binding aptamer analogues containing one or two inversions of polarity sites at the oligonucleotide ends. Data indicate that, in some cases, this straightforward chemical modification is able to improve, at the same time, the thermal stability, affinity to thrombin and nuclease resistance in biological environments, thus suggesting its general application as a post-SELEX modification also for other therapeutically promising aptamers adopting G-quadruplex structures.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tatarinova O, Tsvetkov V, Basmanov D, Barinov N, Smirnov I, Timofeev E, Kaluzhny D, Chuvilin A, Klinov D, Varizhuk A, Pozmogova G. Comparison of the 'chemical' and 'structural' approaches to the optimization of the thrombin-binding aptamer. PLoS One 2014; 9:e89383. [PMID: 24586736 PMCID: PMC3930721 DOI: 10.1371/journal.pone.0089383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/20/2014] [Indexed: 11/18/2022] Open
Abstract
Noncanonically structured DNA aptamers to thrombin were examined. Two different approaches were used to improve stability, binding affinity and biological activity of a known thrombin-binding aptamer. These approaches are chemical modification and the addition of a duplex module to the aptamer core structure. Several chemically modified aptamers and the duplex-bearing ones were all studied under the same conditions by a set of widely known and some relatively new methods. A number of the thrombin-binding aptamer analogs have demonstrated improved characteristics. Most importantly, the study allowed us to compare directly the two approaches to aptamer optimization and to analyze their relative advantages and disadvantages as well as their potential in drug design and fundamental studies.
Collapse
Affiliation(s)
| | - Vladimir Tsvetkov
- Institute for Physical-Chemical Medicine, Moscow, Russia ; Orekhovich Institute of Biomedical Chemistry, Moscow, Russia ; Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
| | | | | | - Igor Smirnov
- Institute for Physical-Chemical Medicine, Moscow, Russia
| | | | | | | | - Dmitry Klinov
- Institute for Physical-Chemical Medicine, Moscow, Russia ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Anna Varizhuk
- Institute for Physical-Chemical Medicine, Moscow, Russia ; Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | |
Collapse
|